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Abstract. The purpose of this paper is to study on gauge spaces the following nonlinear integral
equation:

x(t) = g(t, x(t)) + h(t, x(t)) ·
t∫

0

K(t, s, x(s))ds, t ≥ 0.

Our results are connected with some results by K. Balachandran and M. Diana Julie (Asymptotic

stability of solutions of nonlinear integral equations, Nonlinear Functional Analysis and Applications,
Vol.13, No.2(2008), pp 311-322). Also, we given an example which show us that the results from the

above paper can not be applied, but our results are fulfilled.
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1. Introduction

The theory of integral equations has many applications in describing numerous
events and problems of real world. For example, integral equations are often applicable
in mathematical physics, engineering, economics and biology (see [2], [3], [4], [5], [6]
and their references). In [1] the authors investigate the solvability and asymptotic
stability of solutions for the following nonlinear integral equation

x(t) = g(t, x(t)) + h(t, x(t)) ·
t∫

0

K(t, s, x(s))ds, t ≥ 0 (1.1)

The study was made in certain classes of bounded and continuous functions. The
central tool in the analysis is the fixed point theorem of Darbo. In this paper we
shall study, on gauge spaces, the equation (1.1). More exactly we shall prove that the
equation (1.1) has, in C(R+,R), a unique solution. Also, we given an example which
show us that the results from [1] can not be applied, but our results are fulfilled(see
Example 3.1). Next we are going to study data dependence(continuity and smooth
dependence on parameter) for the solution of equation (1.1). Our study was made
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in the gauge space (C(R+,R), (dm)m∈N?), where dm(x, y) := max
t∈ [0,m]

|x(t) − y(t)| by

using the fixed point theorem of Colojoară(see [8]).

2. Basic notions and results of the weakly Picard operators theory

Throughout this paper we shall follow the standard terminologies and notations in
nonlinear analysis. For the convenience of the reader we shall recall some of them.

Let X be a nonempty set and A : X → X an operator. We denote by A0 := 1X ,
A1 := A, An+1 := A ◦ An, n ∈ N the iterate operators of the operator A. We also
have

P (X) := {Y ⊂ X | Y 6= ∅}
FA := {x ∈ X | A(x) = x}

I(A) := {Y ∈ P (X) | A(Y ) ⊂ Y }
By (X,→) we will denote an L-space. For example, Hausdorff topological spaces,
metric spaces, generalized metric spaces (in Perov′s sense:d(x, y) ∈ Rn+, Luxemburg
sense: d(x, y) ∈ R+∪{∞}, d(x, y) ∈ K, K a cone in an ordered Banach space), gauge
spaces, probabilistic metric spaces, have a natural structure of L-spaces(see [9], [10]).

In this paper, we need the notations(I.A. Rus [11] and [12]).

Definition 2.1. Let (X,→) be an L-space. An operator A : X → X is weakly Picard
operator ( briefly WPO) if the sequence (An(x))n∈N converges, for all x ∈ X and the
limit (which may depend on x ) is a fixed point of A.

Definition 2.2. Let (X,→) be an L-space. An operator A : X → X is Picard
operator(briefly PO) if:

(i) FA = {x?};
(ii) An(x)→ x? as n→∞, for all x ∈ X.

If A : X → X is weakly Picard operator, then we may define the operator A∞ :
X → X by A∞(x) = lim

n→∞
An(x). Moreover, if A is PO and we denote by x? its

unique fixed point, then A∞(x) = x?, for each x ∈ X.
We have (see [7], [11],[12] and [13]):

Theorem 2.1. (existence and uniqueness) Let (X, (di)i∈I) be a sequentially complete
Hausdorff gauge space and let T : X → X be such that for every i ∈ I there exists
αi ∈ I such that

di(T (x), T (y)) ≤ αi · di(x, y),

for each x, y ∈ X. Then T is PO.

Theorem 2.2. (data dependence) Let (X, (dλ)λ∈Λ) be a gauge space and A,B : X →
X be two cλ− WPOs. We suppose that, for each λ ∈ Λ there exists ηλ > 0 such that

dλ(A(x)), B(x) ≤ ηλ, for all x ∈ X.
Then

Hdλ(FA, FB) ≤ cλ · ηλ, for all λ ∈ Λ.

In order to study smooth dependence of parameter we shall use the following
result(see [7])
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Theorem 2.3. Let (X,→) be an L-space and (Y, (di)i∈I) be a sequentially complete
Hausdorff gauge space. Let B : X → X and C : X × Y → Y be two operators.

We suppose that:

(i) B is a Picard operator(PO) ( we denote by x? its unique fixed point);
(ii) for every i ∈ I there exists αi ∈ (0, 1) such that

di(C(x, y1)), C(x, y2) ≤ αidi(y1, y2),

for all x ∈ X and y1, y2 ∈ Y (we denote by y? the unique fixed point of the
operator C(x?, ·) );

(iii) the operator C(·, y?) is continuous in x?.

Then, the operator A : X×Y → X×Y , A(x, y) := (B(x), C(x, y)) is Picard operator.
Moreover, FA = {(x?, y?)}.

3. Existence and uniqueness

In this section we shall prove that the equation (1.1) has a unique solution
in C(R+,R). For this, in what follows we consider the gauge space X :=
(C([0,∞),R), (dm)m∈N?), where

dm(x, y) := max
t∈ [0,m]

|x(t)− y(t)|

Our first result is the following

Theorem 3.1. We consider equation (1.1) under following hypothesis:

(C1) there exists l ∈ C(R+ × R+,R+) and n1, n2 ∈ C(R+,R+) such that

|K(t, s, u)−K(t, s, v)| ≤ l(t, s)|u− v|, (∀) t, s ∈ R+, u, v ∈ R

|g(t, u)− g(t, v)| ≤ n1(t)|u− v|, (∀) t ∈ R+, u, v ∈ R
|h(t, u)− h(t, v)| ≤ n2(t)|u− v|, (∀) t ∈ R+, u, v ∈ R

(C2) for each m ∈ N? there exists α(m) > 0 such that

|h(t, x(t))| ·
t∫

0

l(t, s)ds+ n2(t) ·
t∫

0

|K(t, s, y(s))|ds ≤ α(m)

for all t ∈ [0,m] and x, y ∈ C(R+,R).
(C3) Mg(m)+α(m) < 1, for each m ∈ N?. Here we denoted Mg(m) = max

t∈[0,m]
n1(t).

Then the equation (1.1) has, in C(R+,R), a unique solution x?.

Proof. We consider the operator A : X → X defined by:

A(x)(t) = g(t, x(t)) + h(t, x(t)) ·
t∫

0

K(t, s, x(s))ds.

We remark that for all x, y ∈ X, and t ∈ [0,m] we have that

|A(x)(t)−A(y)(t)|
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≤ |g(t, x(t))− g(t, y(t))|+ |h(t, x(t))

t∫
0

K(t, s, x(s))ds− h(t, y(t))

t∫
0

K(t, s, y(s))ds|

≤ |g(t, x(t))− g(t, y(t))|

+|h(t, x(t))|
t∫

0

|K(t, s, x(s))−K(t, s, y(s))|ds+|h(t, x(t))−h(t, y(t))|·|
t∫

0

K(t, s, y(s))ds|

≤ n1(t)|x(t)− y(t)|+ |h(t, x(t))|
t∫

0

l(t, s)|x(s)− y(s)|ds

+n2(t) · |x(t)− y(t)|
t∫

0

|K(t, s, y(s))|ds

≤ (Mg(m) + α(m)) · dm(x, y).

It follows that for each m ∈ N? we have

dm(Ax,Ay) ≤ (Mg(m) + α(m)) · dm(x, y),

for all x, y ∈ X. From Theorem 2.1, we obtain the conclusion. �

Example 3.1. Let us consider the following nonlinear integral equation

x(t) =
t

1 + t
·sin

(
a1x(t)

)
+

t cos
(
a2x(t)

)
(1 + t+ t3)(1 + t2)(2 + t2)

·
t∫

0

a3 ·t·ln(1+ts+
1

1 + x2(s)
)ds,

(3.1)
a1, a2, a3 ∈ R with |a1|+ |a2|+ |a2 · a3| ≤ 1. Then equation (3.1) has, in C(R+,R), a
unique solution.

Proof. Firstly, we remark that the maps

(t, u) ∈ R+ × R g→ t

1 + t
· sin

(
a1u
)
∈ R

(t, s, u) ∈ R+ × R+ × R K→ a3 · t · ln(1 + ts+
1

1 + u2
) ∈ R

(t, u) ∈ R+ × R h→
t cos

(
a2u
)

(1 + t+ t3)(1 + t2)(2 + t2)
∈ R

verify the hypothesis (C1) of Theorem 3.1 with

n1, n2 : R+ → R+, n1(t) = |a1|
t

1 + t
, n2(t) =

|a2|t
(1 + t+ t3)(1 + t2)(2 + t2))

.

l : R+ × R+ → R+, l(t, s) =
|a3|t

1 + ts
.

So, the condition (C1) hold.
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Let be m ∈ N∗. Then for all t ∈ [0,m] and x, y ∈ C(R+,R) we get

|h(t, x(t))| ·
t∫

0

l(t, s)ds+ n2(t) ·
t∫

0

|K(t, s, y(s))|ds

=
t| cos

(
a2x(t)

)
|

(1 + t+ t3)(1 + t2)(2 + t2)
·

t∫
0

|a3|t
1 + ts

ds

+
|a2 · a3|t

(1 + t+ t3)(1 + t2)(2 + t2))
·

t∫
0

t · ln(1 + ts+
1

1 + x2(s)
)ds

≤ |a3|t
(1 + t+ t3)(1 + t2)(2 + t2)

· t2 +
|a2 · a3|t

(1 + t+ t3)(1 + t2)(2 + t2))
· (1 + t2)(2 + t2)

≤ |a3|
t3

1 + t3
+ |a2 · a3|

t

t+ 1
≤ |a3|

m3

1 +m3
+ |a2 · a3|

m

m+ 1
Now we apply Theorem 3.1 for the operator

A : C(R+,R)→ C(R+,R),

Ax(t) =
t

1 + t
·sin

(
a1x(t)

)
+

t cos
(
a2x(t)

)
(1 + t+ t3)(1 + t2)(2 + t2)

·
t∫

0

a3·t·ln(1+ts+
1

1 + x2(s)
)ds

and
Mg(m) = |a1|

m

1 +m
,

α(m) = |a3|
m3

1 +m3
+ |a2 · a3|

m

m+ 1
. �

Remark 3.1. From the above example it follows that for all t ∈ R+ and x ∈
C(R+,R), we have

|a3|
(
(t2 + 1) · ln(t2 + 1)− t2

)
≤

t∫
0

|K(t, s, x(s))|ds ≤ |a3|
(
(t2 + 2) · ln(t2 + 2)− t2

)
≤ |a3|(t2 + 1) · (t2 + 2).

Then,

lim
t→∞

t∫
0

|K(t, s, x(s))|ds =∞,

which means that hypothesis (H5), from [1] pp 314, is not fulfilled.

Remark 3.2. For a1 = a3 = 1
3 and a2 = 1 we get that Mg(m) + α(m) < 1 even if

|a1|+ |a3|+ |a2 · a3| = 1.

Finally by using weakly Picard operators technique, we remark that we can study
the equation (1.1) in C(R+, X) where (X, ‖·‖) will be a Banach space. Similar studies
we found in [14].
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4. Data dependence

We consider the following equations

x(t) = gi(t, x(t)) + hi(t, x(t)) ·
t∫

0

Ki(t, s, x(s))ds, t ≥ 0 (4.1)

under conditions of Theorem 3.1. Let xi, i = 1, 2 be the unique solution of equation
(4.1). Then we have

Theorem 4.1. Let gi, hi,Ki be as in the Theorem 3.1. We suppose that

(i) there exists η1, η2, η3 > 0 such that

|g1(t, u)− g2(t, u)| ≤ η1, (∀) (t, u) ∈ R+ × R

|h1(t, u)− h2(t, u)| ≤ η2, (∀) (t, u) ∈ R+ × R
|K1(t, s, v)−K2(t, s, v)| ≤ η3, (∀) (t, s, v) ∈ R+ × R+ × R;

(ii) for each m ∈ N? there exists C1(K2,m) > 0 and C2(h1,m) such that

|K2(t, s, u)| ≤ C1(K2,m), ∀ t, s ∈ [0,m], ∀u ∈ R
and

|h1(t, u)| ≤ C2(h1,m), ∀ t ∈ [0,m], ∀u ∈ R.
Then for each m ∈ N∗ we have

dm(x1, x2) ≤ (η1 +η2 ·m ·C1(K2,m)+η3 ·m ·C2(h1,m)) max
i=1,2
{ 1

1−Mgi(m)− αi(m)
},

where Mgi(m) and αi(m) are as in hypothesis (C2) and (C3) of Theorem 3.1.

Proof. Under conditions of Theorem 3.1 the operators Ai : X → X defined by:

Ai(x)(t) = gi(t, x(t)) + hi(t, x(t)) ·
t∫

0

Ki(t, s, x(s))ds

are 1
1−Mgi

(m)−αi(m)− Picard operators. On the other hand, for all x ∈ C(R+,R) and

t ∈ [0,m] we have

|A1(x)(t)−A2(x)(t)| ≤ |g1(t, x(t))− g2(t, x(t))|

+|h1(t, x(t))

t∫
0

K1(t, s, x(s))ds− h2(t, x(t))

t∫
0

K2(t, s, x(s))ds|

≤ |g1(t, x(t))− g2(t, x(t))|

+|h1(t, x(t))

t∫
0

K1(t, s, x(s))ds− h1(t, x(t))

t∫
0

K2(t, s, x(s))ds|

+|h1(t, x(t))

t∫
0

K2(t, s, x(s))ds− h2(t, x(t))

t∫
0

K2(t, s, x(s))ds|
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≤ |g1(t, x(t))− g2(t, x(t))|+ |h1(t, x(t))|
t∫

0

|K1(t, s, x(s))−K2(t, s, x(s))|ds

+|h1(t, x(t))− h2(t, x(t))|
t∫

0

|K2(t, s, x(s))|ds

≤ η1 + η2 ·m · C1(K2,m) + η3 ·m · C2(h1,m) =: ηm.

The conclusion follow from Theorem 2.2. �

Example 4.1. Let us consider the following nonlinear integral equations

x(t) =
t

1 + βit
· sin(ai cosx(t))

+
t cos(bi sinx(t))

(1 + t+ t3)(2 + t2)2
·

t∫
0

ci ·
t2

(1 + t+ ts)2
· ln(1 + ts+

1

1 + x2(s)
)ds, (4.2)

where

(i) ai, bi, ci ∈ R with |ai|+ |bi|+ |bi · ci| < 1 for all i = 1, 2;
(ii) β1, β2 ≥ 1.

Then Theorem 4.1 hold.

Proof. First of all we remark that for each i = 1, 2 the operators

(t, u) ∈ R+ × R gi→ t

1 + βit
· sin(ai cosu),

(t, u) ∈ R+ × R hi→ t

(1 + t+ t3)(2 + t2)2
· cos(bi sinu),

(t, s, u) ∈ R+ × R+ × R Ki→ ci ·
t2

(1 + t+ ts)2
· ln(1 + ts+

1

1 + u2
)

verify the hypothesis of Theorem 3.1 with

Mgi(m) =
m

1 + βim
and αi(m) = |ci|

m3

1 +m3
+ |bi · ci|

m

m+ 1
.

On the other hand we observe that

|g1(t, u)− g2(t, u)| ≤ | t

1 + β1t
· sin(a1 cosu)− t

1 + β2t
· sin(a2 cosu)|

≤ t

1 + β1t
· |sin(a1 cosu)− sin(a2 cosu)|+ | t

1 + β1t
− t

1 + β2t
| · |sin(a2 cosu)|

≤ |a1 − a2|+ |β1 − β2| =: η1

and

|h1(t, u)− h2(t, u)| ≤ t

(1 + t+ t3)(2 + t2)2
· |b1 − b2| ≤ |b1 − b2| =: η2.

Also, for all t, s ∈ R+ and u ∈ R we have

|K1(t, s, u)−K2(t, s, u)|
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= |c1 ·
t2

(1 + t+ ts)2
· ln(1 + ts+

1

1 + u2
)− c2 ·

t2

(1 + t+ ts)2
· ln(1 + ts+

1

1 + u2
)|

= |c1 − c2| ·
t2

(1 + t+ ts)2
· ln(1 + ts+

1

1 + u2
) ≤ |c1 − c2| := η3.

Since
t∫

0

|Ki(t, s, u)|ds ≥
t∫

0

t2

(1 + t+ ts)2
· ln(1 + ts)ds

= − t

1 + t+ t2
ln(1 + t2) + ln

1 + t2

1 + t+ t2
+ ln(1 + t)→∞

it follows that hypothesis (H5), from [1] pp 314, is not fulfilled.
Next we remark that for each m ∈ N∗ we have

|K2(t, s, u)| ≤ c2
m

1 +m
:= C1(K2,m), ∀t, s ∈ [0,m], and u ∈ R

and

|h(t, u)| ≤ m

1 +m
:= C2(h1,m), ∀t ∈ [0,m], and u ∈ R.

Now we apply Theorem 4.1. �

5. Smooth dependence on parameter

Throughout of this section we consider gauge space X := (C(R+×J,R), dm), where
J ⊂ R is a compact interval and

dm(x, y) = max
(t,λ)∈[0,m]×J

|x(t, λ)− y(t, λ)|,m ∈ N?.

Let us consider the integral equation

x(t, λ) = g(t, x(t, λ), λ) + h(t, x(t, λ), λ) ·
t∫

0

K(t, s, x(s, λ), λ)ds, t ≥ 0, λ ∈ J (5.1)

We assume that:

(H1) g, h ∈ C1(R+ × R× J,R), K ∈ C1(R+ × R+ × R× J,R);
(H2) there exists l ∈ C(R+ × R+ × J,R+) and n1, n2 ∈ C(R+ × J,R+) such that

|∂K
∂u

(t, s, u, λ)| ≤ l(t, s, λ)

|∂g
∂u

(t, u, λ)| ≤ n1(t, λ)

|∂h
∂u

(t, u, λ)| ≤ n2(t, λ)

for all t, s ∈ R+ and u ∈ R;
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(H3) for each m ∈ N∗ there exists α(m) ∈ (0, 1) such that

|h(t, x(s, λ), λ)|
t∫

0

l(t, s, λ)ds+ n2(t, λ)

t∫
0

|K(t, s, y(s, λ), λ)|ds ≤ α(m),

for all t ∈ [0,m], λ ∈ J and x, y ∈ C(R+ × J).
(H4) Mg(m) + α(m) < 1, for each m ∈ N?.
We define the operator

B : X → X,

B(x)(t, λ) = g(t, x(t, λ), λ) + h(t, x(t, λ), λ) ·
t∫

0

K(t, s, x(s, λ), λ)ds.

It is clear that, in the conditions (H1)− (H4), B is Picard operator. Let x?(·, λ) the
unique fixed point of operator B. Then

x?(t, λ) = g(t, x?(t, λ), λ) + h(t, x?(t, λ), λ) ·
t∫

0

K(t, s, x?(s, λ), λ)ds, (5.2)

for all t ∈ R+ and λ ∈ J . We suppose that there exists
∂x?

∂λ
. Then from relation (5.2)

we obtain that

∂x?

∂λ
(t, λ) =

∂g

∂u
(t, x?(t, λ), λ) · ∂x

?

∂λ
(t, λ) +

∂g

∂λ
(t, x?(t, λ), λ)

+
∂h

∂u
(t, x?(t, λ), λ) · ∂x

?

∂λ
(t, λ) ·

t∫
0

K(t, s, x?(s, λ), λ)ds

+
∂h

∂λ
(t, x?(t, λ), λ) ·

t∫
0

K(t, s, x?(s, λ), λ)ds

+h(t, x?(t, λ), λ) ·
t∫

0

∂K

∂u
(t, s, x?(s, λ), λ) · ∂x

?

∂λ
(s, λ)ds

+h(t, x?(t, λ), λ) ·
t∫

0

∂K

∂λ
(t, s, x?(s, λ), λ)ds.

This relation suggest us to consider the following operator

C : X ×X → X,

C(x, y)(t, λ) =
∂g

∂u
(t, x(t, λ), λ) · y(t, λ) +

∂g

∂λ
(t, x(t, λ), λ)

+
∂h

∂u
(t, x(t, λ), λ)y(t, λ)

t∫
0

K(t, s, x(s, λ), λ)ds
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+
∂h

∂λ
(t, x(t, λ), λ)

t∫
0

K(t, s, x(s, λ), λ)ds

+h(t, x(t, λ), λ)

t∫
0

∂K

∂u
(t, s, x(s, λ), λ)y(s, λ)ds

+h(t, x(t, λ), λ)

t∫
0

∂K

∂λ
(t, s, x(s, λ), λ)ds.

Let be m ∈ N and x ∈ X. Then for all y, z ∈ X we have

|C(x, y)(t, λ)− C(x, z)(t, λ)| ≤ |∂g
∂u

(t, x(t, λ), λ)| · |y(t, λ)− z(t, λ)|

+|∂h
∂u

(t, x(t, λ), λ)| ·
t∫

0

|K(t, s, x(s, λ), λ)|ds · |y(t, λ)− z(t, λ)|

+|h(t, x(t, λ), λ)| ·
t∫

0

|∂K
∂u

(t, s, x(s, λ), λ)| · |y(s, λ)− z(s, λ)|ds

≤ (Mg(m) + α(m))dm(y, z).

It follows that

dm(C(x, y), C(x, z)) ≤ (Mg(m) + α(m))dm(y, z)

In this way we have the triangular operator

A : X ×X → X ×X,
A(x, y)(t, λ) = (B(x)(t, λ), C(x, y)(t, λ)).

Using Theorem 2.3 we conclude that A is a Picard operator. So, the sequences

xn+1 = B(xn), n ∈ N, yn+1 = C(xn, yn)

converges uniformly on each compact of R+ × J to (x?, y?) ∈ FA, for all x0, y0 ∈ X.
If we take x0 = 0, y0 = ∂x0

∂λ = 0 then y1 = ∂x1

∂λ and thus by induction we can prove

that yn = ∂xn
∂λ , for all n ∈ N?.

Hence
xn → x?, uniform as n→∞
∂xn
∂λ
→ y?, uniform as n→∞

These imply that there exists ∂x?

∂λ and ∂x?

∂λ = y?

From the above considerations, we have that

Theorem 5.1. We consider the integral equation (5.2) in the hypothesis (H1)−(H5).
Then

(i) the equation (5.2) has a unique solution x?(t, ·) ∈ X;
(ii) x?(t, ·) ∈ C1(J), for all t ∈ [a, b].
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