STRONG CONVERGENCE THEOREMS BY HYBRID METHODS FOR MAXIMAL MONOTONE OPERATORS AND GENERALIZED HYBRID MAPPINGS

DAVID KUO* AND WATARU TAKAHASHI**
*Department of Applied Mathematics
National Sun Yat-sen University, Kaohsiung 80424, Taiwan
E-mail: mpu.verilog@gmail.com
**Department of Applied Mathematics
National Sun Yat-sen University, Kaohsiung 80424
Taiwan and Department of Mathematical and Computing Sciences
Tokyo Institute of Technology, Tokyo 152-8552, Japan
E-mail: wataru@is.titech.ac.jp

Abstract

Let C be a closed convex subset of a real Hilbert space H. Let T be a supper hybrid mapping of C into H, let A be an inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. In this paper, we introduce two iterative sequences by hybrid methods of finding a point of $F(T) \cap(A+B)^{-1} 0$, where $F(T)$ is the set of fixed points of T and $(A+B)^{-1} 0$ is the set of zero points of $A+B$. Then, we prove two strong convergence theorems in a Hilbert space. Using these results, we give some applications. Key Words and Phrases: Hilbert space, nonexpansive mapping, nonspreading mapping, supper hybrid mapping, fixed point, strong convergence, hybrid method. 2010 Mathematics Subject Classification: 47H10, 47H05.

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let T be a mapping of C into H. Then, we denote by $F(T)$ the set of fixed points of T. For a constant $\alpha>0$, the mapping $A: C \rightarrow H$ is said to be α-inverse strongly monotone if

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$

for all $x, y \in C$. An α-inverse strongly monotone mapping is also Lipschitz continuous with a Lipschitz constant $\frac{1}{\alpha}$. A mapping S of C into H is nonexpansive if $\|S u-S v\| \leq$ $\|u-v\|$ for all $u, v \in C$. A mapping $T: C \rightarrow H$ is said to be a strict pseudo-contraction [6] if there exists a real number k with $0 \leq k<1$ such that

$$
\begin{equation*}
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2} \tag{1.1}
\end{equation*}
$$

for all $x, y \in C$. We also call such a mapping T a k-strict pseudo-contraction. A k strict pseudo-contraction $T: C \rightarrow H$ is nonexpansive if $k=0$. A mapping $T: C \rightarrow H$ is quasi-nonexpansive if $F(T) \neq \emptyset$ and $\|T u-v\| \leq\|u-v\|$ for all $u \in C$ and
$v \in F(T)$. If $S: C \rightarrow H$ is a nonexpansive mapping, then $I-S$ is $\frac{1}{2}$-inverse strongly monotone, where I is the identity mapping on H. A nonexpansive mapping $S: C \rightarrow H$ with $F(S) \neq \emptyset$ is quasi-nonexpansive; see, for instance, [27]. We also know that if $T: C \rightarrow H$ is a k-strict pseudo-contraction with $0 \leq k<1$, then $A=I-T$ is a $\frac{1-k}{2}$-strict pseudo-contraction; see, for instance, Marino and Xu [18]. A mapping S of C into H is nonspreading if

$$
2\|S u-S v\|^{2} \leq\|S u-v\|^{2}+\|S v-u\|^{2}
$$

for all $u, v \in C$; see $[15,16]$. A mapping S of C into H is hybrid if

$$
3\|S u-S v\|^{2} \leq\|S u-v\|^{2}+\|S v-u\|^{2}+\|u-v\|^{2}
$$

for all $u, v \in C$; see [28]. Recently, Kocourek, Takahashi and Yao [14] introduced a broad class of nonlinear mappings which contains nonexpansive mappings, nonspreading mappings and hybrid mappings in a Hilbert space. They called such mappings generalized hybrid mappings; see Section 2. Furthermore, they defined a class of nonlinear mappings called super hybrid containing generalized hybrid mappings. We know that a super bybrid mapping is not quasi-nonexpansive generally. A multivalued mapping $B \subset H \times H$ is said to be monotone if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in H, u \in B x$ and $v \in B y$. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H.

In this paper, we introduce two iterative sequences by hybrid methods of finding a point of $F(T) \cap(A+B)^{-1} 0$, where T is a supper hybrid mapping, A is an inverse strongly monotone mapping and B is a maximal monotone operator in a Hilbert space. Then, we prove two strong convergence theorems in a Hilbert space. Using these results, we obtain well-known, or new results.

2. Preliminaries

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a (real) Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. We denote the strong convergence and the weak convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. From [27], we know the following basic equality. For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} . \tag{2.1}
\end{equation*}
$$

We also know that for $x, y, u, v \in H$,

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} . \tag{2.2}
\end{equation*}
$$

Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $\|x-z\|=\inf _{y \in C}\|x-y\|$. We denote such a correspondence by $z=P_{C} x$. The mapping P_{C} is called the metric projection of H onto C. It is known that P_{C} is nonexpansive and

$$
\left\langle x-P_{C} x, P_{C} x-u\right\rangle \geq 0
$$

for all $x \in H$ and $u \in C$; see [27] for more details.

For a sequence $\left\{C_{n}\right\}$ of nonempty closed convex subsets of a Hilbert space H, define $\mathrm{s}-\mathrm{Li}_{n} C_{n}$ and $\mathrm{w}-\mathrm{Ls}_{n} C_{n}$ as follows: $x \in \mathrm{~s}^{-\mathrm{Li}_{n} C_{n}}$ if and only if there exists $\left\{x_{n}\right\} \subset H$ such that $\left\{x_{n}\right\}$ converges strongly to x and $x_{n} \in C_{n}$ for all $n \in \mathbb{N}$. Similarly, $y \in \mathrm{w}-\mathrm{Ls}_{n} C_{n}$ if and only if there exist a subsequence $\left\{C_{n_{i}}\right\}$ of $\left\{C_{n}\right\}$ and a sequence $\left\{y_{i}\right\} \subset H$ such that $\left\{y_{i}\right\}$ converges weakly to y and $y_{i} \in C_{n_{i}}$ for all $i \in \mathbb{N}$. If C_{0} satisfies

$$
\begin{equation*}
C_{0}=\mathrm{s}-\mathrm{Li}_{n} C_{n}=\mathrm{w}-\mathrm{Ls}_{n} C_{n}, \tag{2.3}
\end{equation*}
$$

it is said that $\left\{C_{n}\right\}$ converges to C_{0} in the sense of Mosco [19] and we write $C_{0}=\mathrm{M}$ $\lim _{n \rightarrow \infty} C_{n}$. It is easy to show that if $\left\{C_{n}\right\}$ is nonincreasing with respect to inclusion, then $\left\{C_{n}\right\}$ converges to $\cap_{n=1}^{\infty} C_{n}$ in the sense of Mosco. For more details, see [19]. We know the following theorem [35].
Theorem 2.1. Let H be a Hilbert space. Let $\left\{C_{n}\right\}$ be a sequence of nonempty closed convex subsets of H. If $C_{0}=M$ - $\lim _{n \rightarrow \infty} C_{n}$ exists and nonempty, then for each $x \in H$, $\left\{P_{C_{n}} x\right\}$ converges strongly to $P_{C_{0}} x$, where $P_{C_{n}}$ and $P_{C_{0}}$ are the mertic projections of H onto C_{n} and C_{0}, respectively.

Let H be a Hilbert space and let C be a nonempty closed and convex subset of H. Then, a mapping $T: C \rightarrow H$ is called generalized hybrid [14] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$
\begin{equation*}
\alpha\|T x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2} \tag{2.4}
\end{equation*}
$$

for all $x, y \in C$. We call such a mapping an (α, β)-generalized hybrid mapping. Notice that the mapping above covers several well-known mappings. For example, an (α, β)-generalized hybrid mapping is nonexpansive for $\alpha=1$ and $\beta=0$, nonspreading for $\alpha=2$ and $\beta=1$, and hybrid for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$. We can also show that if $x=T x$, then for any $y \in C$,

$$
\alpha\|x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

and hence $\|x-T y\| \leq\|x-y\|$. This means that an (α, β)-generalized hybrid mapping with a fixed point is quasi-nonexpansive. We also know a more general class of mappings than the class of generalized hybrid mappings in a Hilbert space. A mapping $S: C \rightarrow H$ is called super hybrid [14] if there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
\begin{align*}
\alpha\|S x-S y\|^{2}+(1-\alpha+\gamma)\|x-S y\|^{2} \leq & \\
(\beta+(\beta-\alpha) \gamma)\|S x-y\|^{2}+ & (1-\beta-(\beta-\alpha-1) \gamma)\|x-y\|^{2} \\
& +(\alpha-\beta) \gamma\|x-S x\|^{2}+\gamma\|y-S y\|^{2} \tag{2.5}
\end{align*}
$$

for all $x, y \in C$. We call such a mapping an (α, β, γ)-super hybrid mapping. We notice that an $(\alpha, \beta, 0)$-super hybrid mapping is (α, β)-generalized hybrid. So, the class of super hybrid mappings contains generalized hybrid mappings. A super hybrid mapping is not quasi-nonexpansive generally. A mapping $U: C \rightarrow H$ is called extended hybrid [9] if there exist $\alpha, \beta, r \in \mathbb{R}$ such that

$$
\begin{align*}
& \alpha(1+r)\|U x-U y\|^{2}+(1-\alpha(1+r))\|x-U y\|^{2} \\
& \leq(\beta+\alpha r)\|U x-y\|^{2}+(1-(\beta+\alpha r))\|x-y\|^{2} \tag{2.6}\\
& \quad-(\alpha-\beta) r\|x-U x\|^{2}-r\|y-U y\|^{2}
\end{align*}
$$

for all $x, y \in C$. We call such a mapping an (α, β, r)-extended hybrid mapping. Putting $\gamma=\frac{-r}{1+r}$ in (2.5) with $1+r>0$, we get that for all $x, y \in C$,

$$
\begin{aligned}
& \alpha\|S x-S y\|^{2}+\left(1-\alpha+\frac{-r}{1+r}\right)\|x-S y\|^{2} \leq \\
& \begin{aligned}
\left(\beta+(\beta-\alpha) \frac{-r}{1+r}\right)\|S x-y\|^{2} & +\left(1-\beta-(\beta-\alpha-1) \frac{-r}{1+r}\right)\|x-y\|^{2} \\
& +(\alpha-\beta) \frac{-r}{1+r}\|x-S x\|^{2}+\frac{-r}{1+r}\|y-S y\|^{2} .
\end{aligned}
\end{aligned}
$$

Since $1+r>0$, we have

$$
\begin{aligned}
& \alpha(1+r)\|S x-S y\|^{2}+(1+r-\alpha(1+r)-r)\|x-S y\|^{2} \leq \\
& \begin{aligned}
&(\beta(1+r)-(\beta-\alpha) r)\|S x-y\|^{2}+(1+r-\beta(1+r)+(\beta-\alpha-1) r)\|x-y\|^{2} \\
& \quad(\alpha-\beta) r\|x-S x\|^{2}-r\|y-S y\|^{2}
\end{aligned}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \alpha(1+r)\|S x-S y\|^{2}+(1-\alpha(1+r))\|x-S y\|^{2} \leq \\
& (\beta+\alpha r)\|S x-y\|^{2}+\left(1-(\beta+\alpha r)\|x-y\|^{2}\right. \\
& \quad-(\alpha-\beta) r\|x-S x\|^{2}-r\|y-S y\|^{2} .
\end{aligned}
$$

This implies that S is (α, β, r)-extended hybrid. Similarly, if S is an (α, β, r)-extended hybrid mapping with $1+r>0$, then S is an $\left(\alpha, \beta, \frac{-r}{1+r}\right)$-super hybrid mapping. We know the following important lemma from [32].

Lemma 2.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T: C \rightarrow H$ be a k-strict pseudo-contraction with $0 \leq k<1$. Then, T is a ($1,0,-k$)-extended hybrid mapping.

If $T: C \rightarrow H$ is a k-strict pseudo-contraction with $0 \leq k<1$, we have $1-k>0$. So, we have from Lemma 2.2 that T is a $\left(1,0, \frac{k}{1-k}\right)$-supper hybrid mapping.

We know the following theorem from [34].
Theorem 2.3. Let C be a nonempty subset of a Hilbert space H and let α, β and γ be real numbers with $\gamma \neq 1$. Let S and T be mappings of C into H such that $T=\frac{1}{1+\gamma} S+\frac{\gamma}{1+\gamma} I$. Then, S is (α, β, γ)-super hybrid if and only if T is (α, β) generalized hybrid. In this case, $F(S)=F(T)$.

From [14], we know the following theorem for generalized hybrid mappings in a Hilbert space.

Theorem 2.4. Let C be a nonempty closed convex subset of a Hilbert space H and let $T: C \rightarrow C$ be a generalized hybrid mapping. Then T has a fixed point in C if and only if $\left\{T^{n} z\right\}$ is bounded for some $z \in C$.

As a direct consequence of Theorem 2.4, we have the following result.
Theorem 2.5. Let C be nonempty bounded closed convex subset of a Hilbert space H and let T be a generalized hybrid mapping from C to itself. Then T has a fixed point.

Using Theorems 2.3 and 2.5, we have the following fixed point theorem [14] for super hybrid mappings in a Hilbert space.

Theorem 2.6. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let α, β and γ be real numbers with $\gamma \geq 0$. Let $S: C \rightarrow C$ be an (α, β, $\gamma)$-super hybrid mapping. Then, S has a fixed point in C.

The following lemma for generalized hybrid mappings in a Hilbert space is essencial for proving our main theorems; see Takahashi, Yao and Kocourek [34].

Lemma 2.7. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T: C \rightarrow H$ be a generalized hybrid mapping. If $x_{n} \rightharpoonup z$ and $x_{n}-T x_{n} \rightarrow 0$, then $z \in F(T)$.

3. Strong convergence theorems

In this section, using the hybrid method by Nakajo and Takahashi [20], we first prove a strong convergence theorem for maximal monotone operators and super hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty convex closed subset of H. Let $\alpha>0$. Let $A: C \rightarrow H$ be α-inverse strongly monotone, let $B: D(B) \subset C \rightarrow 2^{H}$ be maximal monotone and let $J_{\lambda}=(I+\lambda B)^{-1}$ be the resolvent of B for any $\lambda>0$. Let α, β and γ be real numbers with $\gamma \neq-1$ and let $S: C \rightarrow H$ be an (α, β, γ)-super hybrid mapping such that $F(S) \cap(A+B)^{-1}(0) \neq \emptyset$. Let $\left\{x_{n}\right\} \subset C$ be a sequence generated by $x_{1}=x \in C$ and

$$
\left\{\begin{array}{l}
z_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n} \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right)\left(\frac{1}{1+\gamma} S z_{n}+\frac{\gamma}{1+\gamma} z_{n}\right), \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x, \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $P_{C_{n} \cap Q_{n}}$ is the metric projection of H onto $C_{n} \cap Q_{n}$, and $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy

$$
0 \leq \alpha_{n} \leq a<1 \quad \text { and } \quad 0<b \leq \lambda_{n} \leq c<2 \alpha
$$

for some $a, b, c \in \mathbb{R}$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(S) \cap(A+B)^{-1}(0)} x$, where $P_{F(S) \cap(A+B)^{-1}(0)}$ is the metric projection of H onto $F(S) \cap(A+B)^{-1}(0)$.

Proof. Put $T=\frac{1}{1+\gamma} S+\frac{\gamma}{1+\gamma} I$. Then, we have from Theorem 2.3 that T is an $(\alpha$, β)-generalized hybrid mapping of C into H and $F(S)=F(T)$. Since $F(T)$ is closed and convex, $F(S)$ is closed and convex. We know that $(A+B)^{-1}(0)$ is closed and convex [24]. Then, $F(S) \cap(A+B)^{-1}(0)$ is closed and convex. So, there exists the mertic projection of H onto $F(S) \cap(A+B)^{-1}(0)$. Furthermore, we have

$$
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}
$$

for all $n \in \mathbb{N}$. Since

$$
\begin{aligned}
& \left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2} \\
\Longleftrightarrow & \left\|y_{n}\right\|^{2}-\left\|x_{n}\right\|^{2}-2\left\langle y_{n}-x_{n}, z\right\rangle \leq 0
\end{aligned}
$$

we have that C_{n}, Q_{n} and $C_{n} \cap Q_{n}$ are closed and convex for all $n \in \mathbb{N}$. We next show that $C_{n} \cap Q_{n}$ is nonempty. Let $z \in F(T) \cap(A+B)^{-1}(0)$. Put $z_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}$. From $z=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) z$, we have from $0<b \leq \lambda_{n} \leq c<2 \alpha$ that for any $n \in \mathbb{N}$,

$$
\begin{align*}
\left\|z_{n}-z\right\|^{2} & =\left\|J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) z\right\|^{2} \tag{3.1}\\
& \leq\left\|x_{n}-\lambda_{n} A x_{n}-z+\lambda_{n} A z\right\|^{2} \\
& =\left\|x_{n}-z\right\|^{2}-2 \lambda_{n}\left\langle x_{n}-z, A x_{n}-A z\right\rangle+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2}-2 \lambda_{n} \alpha\left\|A x_{n}-A z\right\|^{2}+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2} \\
& =\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2} .
\end{align*}
$$

Since T is quasi-nonexpansive, we have from (3.1) that

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2} & =\left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}-z\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T z_{n}-z\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-z\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|^{2} \\
& =\left\|x_{n}-z\right\|^{2} .
\end{aligned}
$$

Thus we have $z \in C_{n}$ and hence $F(T) \cap(A+B)^{-1}(0) \subset C_{n}$ for all $n \in \mathbb{N}$. Next, we show by induction that $F(T) \cap(A+B)^{-1}(0) \subset C_{n} \cap Q_{n}$ for all $n \in \mathbb{N}$. From $F(T) \cap(A+B)^{-1}(0) \subset Q_{1}$, it follows that $F(T) \cap(A+B)^{-1}(0) \subset C_{1} \cap Q_{1}$. Suppose that $F(T) \cap(A+B)^{-1}(0) \subset C_{k} \cap Q_{k}$ for some $k \in \mathbb{N}$. From $x_{k+1}=P_{C_{k} \cap Q_{k}} x$, we have

$$
\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0, \quad \forall z \in C_{k} \cap Q_{k}
$$

Since $F(T) \cap(A+B)^{-1}(0) \subset C_{k} \cap Q_{k}$, we also have

$$
\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0, \quad \forall z \in F(T) \cap(A+B)^{-1}(0)
$$

This implies $F(T) \cap(A+B)^{-1}(0) \subset Q_{k+1}$. So, we have $F(T) \cap(A+B)^{-1}(0) \subset$ $C_{k+1} \cap Q_{k+1}$. By induction, we have $F(T) \cap(A+B)^{-1}(0) \subset C_{n} \cap Q_{n}$ for all $n \in \mathbb{N}$. This means that $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ are well-defined.

Since $x_{n}=P_{Q_{n}} x$ and $x_{n+1}=P_{C_{n} \cap Q_{n}} x \subset Q_{n}$, we have from (2.2) that

$$
\begin{align*}
0 & \leq 2\left\langle x-x_{n}, x_{n}-x_{n+1}\right\rangle \tag{3.2}\\
& =\left\|x-x_{n+1}\right\|^{2}-\left\|x-x_{n}\right\|^{2}-\left\|x_{n}-x_{n+1}\right\|^{2} \\
& \leq\left\|x-x_{n+1}\right\|^{2}-\left\|x-x_{n}\right\|^{2} .
\end{align*}
$$

So, we get that

$$
\begin{equation*}
\left\|x-x_{n}\right\|^{2} \leq\left\|x-x_{n+1}\right\|^{2} \tag{3.3}
\end{equation*}
$$

Furthermore, since $x_{n}=P_{Q_{n}} x$ and $z \in F(T) \cap(A+B)^{-1}(0) \subset Q_{n}$, we have

$$
\begin{equation*}
\left\|x-x_{n}\right\|^{2} \leq\|x-z\|^{2} \tag{3.4}
\end{equation*}
$$

We have from (3.3) and (3.4) that $\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|^{2}$ exists. This implies that $\left\{x_{n}\right\}$ is bounded. Hence, $\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{T z_{n}\right\}$ are also bounded. From (3.2), we have

$$
\left\|x_{n}-x_{n+1}\right\|^{2} \leq\left\|x-x_{n+1}\right\|^{2}-\left\|x-x_{n}\right\|^{2}
$$

and hence

$$
\begin{equation*}
\left\|x_{n}-x_{n+1}\right\| \rightarrow 0 \tag{3.5}
\end{equation*}
$$

From $x_{n+1} \in C_{n}$, we have that $\left\|y_{n}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|$. From (3.5), we have $\left\|y_{n}-x_{n+1}\right\| \rightarrow 0$. So, we have

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{3.6}
\end{equation*}
$$

From $\left\|x_{n}-y_{n}\right\|=\left\|x_{n}-\alpha_{n} x_{n}-\left(1-\alpha_{n}\right) T z_{n}\right\|=\left(1-\alpha_{n}\right)\left\|x_{n}-T z_{n}\right\|$, we also have from $0 \leq \alpha_{n} \leq a<1$ that

$$
\begin{equation*}
\left\|T z_{n}-x_{n}\right\| \rightarrow 0 \tag{3.7}
\end{equation*}
$$

Using (3.7), we show $\left\|T z_{n}-z_{n}\right\| \rightarrow 0$. We have from (3.1) that for any $z \in F(T) \cap$ $(A+B)^{-1}(0)$,

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2} & =\left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}-z\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-z\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2}\right\} \\
& =\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right) \lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& (1-a) b(2 \alpha-c)\left\|A x_{n}-A z\right\|^{2} \leq\left(1-\alpha_{n}\right) \lambda_{n}\left(2 \alpha-\lambda_{n}\right)\left\|A x_{n}-A z\right\|^{2} \\
& \quad \leq\left\|x_{n}-z\right\|^{2}-\left\|y_{n}-z\right\|^{2} \\
& \quad=\left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left(\left\|x_{n}-z\right\|-\left\|y_{n}-z\right\|\right) \\
& \quad \leq\left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left\|x_{n}-y_{n}\right\| .
\end{aligned}
$$

From $\left\|y_{n}-x_{n}\right\| \rightarrow 0$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-A z\right\|=0 \tag{3.8}
\end{equation*}
$$

Since $J_{\lambda_{n}}$ is firmly nonexpansive, we have that

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2}= & \left\|J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) z\right\|^{2} \\
\leq & \left\langle z_{n}-z,\left(I-\lambda_{n} A\right) x_{n}-\left(I-\lambda_{n} A\right) z\right\rangle \\
= & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|\left(I-\lambda_{n} A\right) x_{n}-\left(I-\lambda_{n} A\right) z\right\|^{2}\right. \\
& \left.-\left\|z_{n}-z-\left(I-\lambda_{n} A\right) x_{n}+\left(I-\lambda_{n} A\right) z\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|x_{n}-z\right\|^{2}\right. \\
& \left.-\left\|z_{n}-z-\left(I-\lambda_{n} A\right) x_{n}+\left(I-\lambda_{n} A\right) z\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|x_{n}-z\right\|^{2}\right. \\
& \left.-\left\|z_{n}-x_{n}+\lambda_{n}\left(A x_{n}-A z\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|x_{n}-z\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2}\right. \\
& \left.-2 \lambda_{n}\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle-\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}\right\} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2} \leq & \left\|x_{n}-z\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2} \\
& -2 \lambda_{n}\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle-\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2} \leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T z_{n}-z\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-z\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-z\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2}\right. \\
& \left.\quad-2 \lambda_{n}\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle-\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}\right\} \\
\leq & \left\|x_{n}-z\right\|^{2}-(1-a)\left\|z_{n}-x_{n}\right\|^{2}-\lambda_{n}{ }^{2}\left(1-\alpha_{n}\right)\left\|A x_{n}-A z\right\|^{2} \\
& \quad-2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle .
\end{aligned}
$$

This means that

$$
\begin{aligned}
(1-a)\left\|z_{n}-x_{n}\right\|^{2} \leq & \left\|x_{n}-z\right\|^{2}-\left\|y_{n}-z\right\|^{2} \\
& +\left\|A x_{n}-A z\right\|\left\{2 c\left\|z_{n}-x_{n}\right\|+c^{2}\left\|A x_{n}-A z\right\|\right\} \\
\leq & \left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left\|x_{n}-y_{n}\right\| \\
& +\left\|A x_{n}-A z\right\|\left\{2 c\left\|z_{n}-x_{n}\right\|+c^{2}\left\|A x_{n}-A z\right\|\right\}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|A x_{n}-A z\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$, and $\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{x_{n}\right\}$ are bounded, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Since $y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}$, we have $y_{n}-T z_{n}=\alpha_{n}\left(x_{n}-T z_{n}\right)$. So, from (3.7) we have

$$
\begin{equation*}
\left\|y_{n}-T z_{n}\right\|=\alpha_{n}\left\|x_{n}-T z_{n}\right\| \rightarrow 0 . \tag{3.10}
\end{equation*}
$$

Since

$$
\left\|z_{n}-T z_{n}\right\| \leq\left\|z_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T z_{n}\right\|
$$

from (3.6), (3.9) and (3.10) we have

$$
\begin{equation*}
\left\|z_{n}-T z_{n}\right\| \rightarrow 0 \tag{3.11}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\} \subset\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup z^{*}$. We have from (3.9) and $x_{n_{i}} \rightharpoonup z^{*}$ that $z_{n_{i}} \rightharpoonup z^{*}$. From (3.11) and Lemma 2.7, we have $z^{*} \in F(T)$. Next, let us show $z \in(A+B)^{-1}(0)$. From the definition of $J_{\lambda_{n}}$, we have that

$$
\begin{aligned}
z_{n} & =J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n} \\
& \Leftrightarrow\left(I-\lambda_{n} A\right) x_{n} \in\left(I+\lambda_{n} B\right) z_{n}=z_{n}+\lambda_{n} B z_{n} \\
& \Leftrightarrow x_{n}-z_{n}-\lambda_{n} A x_{n} \in \lambda_{n} B z_{n} \\
& \Leftrightarrow \frac{1}{\lambda_{n}}\left(x_{n}-z_{n}-\lambda_{n} A x_{n}\right) \in B z_{n} .
\end{aligned}
$$

Since B is monotone, we have that for $(u, v) \in B$,

$$
\left\langle z_{n}-u, \frac{1}{\lambda_{n}}\left(x_{n}-z_{n}-\lambda_{n} A x_{n}\right)-v\right\rangle \geq 0
$$

and hence

$$
\begin{equation*}
\left\langle z_{n}-u, \frac{x_{n}-z_{n}}{\lambda_{n}}-\left(A x_{n}+v\right)\right\rangle \geq 0 . \tag{3.12}
\end{equation*}
$$

Furthermore, since A is α-inverse strongly monotone,

$$
\left\langle x_{n_{i}}-z^{*}, A x_{n_{i}}-A z^{*}\right\rangle \geq \alpha\left\|A x_{n_{i}}-A z^{*}\right\|^{2}
$$

From $x_{n_{i}} \rightharpoonup z^{*}$ and $A x_{n_{i}} \rightarrow A z$, we have $\left\langle x_{n_{i}}-z^{*}, A x_{n_{i}}-A z^{*}\right\rangle \rightarrow 0$ and hence $A x_{n_{i}} \rightarrow A z^{*}$. We also know from (3.12) that

$$
\lim _{i \rightarrow \infty}\left\langle z_{n_{i}}-u, \frac{x_{n_{i}}-z_{n_{i}}}{\lambda_{n_{i}}}-\left(A x_{n_{i}}+v\right)\right\rangle \geq 0
$$

So, we have from $z_{n_{i}} \rightharpoonup z^{*}$ that $\left\langle z^{*}-u,-A z^{*}-v\right\rangle \geq 0$. Since B is maximal monotone, we have $\left(-A z^{*}\right) \in B z^{*}$ and hence $z^{*} \in(A+B)^{-1}(0)$. So, we have $z^{*} \in$ $F(T) \cap(A+B)^{-1}(0)$.

Put $z_{0}=P_{F(T) \cap(A+B)^{-1}(0)} x$. Since $z_{0}=P_{F(T) \cap(A+B)^{-1}(0)} x \subset C_{n} \cap Q_{n}$ and $x_{n+1}=$ $P_{C_{n} \cap Q_{n}} x$, we have that

$$
\begin{equation*}
\left\|x-x_{n+1}\right\|^{2} \leq\left\|x-z_{0}\right\|^{2} \tag{3.13}
\end{equation*}
$$

Since $\|\cdot\|^{2}$ is weakly lower semicontinuous, from $x_{n_{i}} \rightharpoonup z^{*}$ we have that

$$
\begin{aligned}
\left\|x-z^{*}\right\|^{2} & =\|x\|^{2}-2\left\langle x, z^{*}\right\rangle+\left\|z^{*}\right\|^{2} \\
& \leq \liminf _{i \rightarrow \infty}\left(\|x\|^{2}-2\left\langle x, x_{n_{i}}\right\rangle+\left\|x_{n_{i}}\right\|^{2}\right) \\
& =\liminf _{i \rightarrow \infty}\left\|x-x_{n_{i}}\right\|^{2} \\
& \leq\left\|x-z_{0}\right\|^{2}
\end{aligned}
$$

From the definition of z_{0}, we have $z^{*}=z_{0}$. So, we obtain $x_{n} \rightharpoonup z_{0}$. We finally show that $x_{n} \rightarrow z_{0}$. We have

$$
\left\|z_{0}-x_{n}\right\|^{2}=\left\|z_{0}-x\right\|^{2}+\left\|x-x_{n}\right\|^{2}+2\left\langle z_{0}-x, x-x_{n}\right\rangle, \quad \forall n \in \mathbb{N} .
$$

So, we have from (3.13) that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|z_{0}-x_{n}\right\|^{2} & =\limsup _{n \rightarrow \infty}\left(\left\|z_{0}-x\right\|^{2}+\left\|x-x_{n}\right\|^{2}+2\left\langle z_{0}-x, x-x_{n}\right\rangle\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\left\|z_{0}-x\right\|^{2}+\left\|x-z_{0}\right\|^{2}+2\left\langle z_{0}-x, x-x_{n}\right\rangle\right) \\
& =\left\|z_{0}-x\right\|^{2}+\left\|x-z_{0}\right\|^{2}+2\left\langle z_{0}-x, x-z_{0}\right\rangle \\
& =0
\end{aligned}
$$

So, we obtain $\lim _{n \rightarrow \infty}\left\|z_{0}-x_{n}\right\|=0$. Hence, $\left\{x_{n}\right\}$ converges strongly to z_{0}. This completes the proof.

Next, we prove a strong convergence theorem by the shrinking projection method [30] for supper hybrid mappings in a Hilbert space.

Theorem 3.2. Let H be a real Hilbert space and let C be a nonempty convex closed subset of H. Let $\alpha>0$. Let $A: C \rightarrow H$ be α-inverse strongly monotone, let $B: D(B) \subset C \rightarrow 2^{H}$ be maximal monotone and let $J_{\lambda}=(I+\lambda B)^{-1}$ be the resolvent of B for any $\lambda>0$. Let α, β and γ be real numbers with $\gamma \neq-1$ and let $S: C \rightarrow H$ be an (α, β, γ)-super hybrid mapping such that $F(S) \cap(A+B)^{-1}(0) \neq \emptyset$. Let $C_{1}=C$ and let $\left\{x_{n}\right\} \subset C$ be a sequence generated by $x_{1}=x \in C$ and

$$
\left\{\begin{array}{l}
z_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n} \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right)\left(\frac{1}{1+\gamma} S z_{n}+\frac{\gamma}{1+\gamma} z_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $P_{C_{n+1}}$ is the metric projection of H onto C_{n+1}, and $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset$ $(0, \infty)$ are sequences such that

$$
\liminf _{n \rightarrow \infty} \alpha_{n}<1 \quad \text { and } \quad 0<b \leq \lambda_{n} \leq c<2 \alpha
$$

for some $b, c \in \mathbb{R}$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(S) \cap(A+B)^{-1}(0)} x$, where $P_{F(S) \cap(A+B)^{-1}(0)}$ is the metric projection of H onto $F(S) \cap(A+B)^{-1}(0)$.

Proof. Put $T=\frac{1}{1+\gamma} S+\frac{\gamma}{1+\gamma} I$. Then, we have from Theorem 2.3 that T is an $(\alpha$, β)-generalized hybrid mapping of C into H and $F(S)=F(T)$. Since $F(T)$ is closed and convex, so is $F(S)$. We know that $(A+B)^{-1}(0)$ is closed and convex. Then, $F(S) \cap(A+B)^{-1}(0)$ is closed and convex. So, there exists the mertic projection of H onto $F(S) \cap(A+B)^{-1}(0)$. We shall show that C_{n} are closed and convex, and $F(T) \cap(A+B)^{-1}(0) \subset C_{n}$ for all $n \in \mathbb{N}$. It is obvious from assumption that $C_{1}=C$ is closed and convex, and $F(T) \cap(A+B)^{-1}(0) \subset C_{1}$. Suppose that C_{k} is closed and convex, and $F(T) \cap(A+B)^{-1}(0) \subset C_{k}$ for some $k \in \mathbb{N}$. From Nakajo and Takahashi
[20], we know that for $z \in C_{k}$,

$$
\begin{aligned}
& \left\|y_{k}-z\right\|^{2} \leq\left\|x_{k}-z\right\|^{2} \\
\Longleftrightarrow & \left\|y_{k}\right\|^{2}-\left\|x_{k}\right\|^{2}-2\left\langle y_{k}-x_{k}, z\right\rangle \leq 0
\end{aligned}
$$

So, C_{k+1} is closed and convex. By induction, C_{n} are closed and convex for all $n \in \mathbb{N}$. Put $z_{k}=J_{\lambda_{k}}\left(I-\lambda_{k} A\right) x_{k}$ and take $z \in F(T) \cap(A+B)^{-1}(0) \subset C_{k}$. From $z=$ $J_{\lambda_{n}}\left(I-\lambda_{n} A\right) z$, we have that

$$
\begin{align*}
\left\|z_{k}-z\right\|^{2} & =\left\|J_{\lambda_{k}}\left(I-\lambda_{k} A\right) x_{k}-J_{\lambda_{k}}\left(I-\lambda_{k} A\right) z\right\|^{2} \tag{3.14}\\
& \leq\left\|x_{k}-\lambda_{k} A x_{k}-z+\lambda_{k} A z\right\|^{2} \\
& =\left\|x_{k}-z\right\|^{2}-2 \lambda_{k}\left\langle x_{k}-z, A x_{k}-A z\right\rangle+\lambda_{k}^{2}\left\|A x_{k}-A z\right\|^{2} \\
& \leq\left\|x_{k}-z\right\|^{2}-2 \lambda_{k} \alpha\left\|A x_{k}-A z\right\|^{2}+\lambda_{k}^{2}\left\|A x_{k}-A z\right\|^{2} \\
& =\left\|x_{k}-z\right\|^{2}+\lambda_{k}\left(\lambda_{k}-2 \alpha\right)\left\|A x_{k}-A z\right\|^{2} \\
& \leq\left\|x_{k}-z\right\|^{2} .
\end{align*}
$$

Since T is quasi-nonexpansive, we have from (3.14) that

$$
\begin{aligned}
\left\|y_{k}-z\right\|^{2} & =\left\|\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) T z_{k}-z\right\|^{2} \\
& \leq \alpha_{k}\left\|x_{k}\right\|^{2}+\left(1-\alpha_{k}\right)\left\|T z_{k}-z\right\|^{2} \\
& \leq \alpha_{k}\left\|x_{k}-z\right\|^{2}+\left(1-\alpha_{k}\right)\left\|z_{k}-z\right\|^{2} \\
& \leq \alpha_{k}\left\|x_{k}-z\right\|^{2}+\left(1-\alpha_{k}\right)\left\|x_{k}-z\right\|^{2} \\
& =\left\|x_{k}-z\right\|^{2}
\end{aligned}
$$

Hence, we have $z \in C_{k+1}$. By induction, we have that $F(T) \cap(A+B)^{-1}(0) \subset C_{n}$ for all $n \in \mathbb{N}$. Since C_{n} is nonempty, closed and convex, there exists the metric projection $P_{C_{n}}$ of H onto C_{n}. Thus, $\left\{x_{n}\right\}$ is well-defined. Furthermore, we have

$$
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}
$$

for all $n \in \mathbb{N}$.
Since $\left\{C_{n}\right\}$ is a nonincreasing sequence of nonempty closed convex subsets of H with respect to inclusion, it follows that

$$
\begin{equation*}
\emptyset \neq F(T) \cap(A+B)^{-1}(0) \subset \mathrm{M}-\lim _{n \rightarrow \infty} C_{n}=\bigcap_{n=1}^{\infty} C_{n} \tag{3.15}
\end{equation*}
$$

Put $C_{0}=\bigcap_{n=1}^{\infty} C_{n}$. Then, by Theorem 2.1 we have that $\left\{P_{C_{n}} x\right\}$ converges strongly to $x_{0}=P_{C_{0}} x$, i.e.,

$$
x_{n}=P_{C_{n}} x \rightarrow x_{0}
$$

To complete the proof, it is sufficient to show that $x_{0}=P_{F(T) \cap(A+B)^{-1}(0)} x$.

Since $x_{n}=P_{C_{n}} x$ and $x_{n+1}=P_{C_{n+1}} x \in C_{n+1} \subset C_{n}$, we have from (2.2) that

$$
\begin{align*}
0 & \leq 2\left\langle x-x_{n}, x_{n}-x_{n+1}\right\rangle \tag{3.16}\\
& =\left\|x-\left.x_{n+1}\right|^{2}-\right\| x-x_{n}\left\|^{2}-\right\| x_{n}-x_{n+1} \|^{2} \\
& \leq\left\|x-x_{n+1}\right\|^{2}-\| x-\left.x_{n}\right|^{2} .
\end{align*}
$$

So, we get that

$$
\begin{equation*}
\left\|x-x_{n}\right\|^{2} \leq\left\|x-x_{n+1}\right\|^{2} \tag{3.17}
\end{equation*}
$$

Furthermore, since $x_{n}=P_{C_{n}} x$ and $z \in F(T) \cap(A+B)^{-1}(0) \subset C_{n}$, we have

$$
\begin{equation*}
\left\|x-x_{n}\right\|^{2} \leq\|x-z\|^{2} \tag{3.18}
\end{equation*}
$$

So, we have that $\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|^{2}$ exists. This implies that $\left\{x_{n}\right\}$ is bounded. Hence, $\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{T z_{n}\right\}$ are also bounded. From (3.16), we have

$$
\left\|x_{n}-x_{n+1}\right\|^{2} \leq\left\|x-x_{n+1}\right\|^{2}-\left\|x-x_{n}\right\|^{2} .
$$

So, we have that

$$
\begin{equation*}
\left\|x_{n}-x_{n+1}\right\|^{2} \rightarrow 0 \tag{3.19}
\end{equation*}
$$

From $x_{n+1} \in C_{n+1}$, we also have that $\left\|y_{n}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|$. So, we get that $\left\|y_{n}-x_{n+1}\right\| \rightarrow 0$. Using this, we have

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{3.20}
\end{equation*}
$$

From $0 \leq \liminf _{n \rightarrow \infty} \alpha_{n}<1$, we have a subsequence $\left\{\alpha_{n_{i}}\right\}$ of $\left\{\alpha_{n}\right\}$ such that $\alpha_{n_{i}} \rightarrow \gamma$ and $0 \leq \gamma<1$. From

$$
\left\|x_{n}-y_{n}\right\|=\left\|x_{n}-\alpha_{n} x_{n}-\left(1-\alpha_{n}\right) T z_{n}\right\|=\left(1-\alpha_{n}\right)\left\|x_{n}-T z_{n}\right\|
$$

we have that

$$
\begin{equation*}
\left\|T z_{n_{i}}-x_{n_{i}}\right\| \rightarrow 0 \tag{3.21}
\end{equation*}
$$

Using (3.21), let us show $\left\|T z_{n_{i}}-z_{n_{i}}\right\| \rightarrow 0$. As in the proof of Theorem 3.1, we have that for any $z \in F(T) \cap(A+B)^{-1}(0)$,

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2} & =\left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}-z\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-z\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2}\right\} \\
& =\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right) \lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
&\left(1-\alpha_{n}\right) b(2 \alpha-c)\left\|A x_{n}-A z\right\|^{2} \leq\left(1-\alpha_{n}\right) \lambda_{n}\left(2 \alpha-\lambda_{n}\right)\left\|A x_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2}-\left\|y_{n}-z\right\|^{2} \\
&=\left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left(\left\|x_{n}-z\right\|-\left\|y_{n}-z\right\|\right) \\
& \leq\left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left\|x_{n}-y_{n}\right\| .
\end{aligned}
$$

From $\left\|y_{n}-x_{n}\right\| \rightarrow 0$ and $\alpha_{n_{i}} \rightarrow \gamma$, we have that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|A x_{n_{i}}-A z\right\|=0 \tag{3.22}
\end{equation*}
$$

Since $J_{\lambda_{n}}$ is firmly nonexpansive, we have that

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2}= & \left\|J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) z\right\|^{2} \\
\leq & \left\langle z_{n}-z,\left(I-\lambda_{n} A\right) x_{n}-\left(I-\lambda_{n} A\right) z\right\rangle \\
= & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|\left(I-\lambda_{n} A\right) x_{n}-\left(I-\lambda_{n} A\right) z\right\|^{2}\right. \\
& \left.-\left\|z_{n}-z-\left(I-\lambda_{n} A\right) x_{n}+\left(I-\lambda_{n} A\right) z\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|x_{n}-z\right\|^{2}\right. \\
& \left.-\left\|z_{n}-z-\left(I-\lambda_{n} A\right) x_{n}+\left(I-\lambda_{n} A\right) z\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|x_{n}-z\right\|^{2}\right. \\
& \left.-\left\|z_{n}-x_{n}+\lambda_{n}\left(A x_{n}-A z\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|z_{n}-z\right\|^{2}+\left\|x_{n}-z\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2}\right. \\
& \left.-2 \lambda_{n}\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle-\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}\right\} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2} \leq & \left\|x_{n}-z\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2} \\
& -2 \lambda_{n}\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle-\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2} \leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T z_{n}-z\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-z\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-z\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2}\right. \\
& \left.\quad-2 \lambda_{n}\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle-\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}\right\} \\
\leq & \left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left\|z_{n}-x_{n}\right\|^{2}-\lambda_{n}^{2}\left(1-\alpha_{n}\right)\left\|A x_{n}-A z\right\|^{2} \\
& \quad-2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle z_{n}-x_{n}, A x_{n}-A z\right\rangle .
\end{aligned}
$$

This means that

$$
\begin{aligned}
\left(1-\alpha_{n}\right)\left\|z_{n}-x_{n}\right\|^{2} \leq & \left\|x_{n}-z\right\|^{2}-\left\|y_{n}-z\right\|^{2} \\
& +\left\|A x_{n}-A z\right\|\left\{2 c\left\|z_{n}-x_{n}\right\|+c^{2}\left\|A x_{n}-A z\right\|\right\} \\
\leq & \left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left\|x_{n}-y_{n}\right\| \\
& +\left\|A x_{n}-A z\right\|\left\{2 c\left\|z_{n}-x_{n}\right\|+c^{2}\left\|A x_{n}-A z\right\|\right\}
\end{aligned}
$$

Since $\lim _{i \rightarrow \infty}\left\|A x_{n_{i}}-A z\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0, \alpha_{n_{i}} \rightarrow \gamma<1$ and $\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{x_{n}\right\}$ are bounded, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n_{i}}-x_{n_{i}}\right\|=0 \tag{3.23}
\end{equation*}
$$

Since $y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T z_{n}$, we have $y_{n}-T z_{n}=\alpha_{n}\left(x_{n}-T z_{n}\right)$. So, from (3.21) we have

$$
\begin{equation*}
\left\|y_{n_{i}}-T z_{n_{i}}\right\|=\alpha_{n_{i}}\left\|x_{n_{i}}-T z_{n_{i}}\right\| \rightarrow 0 . \tag{3.24}
\end{equation*}
$$

Since

$$
\left\|z_{n_{i}}-T z_{n_{i}}\right\| \leq\left\|z_{n_{i}}-x_{n_{i}}\right\|+\left\|x_{n_{i}}-y_{n_{i}}\right\|+\left\|y_{n_{i}}-T z_{n_{i}}\right\|,
$$

from (3.20), (3.23) and (3.24) we have

$$
\begin{equation*}
\left\|z_{n_{i}}-T z_{n_{i}}\right\| \rightarrow 0 . \tag{3.25}
\end{equation*}
$$

Since $x_{n_{i}}=P_{C_{n_{i}}} x \rightarrow x_{0}$, we have from (3.23) that $z_{n_{i}} \rightarrow x_{0}$. So, $z_{n_{i}} \rightharpoonup x_{0}$. From (3.25) and Lemma 2.7 we have $x_{0} \in F(T)$. Let us show $x_{0} \in(A+B)^{-1}(0)$. As in the proof of Theorem 3.1, we have for $(u, v) \in B$,

$$
\begin{equation*}
\left\langle z_{n}-u, \frac{x_{n}-z_{n}}{\lambda_{n}}-\left(A x_{n}+v\right)\right\rangle \geq 0 . \tag{3.26}
\end{equation*}
$$

Furthermore, since A is α-inverse strongly monotone and $x_{n_{i}}=P_{C_{n_{i}}} x \rightarrow x_{0}$, we have that $A x_{n_{i}} \rightarrow A x_{0}$. So, we have from (3.26)

$$
\begin{equation*}
\left\langle x_{0}-u,-\left(A x_{0}+v\right)\right\rangle \geq 0 . \tag{3.27}
\end{equation*}
$$

Since B is maximal monotone, we have $-A x_{0} \in B x_{0}$ and hence $x_{0} \in(A+B)^{-1}(0)$. So, we have $x_{0} \in F(T) \cap(A+B)^{-1}(0)$. Put $z_{0}=P_{F(T) \cap(A+B)^{-1}(0)} x$. Since $z_{0}=$ $P_{F(T) \cap(A+B)^{-1}(0)} x \subset C_{n+1}$ and $x_{n+1}=P_{C_{n+1}} x$, we have that

$$
\begin{equation*}
\left\|x-x_{n+1}\right\|^{2} \leq\left\|x-z_{0}\right\|^{2} . \tag{3.28}
\end{equation*}
$$

So, we have that

$$
\left\|x-x_{0}\right\|^{2}=\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|^{2} \leq\left\|x-z_{0}\right\|^{2}
$$

So, we get $z_{0}=x_{0}$. Hence, $\left\{x_{n}\right\}$ converges strongly to z_{0}. This completes the proof.

4. Applications

In this section, we give some applications. Let H be a Hilbert space and let f be a proper lower semicontinuous convex function of H into $(-\infty, \infty]$. Then, the subdifferential ∂f of f is defined as follows:

$$
\partial f(x)=\{z \in H: f(x)+\langle z, y-x\rangle \leq f(y), y \in H\}
$$

for all $x \in H$. From Rockafellar [22], we know that ∂f is maximal monotone. Let C be a closed convex subset of H and let i_{C} be the indicator function of C, i.e.,

$$
i_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

Since i_{C} is a proper lower semicontinuous convex function on H, the subdifferential ∂i_{C} of i_{C} is a maximal monotone operator. So, we can define the resolvent J_{λ} of ∂i_{C} for $\lambda>0$, i.e.,

$$
J_{\lambda} x=\left(I+\lambda \partial i_{C}\right)^{-1} x
$$

for all $x \in H$. We have that, for any $x \in H$ and $u \in C$,

$$
\begin{aligned}
u=J_{\lambda} x & \Longleftrightarrow x \in u+\lambda \partial i_{C} u \\
& \Longleftrightarrow x \in u+\lambda N_{C} u \\
& \Longleftrightarrow x-u \in \lambda N_{C} u \\
& \Longleftrightarrow \frac{1}{\lambda}\langle x-u, v-u\rangle \leq 0, \quad \forall v \in C \\
& \Longleftrightarrow\langle x-u, v-u\rangle \leq 0, \quad \forall v \in C \\
& \Longleftrightarrow u=P_{C} x,
\end{aligned}
$$

where $N_{C} u$ is the normal cone to C at u, i.e.,

$$
N_{C} u=\{z \in H:\langle z, v-u\rangle \leq 0, \forall v \in C\} .
$$

Similarly, if $A: C \rightarrow H$ is a nonlinear mapping, then we have that for $x \in C$,

$$
\begin{aligned}
x \in\left(A+\partial i_{C}\right)^{-1}(0) & \Leftrightarrow 0 \in A x+\partial i_{C} x \\
& \Leftrightarrow-A x \in \partial N_{C} x \\
& \Leftrightarrow\langle-A x, y-x\rangle \leq 0, \quad \forall y \in C \\
& \Leftrightarrow x \in V I(A, C),
\end{aligned}
$$

where $V I(A, C)=\{x \in C:\langle A x, y-x\rangle \geq 0, \quad \forall y \in C\}$. This is called the set of solutions of the variational inequality for A.

Now, using Theorem 3.1, we can obtain a strong convergence theorem for finding a common element of the set of solutions of the variational inequality for an inverse strongly-monotone mapping and the set of fixed points of a super hybrid mapping in a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse strongly-monotone mapping of C into H. Let α, β and γ be real numbers with $\gamma \neq-1$ and let $S: C \rightarrow H$ be an (α, β, γ)-super hybrid mapping such that $F(S) \cap\left(A+\partial i_{C}\right)^{-1} 0=F(S) \cap V I(A, C) \neq \emptyset$. Let $\left\{x_{n}\right\} \subset C$ be a sequence generated by $x_{1}=x \in C$ and

$$
\left\{\begin{array}{l}
z_{n}=P_{C}\left(I-\lambda_{n} A\right) x_{n}, \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right)\left(\frac{1}{1+\gamma} S z_{n}+\frac{\gamma}{1+\gamma} z_{n}\right), \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x, \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $P_{C_{n} \cap Q_{n}}$ is the metric projection of H onto $C_{n} \cap Q_{n}$, and $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy

$$
0 \leq \alpha_{n} \leq a<1 \quad \text { and } \quad 0<b \leq \lambda_{n} \leq c<2 \alpha
$$

for some $a, b, c \in \mathbb{R}$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(S) \cap V I(A, C)} x$, where $P_{F(S) \cap V I(A, C)}$ is the metric projection of H onto $F(S) \cap V I(A, C)$.

Proof. Setting $B=\partial i_{C}$ in Theorem 3.1, we know that $J_{\lambda_{n}}=P_{C}$ for all λ_{n} with $0<a \leq \lambda_{n} \leq b<2 \alpha$. So we obtain the desired result by Theorem 3.1.

Using Theorem 4.1, we get the following theorem for nonexpansive mappings and strict pseudo-contractions in a Hilbert space.

Theorem 4.2. Let H be a Hilbert space and let C be a closed convex subset of H. Let T be a nonexpansive mapping of C into itself and let S be a k-strict pseudocontraction with $0 \leq k<1$ of C into itself such that $F(S) \cap F(T) \neq \emptyset$. Let $\left\{x_{n}\right\} \subset C$ be a sequence generated by $x_{1}=x \in C$ and

$$
\left\{\begin{array}{l}
z_{n}=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} T x_{n} \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right)\left\{(1-k) S z_{n}+k z_{n}\right\} \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x, \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $P_{C_{n} \cap Q_{n}}$ is the metric projection of H onto $C_{n} \cap Q_{n}$, and $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy

$$
0 \leq \alpha_{n} \leq a<1 \quad \text { and } \quad 0<b \leq \lambda_{n} \leq c<1
$$

for some $a, b, c \in \mathbb{R}$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(S) \cap F(T)} x$, where $P_{F(S) \cap F(T)}$ is the metric projection of H onto $F(S) \cap F(T)$.

Proof. Put $A=I-T$ in Theorem 4.1. Then, we know that A is a $\frac{1}{2}$-inverse stronglymonotone operator. We also have that for all $x \in C$,

$$
\begin{aligned}
P_{C}\left(x-\lambda_{n} A x\right) & =P_{C}\left(x-\lambda_{n}(I-T) x\right) \\
& =P_{C}\left(\left(1-\lambda_{n}\right) x+\lambda_{n} T x\right) \\
& =\left(1-\lambda_{n}\right) x+\lambda_{n} T x .
\end{aligned}
$$

Furthermore, we have that

$$
\begin{aligned}
u \in\left(A+\partial i_{C}\right)^{-1} 0 & \Longleftrightarrow 0 \in A u+\partial i_{C} u \\
& \Longleftrightarrow 0 \in u-T u+N_{C} u \\
& \Longleftrightarrow T u-u \in N_{C} u \\
& \Longleftrightarrow\langle T u-u, v-u\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow P_{C} T u=u \\
& \Longleftrightarrow T u=u .
\end{aligned}
$$

So, we obtain $\left(A+\partial i_{C}\right)^{-1} 0=F(T)$. On the other hand, we know from Lemma 2.2 that if S is a k-strict pseudo-contraction with $0 \leq k<1$, then S is a $(1,0,-k)$-extended hybrid mapping and hence a $\left(1,0, \frac{k}{1-k}\right)$-supper hybrid mapping. Furthermore, we have if $\gamma=\frac{k}{1-k}$, then $\frac{1}{1+\gamma}=1-k$ and $\frac{\gamma}{1+\gamma}=k$. Thus, we get the desired result by Theorem 4.1.

Next, using Theorem 3.1, we consider the problem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Let C be a nonempty closed convex subset of a Hilbert space and let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) f is monotone, i.e. $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for all $x, y, z \in C$,

$$
\limsup _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y) ;
$$

(A4) for all $x \in C, f(x, \cdot)$ is convex and lower semicontinuous.
Then, the equilibrium problem (with respect to C) is to find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y) \geq 0 \tag{4.1}
\end{equation*}
$$

for all $y \in C$. The set of such solutions \hat{x} is denoted by $E P(f)$. The following lemma appears implicitly in Blum and Oettli [4].
Lemma 4.3 (Blum and Oettli). Let C be a nonempty closed convex subset of H and let f be a bifunction of $C \times C$ into \mathbb{R} satisfying $(A 1)-(A 4)$. Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C
$$

The following lemma was also given in Combettes and Hirstoaga [7].
Lemma 4.4. Assume that $f: C \times C \rightarrow \mathbb{R}$ satisfies $(A 1)-(A 4)$. For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r} x=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\} .
$$

Then, the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is a firmly nonexpansive mapping, i.e., for all $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

We call such T_{r} the resolvent of f for $r>0$. Using Lemmas 4.3 and 4.4, we know the following theorem from Takahashi, Takahashi and Toyoda [24]. See [2] for a more general result.
Theorem 4.5. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $f: C \times C \rightarrow \mathbb{R}$ satisfy $(A 1)-(A 4)$. Let A_{f} be a multivalued mapping of H into itself defined by

$$
A_{f} x=\left\{\begin{array}{l}
\{z \in H: f(x, y) \geq\langle y-x, z\rangle, \forall y \in C\}, x \in C \\
\emptyset, x \notin C
\end{array}\right.
$$

Then, $E P(f)=A_{f}^{-1} 0$ and A_{f} is a maximal monotone operator with $D\left(A_{f}\right) \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent T_{r} of f coincides with the resolvent of A_{f}; i.e.,

$$
T_{r} x=\left(I+r A_{f}\right)^{-1} x .
$$

Using Theorem 4.5, we obtain the following result which was proved by Takahashi and Takahashi [23, Theorem 4.1].
Theorem 4.6. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying $(A 1)-(A 4)$ and let T_{λ} be the resolvent of f for $\lambda>0$. Let S be a k-strict pseudo-contraction with $0 \leq k<1$ of C into itself such that $F(S) \cap E P(f) \neq \emptyset$. Let $\left\{x_{n}\right\} \subset C$ be a sequence generated by $x_{1}=x \in C$ and

$$
\left\{\begin{array}{l}
z_{n}=T_{\lambda_{n}} x_{n}, \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right)\left\{(1-k) S z_{n}+k z_{n}\right\}, \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x, \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $P_{C_{n} \cap Q_{n}}$ is the metric projection of H onto $C_{n} \cap Q_{n}$, and $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy

$$
0 \leq \alpha_{n} \leq a<1 \quad \text { and } \quad 0<b \leq \lambda_{n} \leq c
$$

for some $a, b, c \in \mathbb{R}$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(S) \cap E P(f)} x$, where $P_{F(S) \cap E P(f)}$ is the metric projection of H onto $F(S) \cap E P(f)$.

Proof. Put $A=0$ in Theorem 3.1. From Theorem 4.5 we also know that $J_{\lambda_{n}}=T_{\lambda_{n}}$ for all $n \in \mathbb{N}$. For a k-strict pseudo-contraction, we follow the proof of Theorem 4.2. Thus, we obtain the desired result by Theorem 3.1.

As in the proofs of Theorems 4.1, 4.2 and 4.6, we also get similar results from Theorem 3.2.

Acknowledgements. The second author is partially supported by Grant-in-Aid for Scientific Research No. 23540188 from Japan Society for the Promotion of Science.

References

[1] K. Aoyama, S. Iemoto, F. Kohsaka, W. Takahashi, Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., 11(2010), 335-343.
[2] K. Aoyama, Y. Kimura, W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal., 15(2008), 395-409.
[3] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C.R. Acad. Sci. Paris Ser. A-B, 280(1975), 1511-1514.
[4] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
[5] F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z., 100(1967), 201-225.
[6] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20(1967), 197-228.
[7] P.L. Combettes, A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136.
[8] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[9] M. Hojo, W. Takahashi, J.-C. Yao, Weak and strong mean convergence theorems for supper hybrid mappings in Hilbert spaces, Fixed Point Theory, 12(2011), 113-126.
[10] T. Ibaraki, W. Takahashi, Weak convergence theorem for new nonexpansive mappings in Banach spaces and its applications, Taiwanese J. Math., 11(2007), 929-944.
[11] T. Ibaraki, W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal., 10(2009), 21-32.
[12] S. Iemoto, W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal., 71(2009), 2082-2089.
[13] S. Itoh, W. Takahashi, The common fixed point theory of single-valued mappings and multivalued mappings, Pacific J. Math., 79(1978), 493-508.
[14] P. Kocourek, W. Takahashi, J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., 14(2010), 2497-2511.
[15] F. Kohsaka, W. Takahashi, Existence and approximation of fixed points of firmly nonexpansivetype mappings in Banach spaces, SIAM. J. Optim., 19(2008), 824-835.
[16] F. Kohsaka, W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math., 91(2008), 166-177.
[17] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510.
[18] G. Marino, H.-K. Xu, Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 329(2007), 336-346.
[19] U. Mosco, convergence of convex sets and of solutions of variational inequalities, Adv. Math., 3(1969), 510-585.
[20] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279(2003), 372-378.
[21] Z. Opial, Weak covergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
[22] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33(1970), 209-216.
[23] S. Takahashi, W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 69(2008), 1025-1033.
[24] S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147(2010), 27-41.
[25] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81(1981), 253-256.
[26] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, 2000.
[27] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009.
[28] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., 11(2010), 79-88.
[29] W. Takahashi, Nonlinear operators and fixed point theorems in Hilbert spaces, RIMS Kokyuroku, 1685(2010), 177-189.
[30] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341(2008), 276286.
[31] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118(2003), 417-428.
[32] W. Takahashi, N.-C. Wong, J.-C. Yao, Weak and strong convergence theorems for extended hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., 12(2011), 553-575.
[33] W. Takahashi, J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math., 15(2011), 457-472.

34] W. Takahashi, J.-C. Yao and P. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal., 11(2010), 567-586.
[35] M. Tsukada, Convergence of best approximation in a smooth Banach space, J. Approx. Theory, 40(1984), 301-309.

Received: March 21, 2013; Accepted: November 15, 2013.

