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Abstract. In this work, we consider two types of triple hierarchical variational inequalities (in short,
THVI), one with a single nonexpansive mapping and another one with a finite family of nonexpansive
mappings. In this paper, by combining the viscosity approximation method, hybrid steepest-descent
method and Mann’s iteration method, we propose the hybrid steepest-descent viscosity approxima-
tion method for solving the THVI. The strong convergence of this method to a unique solution of
the THVI is studied under some appropriate assumptions. Another iterative algorithm for solving
THVI is also presented. Under some mild conditions, we prove that the sequence generated by the
proposed algorithm converges strongly to a unique solution of THVI. The case of a finite family of
nonexpansive mappings will ve presented in the second part of this work.
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1. INTRODUCTION AND FORMULATIONS

Let H be a real Hilbert space with its inner product and norm are denoted by (-, )
and || - ||, respectively. The set of all fixed points of a mapping T': H — H is denoted
by Fix(T), that is, Fix(T) = {# € H : Tx = z}. The mapping T': H — H is called
L-Lipschitzian if there exists a constant L > 0 such that ||Tz — Ty| < L||lx — y|| for
all z,y € H. In particular, if L € [0,1), T is called a contraction mapping, while if
L =1, then T is called a nonexpansive mapping.

67



68 L.-C. CENG, Q.H. ANSARI, A. PETRUSEL AND J.-C. YAO

Let K be a nonempty convex subset of a Hilbert space H and F' : K — H be
a monotone mapping, that is, (Fx — Fy,z —y) > 0, Vx,y € K. The monotone
variational inequality problem [19] is to find z* € K such that

(Fax*,x —2*) >0, VrekK.

The set of solutions of this problem is denoted by VI(K, F). The following variational
inequality problem defined over the set Fix(T') of fixed points of a mapping T : H — H
is called hierarchical variational inequality problem (in short, HVIP).

Problem 1.1. Given a monotone, continuous operator A : H — H and a nonexpan-
siwe mapping T : H — H,

find ¥ € VI(Fix(T), A) := {a* € Fix(T) : (Az*,v —z*) >0, Vv € Fix(T)}.

Recently, it has been considered and studied by several authors; See, for example,
1, 2, 7, 12, 14, 16, 17, 18, 23, 24, 30] and the references therein. Several iterative
methods for computing the approximate solutions of Problem 1.1 are proposed and
analyzed in these references. In 2001, Yamada [30] (see also [28]) introduced a hybrid
steepest-descent method for finding an element of VI(Fix(T'), A) so as to reduce the
complexity probably caused by the projection Ppiy(r). Zeng et al. [32] introduced and
analyzed a modified hybrid steepest-descent algorithm with variable parameters which
produces a sequence that converges strongly to a unique element of VI(Fix(T), A),
where A is n-strongly monotone and x-Lipschitzian with constants n,x > 0. They

N
also considered the case where {2 = ﬂ Fix(T;) and T; : H — H,i=1,2,...,N, is
i=1

a nonexpansive mapping. They pro;iosed another modified hybrid steepest-descent
algorithm with variable parameters which produces a sequence that converges strongly
to a unique element of VI({2, A). A hierarchical fixed point problem (in short, HFPP),
equivalent to a HVIP, has been discussed in [21, 23]. Some iterative algorithms for
solving HFPP are proposed. The solution presented in [21, 23] is not always unique,
so that there may be many solutions for this problem. In that case, a solution, that
results in practical systems and networks being more stable and reliable, must be
found from among candidate solutions. Hence, it wound be reasonable to identify
the unique minimizer of an appropriate objective function over the hierarchical fixed
point constraint. Such problem would be a three-stage problem. Very recently, liduka
[13, 15] introduced three-stage variational inequality problem, that is, the monotone
variational inequality problem over the solution set of HVIP.

Problem 1.2. Assume that

(A1) A;: H — H is a-inverse-strongly monotone;

(A2) As: H — H is n-strongly monotone and k-Lipschitzian;
(A3) T : H — H is a nonexpansive mapping with Fix(T) # 0;
(A4) VI(Fix(T), A1) # 0.

Then the objective is to find z* € VI(VI(Fix(T), A1), A2), where

VI(VI(Q,A)), As) = {x EVI(QAL): (Asa* v — ™) > 0,0 € VI(Q,Ay) }
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We remark that this problem has a triple structure in contrast with bilevel program-
ming problems [20] or hierarchical constrained optimization problems or hierarchical
fixed point problem. Thus it is referred as triple-hierarchical variational inequality
problem (THVIP). Ceng et al. [3] considered the THVIP and presented its example.
They proposed two iterative methods, one is implicit and another one is explicit, to
compute the approximate solutions of THVIP. The convergence analysis of the se-
quences generated by the proposed algorithms is also studied. The THVIP is further
considered and studied by Ceng et al. [4]. They proposed relaxed hybrid steepest-
descent algorithm with variable parameters for computing the approximate solutions
of Problem 1.2.

On the other hand, Ceng et al. [4] also considered the following monotone varia-
tional inequality problem over the solution set of the variational inequality which is
defined over the set of common fixed points of N nonexpansive mappings T; : H — H,
with N > 1 an integer.

Problem 1.3. Assume that

(Bl) Ay : H — H is a-inverse-strongly monotone;

(B2) Ay : H — H s n-strongly monotone and k-Lipschitzian;

(B3) for i = 1,2,...,N, T, : H — H is a nonexpansive mapping with
i, Fix(T3) # 0

(B4) VI (NI, Fix(Ty), A1) # 0.

Then the objective is to find x* € VI (VI (ﬂf\il Fix(T;), A1> 7Ag) .

In [4], the authors also proposed another relaxed hybrid steepest-descent algorithm
with variable parameters for computing the approximate solutions of Problem 1.3.

We remark that Tjy := Tkmoan for integer £ > 1 with the mod function taking
values in the set {1,2,..., N}, that is, if £ = jN + ¢ for some integers j > 0 and
0<q<N,then Ty =Ty if ¢g=0and Ty =T, if 0 < g < N.

In this paper, by combining the viscosity approximation method [5, 22, 27], hybrid
steepest-descent method [6, 30] and Mann’s iteration method [25], we introduce two
hybrid steepest-descent viscosity approximation algorithms for computing the appro-
priate solutions of Problems 1.2 and, in the second part of this work, for Problem 1.3,
respectively. The strong convergence of the sequences generated by these algorithms
is derived under some appropriate conditions. Obviously, whenever 3, = v, = 0,
Vn > 0, these two algorithms reduce to Algorithms 1 and 2, respectively, in [4].
Therefore, our proposed method is quite general and flexible and includes as special
cases some other iterative methods in the literature.

2. PRELIMINARIES

Let H be a real Hilbert space. We denote by z,, — x (respectively, z,, — x) to
indicate that the sequence {x,} converges weakly (respectively, strongly) to z.
Definition 2.1. An operator A: H — H is called
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(a) strongly monotone (or more precisely, a-strongly monotone) if there exists a
constant a > 0 such that

(Az — Ay,x —y) > allz —y||*, Va,y € H;

(b) inverse-strongly monotone (or more precisely, S-inverse-strongly monotone)
(also called co-coercive) if there exists a constant 5 > 0 such that

<Ax—Ay,ac—y> ZaHAx—Ay”z, V.’E,yGH;

(¢) hemicontinuous if for all x,y € H, the mapping ¢ : [0,1] — H, defined by
g(t) == A(tz + (1 — t)y), is continuous.
It is clear that every S-inverse strongly monotone mapping is %—Lipschitzian.
Definition 2.2. Let C be a nonempty convex subset of a real Hilbert space H.
A function ¢ : C' — R is said to be

(a) convex if for all z,y € C and all X € [0, 1],

e(Az + (1= Ny) < Ap(x) + (1= A)p(y);
(b) strongly convez if there exists o > 0 such that for all z,y € C and all A € [0, 1],

e(Az + (1= Ny) < Ap(z) + (1= A)e(y) — %0&\(1 = Nl = yl*.

Let ¢ : H — R be a Fréchet differentiable function. Then, it is well known that
© is convex (respectively, strongly convex) if and only if Vo : H — H is monotone
(respectively, strongly monotone) [31, Proposition 25.10], [11, Sect. IV, Theorem
41.4]. f ¢ : H — R is convex and V¢ : H — H is 1/L-Lipschitzian, then Vo is
L-inverse-strongly monotone.

The metric projection Pc : H — C onto the nonempty, closed and convex subset
C of H is defined by Pcx € C and ||z — Poz| = infyec ||z —y||, Vo € H. The
metric projection Po onto a given nonempty, closed and convex subset C of H is
nonexpansive with Fix(Pg) = C [25, Theorem 3.1.4 (i)].

Related to the set of all fixed points of a nonexpansive mapping, we have the
following result.

Proposition 2.1. Let C be a nonempty, closed and convex subset C' of a real Hilbert
space H, and T : C — C be a nonexpansive mapping. Then,

(a) [10, Proposition 5.3] Fix(T) is closed and convex;
(b) [10, Theorem 5.1] Fix(T) # 0, provided C' is bounded.

Some properties of the solution set of a monotone variational inequality are men-
tioned in the following result.
Proposition 2.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H, A: C — H be a monotone and hemicontinuous operator and ¢ : C — R be
a convexr and Fréchet differentiable functional. Then,
(a) [19] VI(C, A) is equivalent to MVI(C, A) .= {a* € C: (Ay,y —x*) >0, Yy €
C}.
(b) [19] VI(C, A) # 0 when C is bounded.
(¢) [29, Lemma 2.24] VI(C, A) = Fix(Pc(I — MA)) for all A > 0, where I is the
identity mapping on H.
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(d) [29, Theorem 2.31] VI(C, A) consists of only one point, if A is strongly mono-
tone and Lipschitzian.
(e) [8, Chap. II, Proposition 2.1]

VI(C,Vy) = Argmin,cop(x) = {x* eC:p(zh) = Hélél go(x)} .

The following proposition provides an example of a nonexpansive mapping in which

the set of all fixed points of a nonexpansive mapping is equal to the solution set of
the monotone variational inequality.
Proposition 2.3. [15, Proposition 2.3] (see also [13]) Let C' be a nonempty, closed
and convez subset of a real Hilbert space H, and A : C — H be an a-inverse-strongly
monotone operator. Then, for any given \ € [0,2a], the mapping Sy : H — H defined
by Sz := Po(I — MA)z is nonezpansive and Fix(Sy) = VI(C, A).

We need the following proposition to prove the main results of this paper.
Proposition 2.4. [30, Lemma 3.1] Let A : H — H be n-strongly monotone and
k-Lipschitzian and let p € (0,2n/k2). For A € [0,1], define T : H — H by
TOW g .= x — A\pAx, for all z € H. Then,

HT(A”% _ T(Awa <A=A)z—yl, VYa,yeH,

where T :=1— /1 — pu(2n — ux?) € (0,1].
Recall that a Banach space X is said to satisfy Opial’s condition if whenever {z,,}
is a sequence in X which converges weakly to x, then

liminf ||z, — 2| < liminf |z, —y|, Vye X, y#x.
n—0o0 n—oo
It is well known that every Hilbert space H satisfies Opial’s condition (see [9]).

The following lemmas will be used in the proof of the main results of this paper.
Lemma 2.1. [26, Lemma 2.5] Let {a,} be a sequence of nonnegative numbers such
that

ng1 < (1 - sn)an + sptn +vp,  Vn >0,
where {s,}, {tn} and {v,} are the sequences such that the following conditions hold:
oo o0 n
(i) {sn} C[0,1] and Z Sp = 00, or H(l — 8y) = 1Lm H(l —s;) =0;
n=0 n=0 k=0

(ii) limsupt, <0;

n—oo
o0
(iil) vp, >0 and ZV" < 00.
n=0
Then, lim a, = 0.
n—oo

The following lemma is an immediate consequence of the inner product properties,
Lemma 2.2. In a real Hilbert space H we have that ||z + y||*> < ||lz|? + 2(y,z + y),
forall x,y € H.

The following lemma can be easily proved.
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Lemma 2.3. [4] Let {a,} be a bounded sequence of nonnegative numbers and {b,}

be a sequence of real numbers such that limsupb,, <0. Then, limsup a, b, < 0.
n—oo n—oo

Lemma 2.4. [9, Demiclosedness Principle] Let C' be a nonempty, closed and convex
subset of a real Hilbert space H and T : C' — C' be a nonexpansive mapping. If T
has a fixed point, then I — T is demiclosed, that is, whenever {x,} is a sequence in
C' and weakly converges to some point x € C' and the sequence {(I —T)x,} strongly
converges to some point y, then (I —T)x =y, where I is the identity operator on H.
In particular, whenever y = 0, we have x € Fix(T).

3. ITERATIVE METHODS INVOLVING A NONEXPANSIVE MAPPING

In this section, we first consider a hybrid steepest-descent viscosity iterative algo-
rithm for solving Problem 1.2 involving a nonexpansive mapping defined on a real
Hilbert space H. Suppose that the assumptions (A1)—(A4) in Problem 1.2 are satis-
fied.

Algorithm 3.1.

Step 0. Take {\,} C (0,2a], {n} C (0,2n/x?), {an} C (0,1] and {B,}, {7n} C [0,1]
with 8, + v, <1, ¥n > 0. Choose zy € H arbitrarily, and let n := 0.

Step 1. Given z,, € H, compute z,11 € H as

Tpi1 = Yn — OnpinA2yn, n >0,
where T, :=T(I — Ay A1), Yn > 0.
Update n :=n + 1 and go to Step 1.

In Algorithm 3.1, we introduce a sequence {u,} of positive parameters so as to
take into account possible inexact computation. Taking p € (0, 2n/ 52) and putting
tn = p and B, = v, =0 for all n > 0, then Algorithm 3.1 reduces to [13, Algorithm
3.1] (that is, [15, Algorithm 4.1]). Thus, Algorithm 3.1 is more general and more
flexible than [13, Algorithm 3.1] (that is, [15, Algorithm 4.1]).

We present the convergence analysis of the sequences generated by Algorithm 3.1.
Theorem 3.1. Assume that the sequence {y,} generated by Algorithm 3.1 is bounded.
Let {pn} € (0,n/k2], {an} € (0,1], {Bn} € [0,1], {7} C (0,1] and {A\,} C (0,2q]
be such that the following conditions hold:

n=0
(it) lim (1/9) [1/An = 1/Ania| =0,
) lm (/A1) |1 — Yng1/7m] =0,
n—oo
) B2 =0,
)

lim Oén,un/An =0,
n— 00

. . 2 —
(V) Hm (Anfn + 9 + A3) /anin =0,
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o0

(vii) Z (18n = Bn-1l + lanpin — an_1pn—1l) /An < 00.

n=1

Then, the sequence {x,} generated by Algorithm 3.1 satisfies the following assertions:
(a) The sequences {x,}, {A1zn} and {Asyn} are bounded;
(b) lim ||zpt1 —xn|l/An =0, lim ||z, —ynll/An =0 and lim |z, —Txz,| =0;
n—00 n—o0o n—r00
(¢) The sequence {x,} converges strongly to a unique solution of Problem 1.2
provided that there exists r > 0 such that |z — Tzx|| > r Pijnf(ﬁf) |l =y for
yeFix
allx € H.
Proof. (a) Suppose that VI (VI (Fix(T), A1), A2) has a unique solution {x*}. As-
sumption (A2) guarantees that ||Asy, — A2z*|| < k|lyn, — 2*| for all n > 0. Hence,
the boundedness of {y,} implies that {Asy,} is bounded. From the definition
of {z,} and the boundedness of {y,} and {Asy,}, we deduce that {z,} is also
bounded. Since A; is a-inverse-strongly monotone, it is é—Lipschitzian7 and hence,
A1z, — A12*|| < (1/@) ||z, — z*|| for all n > 0. Therefore, the boundedness of {z,}
ensures the boundedness of {A;x,}.
(b) We prove lim ||zp41 — @n||/An = 0.
n—oo
From assumption (A3), Proposition 2.3, and the condition A, < 2« (¥Yn > 0), we
obtain, for all n > 0, that
| Tns1Zns1 — ToZn|l = |T(I = A1 A1) Tnrr — T — Ay Ar) ||
< H(I - )‘n+1A1)$n+1 - (I - )‘nAl)mn”
= H(I - An-i—lAl)xn-i-l - (I - A’rL-l-lAAl)xn + (An - )\n-‘rl)Alan
ST = An1AD)zngr — (I = Apgr An) || + [An = A || Arza |
< znt1 — 2ol + [An = Anga [ Arzn]]-
If we notice that My := sup {||zn|| + [|f(xn)|| + | Thzn] + |A120||} < oo, then we
n>0
have that
[yn+1 = ynll = Brt12Zn+1 + 1 f(@ns1) + (1 = Bos1r — Mt 1) Tn1Tnt1
<|Bn+1Tn+1 = Buznll + [t 1 (@nt1) — Yo f(@0) |l
+||(1 - ﬁn+1 - 'Yn-i-l)Tn-i-l-rn-l-l - (1 - Bn - ’Yn)Tnan
< |Bnt1 = Balllzns1ll + BallZns1 — ol + [Yns1 — wlllf(@ns1) |l
FYull f(@na1) = @)l + (1 = Buy1 — Ynr1) — (1 = Bn — Vo)l Tt 1%n g1 |
+(1 - Bn - ’Yn)||Tn+11'n+1 - Tnzn”
< Bnt1 = Bulllzns1ll + BallTnt1r — zall + [Ynt1 — Yl I f (@n41) |
+’an||33n+1 - an + (‘BnJrl - ﬁn| + |’7n+1 - ’7n|)||Tn+1xn+1||
+(1 -8, — ’Yn)[||xn+1 — Tp ||+ [An — )‘n+1|||A1xn||]
< (1Bn41 = Bal + [vn41 — Dl @nt1ll + Bullzntr — 24|
+(Bn+1 = Bal + [vn+1 — WD f (@ns)[l + Wpllzntr — 24|
+(|Bn+1 = Bul + 11m41 — DI Tt 1Zn41 |



74 L.-C. CENG, Q.H. ANSARI, A. PETRUSEL AND J.-C. YAO

+(1 = Bn = v)llznt1 — znll + [An = Anga || Arzn]]
=[1 =@ = pllzns1 — zull + (1 = Br — )| An — Antal[| A1y ||
F(1Bn+1 = Bul + nt1 = W) Uznsall + [1f (@na ) | + 1 Tog1@n41])
<[ =yl = p)]llzns1 — 2nll
+ (IBrt1 = Bul + 1vnt+1 — Yl + [Ans1 — Anl) M,

From Proposition 2.4 and the above evaluation, we get, for every n > 1, that

|Tnt1 — xn]| = HT(%’“”)yn - T(a"*l’u"*l)ynle

S HT((X”,Mn)yTL _ T(anaun)ynilH + HT((X',“Mn)yn*l _ T(an,flaunfl)ynilH

< (1 - O‘nTn)Hyn - yn—IH + |O‘n'un - an—lﬂn—1|”A2yn—1H
< (= anm )1 =11 = plllzn — Tp—1ll + (18 — Ba—1l + [0 — Yn—1]
+|)‘n - )‘n*1|)M1} + |an,un - anfllun71|||A2yn71||
< =y-1(I = p)llzn — zn—all + (1B — Ba—1l + [1n — Yn-1l
HAn = A1) M1+ |anpin — a1 pin—1| Mo,
where 7, == 1 — /1 — 1, (20 — pnk?) € (0,1] as in Proposition 2.4 and

My := sup || Aayn]| < .
n>0

So, for all n > 1, we obtain

Hanr;\_ xn” < [1 o ’Ynfl(l _ p)] ||{En _)\xnfln
n - Mn— n - /n— )\n - )\n— nMn — Un— n—
+|ﬂ Br—1l + |vn — Yn-1| + | 1|M1+|0!M Qp—1fb 1|j\42
An An
_ [1 _ 7n71<1 _ P)] ”l’n)\— In*lH + [1 o ’Yn—l(l _ p)] { ||-Tn _)\-'L'nflu _ ||-Tn>\— .’L‘n—IH }
n—1 n n—1
n - Mn— n - I/n— )\n - >\n7 nHin — Gn— n—
+|5 Br—1| + ¥ — Yn-1| +| 1|M1+|Oé/i Q1 1|M2
An An
|xn — Tpn_1]| 1 1
<=1 (1 —p) 2y g | — — ——
<A =pl ===+ My = —
+ |7n - ’7n71|/_\'_ |)\n - )\n71|M3 + |6n - Bn71| + |Oj\nﬂn - anflﬂn71|M3
||.Tn 7.%“_1” Mg 1 1 1
=1 —yn_1(1— o1 (1 — - -
[1 = Yn-1(1=p)] o, 1o 1( p)%il N
QCYMg 1 |/\n — )‘n—1| M3 |’}/n — 'Yn—l‘
n— 1- n— 1-
=" 1( p)%i1 S, +1_p7 1( p)%il "
_|_ |ﬂn - Bn—1| + O‘;ﬂn - an—lﬂvL—1|M3
Hxn _xnle Ms 1 1 1
<1 —9-1(1— + m—1(1— - —
[1—=Ym-1(1=p)] N, e 1 ( p)%_l N




APPROXIMATION FOR TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES (I) 75

20{M3 1 1 1 M3 1 Tn
+ (1= -+ (1= p)— |1 -
1 1% 7 1( p) Tn—1 >\n—1 >\n 1 - pﬁy 1( p) )\n Yn—1
n - Mn— + Qp by, — Oy — n— Tp — Tn—
+|ﬂ ﬂ 1| | H 1M 1|M3:[1_’Yn—1(1_p)}H 1”
)\n )\nfl
M; 1 1 1 1 Yn
(1= p) - { 1+ 20 S L }
K 1( p) 1 - p ( )’anl )\nfl )\ >\ Tn—1
n ~— Mn— + Qo by — Op— n—
+|/3 Br-1| + |anp 1K 1|M3,
An

where M3 := sup || €41 — @n| + M1 + M3 < co. Therefore, by Lemma 2.1 and the
n>0

conditions (i), (ii), (iii) and (vii) we have

Hxn-i-l — Zn||

nh_{go N =0. (3.1)
Since
lZn = ynll < Tns1 = ol + [P0 = Unll £ |Tng1 — Zall + anpin Mo,
we have HT”)\ vl < ”‘“*; wull 4 sl My. Therefore, by (3.1) and the condition (v),
we get
1 — =0. 3.2
W (3.2)
By the condition (vi), (3.2) and (M\n/anpin)||Tn — ynll = O2/anpn)(|zn —

Ynll/An), ¥n > 0, we get that nlgr;o (An/anpin) |n —ynll = 0. Put z,, := z, — A\ A1y,
Vn > 0. Then, we have ||z, — 2, || = A\n||A125] < AnM7, and hence,

(An/antin) |zn — zn | < ()‘El/anﬂn) M, Yn > 0.
From condition (vi), we have nhﬁngo (An/anpin) ||zn — || = 0. Consequently, we get

lim >\n||zn - ynH

n—co Qo iy,

=0. (3.3)

Moreover, from assumption (A3), we obtain
[yn — Tznll = 1Bn(2n — Tzn) + ¥ (f(2n) — Tzn) + (1 = B — 1) (Tnzn — Ty
< Ballzn — Tan | + wllf(zn) — Taall + (1 = By — v)l| Tnzyn — Tan|
< Bullzn = Tan|l + vl f(zn) = Tan|| + [[T(zn — AnArzn) — T2y
< Balltn — Tan| +vnll f(2n) — Tl + AnllAr2a]].

Also, from conditions (v) and (vi), we have

lim 2% = lim —2 . 22E% g and  lim Bn = lim Anfho Cntin _ 0.
n—o00 A, n—00 Qi fhp, An n— oo n—00 Qi fhp, An
Hence, by the condition (1v) we get lim ||y, — Tz, | = 0. Therefore, utilizing
n—oo
(3.2), we obtain lim ||z, — y,| = 0, Thus,
n—oo
HILH;O |z — Tzy| = 0. (3.4)

(c) We divide the proof into the following three steps:



76 L.-C. CENG, Q.H. ANSARI, A. PETRUSEL AND J.-C. YAO

(I) We prove limsup(z* — 5,41, A2z™) < 0.
n—oo
Choose a subsequence {z,,} of the sequence {z,} such that limsup,,_, {z* —

Ty Agx™) = lim;, oo (@™ — p,, Aoz™). The boundedness of {z,,} implies the existence
of a subsequence {:cnj }of {z,,} and a point & € H such that {:cnJ } converges weakly
to &. Since lim ||zp41 — x|l = lim ||z, — 2, ]| = 0, we have lim;_, oo (zp, +1,w) =
n—oo n—oo J
limjﬁoo<znij,w> = limj o0 (2, , w) = (#,w), Vw € H. Without loss of generality,
we may assume that lim (z,,,w) = (Z,w), YVw € H. Assume & # T%. By (3.4),
1—> 00
assumption (A3) and Opial’s condition, we have
liminf |z, — 2| < lminf ||z, — TZ| = liminf ||x,, — Tz, + T, — T
1—>00 1—>00 12— 00
= liminf | Tz,, — TZ|| < liminf||z,, — Z|.
11— 00 1— 00

(3.5)

This is a contradiction, that is, & € Fix(T'). Let y € Fix(T) be a fixed arbitrary

point and put My = sup {||z, — y[| + [|[yn — yll + || f(zn) — y||} < oo. Then, from
n>0

assumption (A3) and Pr(_)position 2.3, we have, for every n > 0, that

1yn = ylI> = 1Bn(zn — y) + Y (f(2n) —y) + (1 = B — W) (Tnzn — y)|?

< Ballen = yl* + vl f@n) = yl* + (1= Bp = v) T (20 — AnArzn) — Ty|?

< Bullen = ylI? + vl f (2n) = ylI? + (1 = Bu = )20 — Il

= Ballzn = yl* + vl f(zn) = ) + f(y) = yl?

+ (1= B =)l (@n — A A120) — (¥ — AnAry) — AnAry|?

< Bullwn = yl* + yalllf(zn) = FWI +2(f () — v, f () — v)]

+ (1= B =)l (@0 — AnArzn) = (y = M Ayl + 200 (y — 20, A1y)]

< Bullan = yl* + vnlo®lon — yl* + 20 £ () =yl £ (@n) — yll]

+ (1= B =)0 = yll* + 20 (y — 20, A1y)]

<[ =31 = p)lllen = yl? + 2% £ () =yl £ (zn) — o

+2(1 = B — ) Ay — 20, A1Yy)

<wn = ylI” + 29l £ (w) = yllllf(2n) = yll + 201 = Ba = ) Anly = 20, Ar1y), (3.6)
which implies that

1 n
0< = (cllen = 9ll* = lom = wI) + 25" 1) = 9l f(ea) ~ vl
+2(1 = Bn — V)Y — 2n, A1y)

In = Y|l = |IYn — Y Tn
Voo =90 = lom =0y 570 5y — g,

+2(1 - ﬁn - 7n)<y — Zn, A1y>

||an - yH - ”yn - y”
An

< (llen = yll + [lyn —yl)

Tn
§M4 +2>\7||f(y)_yHM4+2(1_Bn_'Yn)<y_zn7A1y>
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Tn — Yn n
< oty (220l 2o 1) - 1) 200 8 = )00 = 200 v,

for every n > 0.
By the weak convergence of {z,,} to & € Fix(T), the condition (v), and (3.2), we
get (y — &, A1y) > 0 for all y € Fix(T'). By assumption (A1), we have

(y— &, A1&) >0, VyeFix(T),
that is, Z € VI(Fix(T"), A1). Since {z*} = VI(VI(Fix(T), A1), A2), we have

limsup(z* — &p41, Aoz™) = lim (2" — zp, 41, Aoz™) = (2 — Z, A22™) < 0.  (3.7)
n—o0 71— 00

(IT) We prove lim sup(A,/an fin) (2" — 2, A12*) < 0.
Since Pyix(1)%n ne_?ix(T) and z* € VI(Fix(T), A1), we have
(2" — 2n, A12") = (Prix(1)2n — 2n, A12™) + (2" — Ppix(1)2n, A127)
<A Prix(1)%n — Zn, A12") < || Prix(r)2n — Znl|||A12™|,  Vn > 0.
By hypothesis, there exists » > 0 such that || — Tz| > TyeiFIilf(T) |z —yl|, for all

x € H, and therefore, we have

* * * 1 *
(2% = 2n, A12%) < || Prix(r)2n — 2nll[|A127] < ;Hzn — Tz[[| Arz™||

1 *
< Cllzn = yall + llyn = Tnlllll Ara”|
1 *
< Cllzn = yall + Ballzn = Tzall + vl f (2n) = Tzal][[Arz”]]
1 *
< ;[Hzn - ynH + (671 +’Yn)M5]HA1$ ||,

for every n > 0, where M5 := sup {||x, — Tz | + || f(zn) — Tzn||} < 00. So, we obtain
n>0

)\n A * )\n n— In )\n n n
(5" — 2, Aya™) < [[Arz™]] { 2n = ynll | An(Bn + )M5}7 n>0.
O fin r U fin O fin
This together with the condition (vi) and (3.3) implies that
lim sup (x* — zp, A1z™) <0. (3.8)
n—oo Onfln
(III) Finally, we prove lim ||z, — z*| = 0.
n—roo
Observe that for all n > 0,
1
V1= (20 = pnk?) < /1= pan < 1— o Hnl,
and hence,
_ 1 1
Tn = 1= /1= (20— pni?) > 1= (1= S pnn) = Spim, (3.9)

where 0 < 1, < n/k? for all n > 0.



78 L.-C. CENG, Q.H. ANSARI, A. PETRUSEL AND J.-C. YAO

By utilizing Lemma 2.2, Proposition 2.4 and relations (3.6) and (3.9), we conclude
that for all n > 0,

Hanrl - 1}*||2 = ”(yn - anMnA2yn) - (.%‘* - anUnA%r*) - anMnA2x*||2

< (yn — cntinAsyn) — (27 — anpin Aoa”)||* + 20 (27 — Tpp1, Ao”)

< (1 - anT'rL)Z“yn - $*||2 + 2anﬂn<x* — Tnp+1, A2x*>

< (1= anm)llyn — x*HQ + 200 fn (2™ — g1, A2x™)

1 *
< (1= ganpn)llyn = | + 200 (@7 = @np1, Asa”)

1
< (1= ganpam{llen —2"(* + 291 £ (27) = 2" [[|f (@n) — 27|

+2(1 - ﬁn - 'Yn)>\n<$* - Zn7A15L'*>} + 20‘n/‘n<‘r* - wn+17A2x*>

1 * ’y’ﬂ * * *
= (1= ganpan){flz, -2 1 + 200t - 1f (") = 2"l f (2n) — 27|
Qo fn

An

ann

20 pin (1 = By — vn) - (" — zn, Anx™) } + 20 pin (2™ — Tpp1, Aox™)

1 1 2 1 "
= (1*§O‘nﬂn77)”xn*$*||2+§O‘nﬂnn'5{2(1*§anﬂn7]) OéZMn £ () =2 |[[f (zn) =2

1 /\n * * * *
+2(1 — —anpnn)(1 = Brn — Yn) - (" — 2z, Ayx™) 4+ 2{x™ — xpy1, Aoz >} (3.10)

2 Qn fhn,

Since 0 < 2 (1 — %an,unn) (1= 5n—7n) < 2, it follows from Lemma 2.3 and (3.8)
that

1
lim sup 2 (1 - 2anunn) (1=8n—"7n)" (x* — zp, A12™) < 0.

n—oo 774/'[/71

Since v, = o(anptyn) (by (vi)) and {f(zy)} is bounded, we have

lim {2 (1 — ;anunn) n ILf(z*) = 2*[[|| f(zn) — I*“} =0.

n—00 Oy iy,

Now, we put a, = ||z, — z*||?, s, = %anunn, vy, =0 and

2 1 o
o= 2{2 (1= Janan) 2 11@) 1 Go) - ]

1
+2 (1 - 2anﬂnn> (1= Bn =) - o fin (" — 2, Ar2™)

+ 20z —xn+1,A2x*>}. (3.11)
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Since Z’yn = oo and v, = o(anppy,) (by (vi)), we have Z i, = 00, and hence,

n=0 n=0
(o)
Z Sp, = 0o. It is clear from limsup(z* — 2,11, A22™) <0, that
n=0 n—oo

2 1 n
limsupt, < f{ lim sup 2 (1 — an,unn) ’7 Ilf (%) — ™ ||| f(xn) — 2]

n—00 n n—00 2 Qp

1
+ lim sup 2 (1 - zanunn) (1= B — ) - =2 (2™ — 2, A

n—oo nHn

+ lim sup 2(z* — xn+1,A2x*>} <0.
n—oo

In terms of (3.10), it can readily be found that a, 1 < (1—sp)an+sptn+vn, Vn>0.

By utilizing Lemma 2.1, we obtain

lim ||z, — 2*||*> = lim a, =0,
n—oo n—00
that is, x,, — z*. This completes the proof. O

Remark 3.1. In the above proof of Theorem 3.1, we used the similar argument and
technique as in the proof of [13, Theorem 3.2], and used Lemma 2.1 to derive ||z,4+1 —
Znll/An = 0 as n — oo. If we want only to prove lim,, o [|Zp+1 — @n|| = 0, then we

may consider only nyn = 00, Z (IBn — Br=1l + Ivn — Yn—1] + | An — An=1]) < 0

n=0 n=1
9]

and Qp by, — Q1 fhn—1| < 00. In this case, we have ||z,11 — xn|| < [1 —yn_1(1—
I Iz + ot

n=1
P)] Hxn —Tn-1 ” + (|ﬁn = Bn-1 | + h/n _'7n—1| + |/\n —An—1 |)M1 + ‘an,un - an—lﬂn—1|M2-
By apply Lemma 2.1 to the last inequality, we obtain lim, o ||Zn+1 — Zn|| = 0.
Remark 3.2. We extended [13, Algorithm 3.1] to develop hybrid steepest-descent
viscosity approximation method for solving Problem 1.2. QOur hybrid steepest-
descent viscosity approximation method is the combination of viscosity approximation
method, steepest-descent method and Mann’s iteration method. By Remark 3.1, we
can readily see that our Algorithm 3.1 is the generalization, improvement, supplement
and development of [13, Algorithm 3.1].
Remark 3.3. If for every n > 1, we take

1
Oén,un:mv ﬂn:’}/n:ma and )‘n:mv

then it is easy to see that the conditions (i)-(vii) are satisfied.

Theorem 3.2. Assume that the sequence {y,} generated by Algorithm 3.1 is bounded.
Suppose that the sequences {pn} C (0,n/k%], {an} C (0,1], {8} C [0,1], {7} C
(0,1] and {\,} C (0,2¢] satisfy the following conditions:

oo
(1) Z A by = OO,
n=0
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(i) lm (1/anpn)|1/Ap — 1/ Ap—1| =0,
n—oo

(ii) lim (1/An)|1 — ap—1ptn—1/cntin] =0,

n—oo

(iv) lim A\, =0,

n—oo

(v) nh_}rr;o i/ An =0,

. . 2 o
(vi) lim (AnBn + 90 + A7) fanpn =0,

o0

(Vll) Z (|6n - Bn71| + |’7n - /Yn*1|) /)"ﬂ < 0.

n=1
Then the sequence {x,} generated by Algorithm 3.1 satisfies the following assertions:

(a) The sequences {x,}, {A1zn} and {Asyn} are bounded;

(b) lim ||Zpt1 — zn|l/An =0, lim ||z, — ynl|l/An =0 and lim ||z, — Tx,|| =0;
n—00 n—oo n—>00

(¢) The sequence {x,} converges strongly to the unique solution of Problem 1.2
provided there exists v > 0 such that

|xn = Tzp)| =7 inf |z, —y|| ¥V n>no
yEFix(T)

for some integer ng > 1.

Proof. (a) By using the same argument as in the proof of Theorem 3.1 (a), we see
that the sequences {x,}, {A12,} and {Asy,} are bounded.
(b) We prove lim ||z,4+1 — zp||/An = 0.
n—oo

By using the same argument as in the proof of Theorem 3.1 (b), we obtain

”TnJrlanrl - Tnxn” < ||mn+1 - xn” + |)\n - )\n+1|||Alxn||7 n > 07

[n+1=ynll < 1=7 @ =p)[2n+1—znll+ (|Bnt1 = Bal + [Vnt1 = Vn|+[Ant1 = Anl) M,
for every n > 0, where My := sup {||zn|| + || f(@n)]| + | Tazn|| + [|A12n]} < oo, and
n>0

||xn+1 - xn” S (1 - O‘nTn)”xn - xn—l” + (|6n - ﬁn—1| + |7n - 77L—1|
+ |)\n - )\n—l‘)Ml + |anﬂn - an—l,un—llM%

for every n > 1, where 7, := 1 — /1 — 1, (27 — pn?) € (0,1] as in Proposition 2.4
and My := sup || A2y, || < oo. For all n > 0, we observe that
n>0

1
V1= (20— pn?) < V/T= i < 1= 5,

and hence,

1 1
Tn =1 = /1= (27 — pnk?) > 1 — (1 - 2unn) = 5 hn, (3.12)
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where 0 < p, < 77//<;2 for all n > 0. Therefore, for all n > 1, we obtain

|Znt1 — znl < <1 B ;anunn> |Zn — Znal|

An An
+ ‘/Bn - ﬁn—1| + |7n — ’Yn—l‘ + |/\n - )\n—1|M1
An
1 |20 — Tn_1]|
< 1—sanpn -
> ( 2a H 77) P
1 2M3 1 1 Oy 1 Un—1
Zanpnn - 2220 11 - 7177}
+gomtan- = H{@a+ Do |5 = o - e
+ ‘/Bn - ﬁn—1|;_ h/n - Vn—l‘M&

where M3 = sup ||€p11 — 2| + M1 + Ms < oo, and also, we get
n>0

lim ||z, — Tx,| =0. (3.13)
n—oo

(¢) We divide the proof into three steps:

(I) As in the proof of Theorem 3.1 (¢) (I), we have

lim sup(z* — @41, A22™) < 0.
n—o0

(IT) We prove lim sup(\,, /an fin) (2" — 2, A12") < 0.
n—oo
Without loss of generality, we may assume that

|2n —Tanl| > 7 inf |z, —yll, Vn >0 and for some r > 0.
y€eFix(T)

Since Prix(r)2n € Fix(T) and 2* € VI(Fix(T), A1), we have
(2" — 2p, A12") = (Prix(1)2n — 2n, A12") + (2" — Ppix(1)2n, A127)

<A Prix(T)%n — Zn, A127)

< || Prix(ry2n — 2nlll[Arz™||

< [I1Prix(r)zn — Prix(m)Znll + | Prix(r)@n — Tall + |20 — zall] || A1z
[Arz”|

< [QHJL‘n - Zn” + ||PFiX(T)x7L - xn”]
for every n > 0. This together with the hypothesis of (¢) implies that

(2" = 20, 412%) < | Prieerytn — 2all | Are® || + 2|, — 2| Arz”
1
< —llon = Toalll sz || + 2an — zalll 17|

1
<=
r

lzn = ynll + llyn = T[] [Are™(] + 2||zn — 2zn[l[[ A1z

1
< - [||33n — Yull + Bullrn — Tznl| + vall f(2n) — Ty ||

+(1 = Bn =) T2n — Tfl?nll} [Arz™|| + 2[lzn — zn || Arz™||
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1
< ~[lew = yull + Ballen = Twall + alf @a) = Tl

Hizn = zall || 4127 | + 2l = 20l 4107

1 X 1 X
= -l =l Bulltn =T 4 )= Tl 4 (5 +2) o=l A1)

1 * 1 *
< 2 o =l + B 4900 12 + (5 42) o = 412

o

1 . 1 X
o = il + (8 + w12 ]+ 7 +2) o = s’

for every n > 0, where M := sup,,>o{[|zn — T + || f(2n) — T2, ||} < oo
So, we obtain

Ajx* —
An <l‘* —Zn,A1$*> < Az || {/\onn ynH + /\n(ﬁn""yn)MS}

Qnfn r On fn Qip
1 )\n Tn — Zn *
r A fin
r Qi fleny An Qup fn,
1 MllTn — 2zn .
+ ( + 2) Anllen = zally g oo
r O [

for every n > 0. This together with condition (vi) implies that

lim sup
n—oo Onln

(x* — 2z, Arz™) <0. (3.14)

(III) Finally, we prove lim ||z, —z*| = 0.
n—oo
As in the proof of Theorem 3.1 (c) (III), we have for all n > 0,

* 1 *
[Zn41 — 2 ”2 =(1- §anﬂn77)”xn - H2
1 2 1 Tn * " *
+*an/‘nn'7{2<1_*an n ) fx®) -z flzn) —x
saniint {2(1= ganuan) 5@ - a1 F(za) - 2|
1
+2 <1 - 2anﬂnn> (1= Bn—n)" U fim (" — 2n, A12%)
+ 2(z* — Tpq1, Apz™) ) (3.15)
Since Z Qi b, = 00 implies Z Sp = 00, it is clear from lim sup(z* —x,41, Asz™) <0
n=0 n=0 n—roo
that limsupt, < 0, where ¢, is the same as in (3.11). Following the same argument
n—oo
as in the proof of Theorem 3.1 (¢) (III), we obtain =, — z*. This completes the
proof. O

Remark 3.4. In the above proof of Theorem 3.2, we used the similar argument and
technique as in [13, Theorem 3.2] and Lemma 2.1 to derive ||z,41 — Zn||/An — 0
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as n — oo. If we want to prove hrnn_>OO |Zn+1 — zn]] = 0, then we may consider

Z ay,Vy = 00 in Theorem 3.1 and Z Qpftn, = 00 in Theorem 3.2,

n=0 n=0
Z('Bn - Bn71| + |7n - ’7n71| + ‘)\n - )\n71|) < o0
n=1

and

Z | fin, — Qr—1fin—1] < 00.
n=1

In this case, combining the proven inequality

[Zn+1 — 2ol < (1 = anmn)|Tn — Tp-1|l + (1B — Bn-1] + [1n — -1l
+ |)\n - )\nfl‘)Ml + |an/~Ln - O‘nflﬂn71|M2

and (3.12), we have ||z,11 — zp] < (1 - %anunn)Hxn —Zp—1|| + (|Bn = Bn=1| + |7 —
Yn—1| + [An — An—1|) M1 + | i, — @p—1ptn—1|Ms. Then by applying Lemma 2.1 to
the last inequality, we immediately obtain

lim ||zp41 — 2n] =0.
n—oo

Remark 3.5. If for every n > 1, we take a, ptr, = 8, = #, Yo = ﬁ, and M\, =
—5, then it is easy to see that the conditions (i) - (vii) are satisfied.

The following result is established under some suitable conditions, which are very
different from those in Theorems 3.1 and 3.2.
Theorem 3.3. Assume that the sequence {y,} generated by Algorithm 3.1 is bounded.
Let {u,} C (0,n/k2], {an} C (0,1], {Bn}, {7} C [0,1] and {\.} C (0,2q] be such
that the following conditions hold:

i) Z;)'yn = oo and nlgr;o(ﬁn + ) =0;

o0

(ii) Z (1Bna1 = Bal + a1 — Yol + [Ang1 — Anl) <00
n=0

(iii) Z;) |Qtn 1 b1 — Qupin] < 00 and nh_)Irgo Qi = 05
(iv) v = 0(An) and Ay, < appin, Yn > 0.
Then, the sequence {x,} generated by Algorithm 3.1 satisfies the following assertions:
(a) The sequences {x,}, {A1zn} and {Asyn} are bounded;
(b) lim ||z —ynl| =0 and lim ||z, — Tx,| = 0;
n—oo n—oo
(¢) The sequence {x,} converges strongly to a unique solution of Problem 1.2
provided ||z, — yn|| = 0o(An).
Proof. (a) It is similar to the proof of Theorem 3.1 (a).
(b) We prove lim ||zp41 — x| = 0.
n—oo
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As in the proof of Theorem 3.1 (b), we have
[Tnt1@n41 = Tnwnll < [2nta = @nll + [An = Anga || Arznll, >0,
and hence,
[ynt1=ynll < L=y =p)lll#n+1—znll+ ([Bntr = Bul+ [Vnrs =yl +[Ans1 = An|) My,
where My := sup {|[znall + I f (#ns )l + [ Tnaniall + [ Arwnl} < oo, and

[Zn1 = Znll 1= n-1(1 = p)ll|lzn — Tn-1ll + (180 = Bn-1| + [vn — -1l
+ |)\n - )\n—l|)M1 + ‘Oén,ufn - an—l,ufn—l|M2;

where 7, == 1 — /1 — 11, (20 — pnk?) € (0,1] as in Proposition 2.4 and

My = sup || Ay, || < oo.
n>0
Hence, for all n,m > 0, we get

[Zntm+1 = Tntmll <1 = Yotm—1(1 = P Tntm — Tngm—1]|

+ (|5n+m - /Bn+m—1| + |'Vn+m - 7n+m—1‘ + |/\n+m - )\n+m—1|) M,

+ | tmbntm = Onym—1Mntm—1|Ma

< = Yntrm-1(1 = p)H[L = Ygm—2(1 = P Zntm—1 = Tntm—2|l

+ (|Bntm—1 = Bntm—2| + [Yntm-1 = Yntm—2|

+ [Antm—1 = Angm—2[) M1 + |0ntm—1fintm—1 — Qntm—2fntm—2|Ma}
+ Ml(‘6n+m - ﬂn+m—l| + ‘7n+m - 7n+m—l| + |/\n+m - >‘n+m—1|)

+ M2|an+m,u/n+m - an+m71/~ﬁn+m71|
n+m—1
< JI =@ =p)lllzmir — zmll
k=m
n+m—1

+ My Z (IBk+1 = Brl + [ve+1 — Yol + A1 — Axl)

k=m
n+m—1

+ M, Z |Qtkp1 i1 — Qe fine].

k=m

By condition (i), we have [[r-, [1 —vk(1 —p)] = 0, V¥m > 0, and hence, for all
m > 0, we obtain

limsup [|zp11 — 24)|* = i sup |2n4mi1 = Zngml|”
n—oo n— oo

<MY (1Brrt = Brl + [kern — ol + Perr — Ak)

k=m

oo
+ My > [k s — kg

k=m
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This together with the conditions (ii) and (iii) ensures that limsup ||x,1+1 — 25| <0,

n—oo
that is,
lim ||#p41 — 2n] =0. (3.16)
n—oo
From condition (iii) and ||2n11 — ynll = anpinllAoyn| < Maanp,, we get that
hmn—)oo ||$n+1 - ynH =0.
Since ||xn, — Ynll < |2n — Tpt1ll + [|Tn+1 — ynll, it follows from (3.16) that
lim ||z, — yn| = 0. (3.17)
n— oo

Moreover, assumption (A3) guarantees that

lyn = Txall = 1Bn(zn — Txn) + v (f(@n) = Ton) + (1 = Bp = ) (Tntn — Ty
< Ballzn = Tanll + vl f(@n) = Tl + (1 = Bn — Yo ) | Thzn — Tan|
< Ballzn = Tan| + vl f(@n) = Tan| + [T — AAr)zn — Ty
< Bullen = Tl + vl f(zn) — T2pll + Al A1z |-
Hence, from conditions (i) and (iii), we have nhﬂn;(} lyn, — Tx,|| = 0. Therefore, from

(3.17), we obtain
lim ||z, — Tz,| = 0. (3.18)
n—oo
(¢) We first prove limsup{z* — x,, A12*) < 0.

n—roo
Choose a subsequence {x,,} of the sequence {z,} such that

limsup(z* — x,, A12*) = lim (¥ — x,,, A1z™).
n—o0 100

The boundedness of {x,,, } implies the existence of a subsequence {acn]} of {z,,} and
a point £ € H such that {xnj} converges weakly to . We may assume without loss
of generality that

lim (z,,, w) = (£,w), Ywe H.

1—00

If we assume & ¢ Fix(T'), then (3.18) and (A3) guarantee that liminf||z,, — Z| <
liminf &, — T4 = lminf |}z, — Ton, + Tan, — Té| = liminf [Tr,, — T2] <
liminf ||z,, — Z||, which is a contradiction. Therefore, & € Fix(T'). Since z* €
\;?(OFOiX(T), Ayp), we have

limsup(z® — z,, A12") = lim (2" — z,,,, A12") = (" — &, A;2™) < 0. (3.19)

n—o0 100

Next, we prove lim sup{x* — zp41, A22™) < 0.
n—oo
The relation (3.16) guarantees the existence of two subsequences {z,,} and

{Zn,+1} of {z,,} and T € H such that one have

limsup(z* — py1, Aoz™) = lm (@™ — xp, 41, A22™)
n—oo k—o0

and

lim (@, ,w) = lim (z,, 41, w) = (T,w), Yw e H.
k—o0 k—o0
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By the same argument as that in the proof of & € Fix(T'), we have z € Fix(T).
Let y € Fix(T) be fixed arbitrarily.
Then, it follows from (A1) and (A3) that for all n > 0,

1yn = yl1* = 1Bn(n — ) + (f () = y) + (1 = Br = ) (Tnen — Ty)|?

< Ballen = yl? + vl f(@n) = yl* + (1= Bp = w)ITU = X A1)z, — Tyl?

< Bullen = ylI? + vl f(2n) — f(y) + F(y) — yl?

+ (1= B =) = A Ar)z, — yl?

< Bullen = ylI? + vl f (@) = FWI? +2(F (W) — y, f(20) — v)]

+ (1= Bn = y)llln — yll®

+ 20 (Y — @, Arzg) + A Arn ]

< Bullzn = yl? + nlo® |z — yl? + 20 £ () =yl f(zn) = yll]

+ (1= B =) lln — yl?

+ 20 (Y — T, Ary) + N2 MP]

<[ =1 = p)lllen = yl* + 2wl £ (y) = yllllf(2n) =yl

+ (1= B — )22 (Y — @n, Ary) + A2 M7

< lan = yll* + 29all £ () =yl £ (2n) =yl

+ (1= B — 1) [2An(y — @n, Ary) + An M7, (3.20)
which implies that for all n > 0,

1

< —
0< 1

fon =9l =l = 1) +222150) = ol za)

+(1 = B — 1) [2(y — @, Ary) + A MF]
= (e =l + llgn — o L2220 =0 020 ) — i) - )
(1= B = ) [2(y — @n, A1y) + A M]

Tn =Yl —llYn — Y n
< a0 = =0 T ) Mty (1 B 3) (24— 2, Ary) + A

7. —
< M3Hn)\7yn” =+ Q%Hf(y) —yllMz + (1 = Bn — 7n) [2<y — Tp, Ary) + )‘nM12] )

where M3 = sup {||z,, — y|| + |lyn — yll + || f(zs) — yl|} < co. This shows that
n>0

M {lxn —
1—Bn—"n An
Since ||zn, — Ynll +7n = 0o(Ay), from condition (i), for any € > 0, there exists an integer
mg > 0 such that
M; [|$n — nll
1= Bn—"n An

In
2 22150) ol + 200~ s Arsh+ 0 20

+2zi||f(y) - yl} + A M7 <, V> m.
n
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Hence,
0<e+2y—x,, A1y), Yn>my.

Putting n := ny, we have e +2(y — Z, A1y) > 0 as k — o0, from the weak convergence
of {zn,} to T € Fix(T). Since € > 0 is arbitrary, we get

(y—z,A1y) >0, Yy e Fix(T).
By assumption (A1) and Proposition 2.2 (i), we have

(y —z, A1) >0, VyeFix(T);
that is, Z € VI(Fix(T'), A1). Since {z*} = VI (VI (Fix(T), A1), A2), we have

limsup(z* — xp41, A2z™) = lim (2" — Ty, 41, A2z™) = (2" — T, Aa2™) < 0. (3.21)
n—00 k— o0

Finally, we prove that lim |z, —x*| = 0.
n— 00

Observe that /1 — (20 — ppk?) < /T = iy < 1 — Sy, for all n > 0 and
hence,

1 1
Tn=1= /1= (20— pnr?) > 1 - (1 - 2unn) = 5 hn, (3.22)

where 0 < p,, < n/k? for all n > 0.
By utilizing Lemma 2.2 and Proposition 2.4, from (3.20), (3.22) and the condition
(iv), we conclude that for all n > 0,
(e 17*H2 = [|(I = anpnA2)yn — (I — anpinAz)z™ — O‘munAZfE*”Z
<N = anpnA2)yn — (I — anpnA2)z* || + 20 i (2" — 2ps1, Aoz™)
< (1 - anTn)znyn - x*”Z + 2O‘nﬂn<x* — Tnp+1, A2I*>
< (1= anto)llyn — JU*”2 + 20 fin (2" — Tpt1, A2z™)

1 *
< (1 - ianﬂnn)uyn - x*”Q =+ 2an,un<x* - $n+1,A2$ >

1 * * * *
< (1= ganpn){llen —a 12+ 291 £ (%) — 2* ||| f (2n) — 2*||
+(1 = Bn — ) 2An{a™ — zp, Ar2™) + )\?LMf]} + 20 i (xF — Ty, Aoz™)

1 * Y * * *
= (1= getnsan) {lon = 2" 4 200 - 2110 = ) ~ 7]

An * *
+(1 — Bn — ’Yn) |:204n,un : <l‘ — Ty, A1z >
Qo fhn
2

A
oty - —2 Mﬂ} + 20 i (T* — T i1, Aoz™)
O n

1 * ’Y” * * *
< (1= gowinn) {len = o712+ 200 - 217 = (o) = 7]

2

An . .
+(1 - Bn - 'Yn) [2an,un : L <33 - xnaAlm >

+ 0t fh, - )\nMﬂ } + 20 o (xF — Ty, Aoz™)

1 * Vn * * *
< (1= nam)llen = @[ + 20 - £ (") = @ £ ) — 27|
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+(1

1 * *
- §anun77)(1 — Bn = V)20 fin - ” (x* — xp, A1z™)

Fnftn - AnME + 20 fin (2% — Ty 1, Apz™)

1 1 2 (29
(1= g len =2+ gonpan - { S = 2 F ) = 2
1 2X\n
+ 1- S 0nn 1- n - In
(1= ganpnn)(l = Bn — 7 )anun
FAME +2(z* — 21, Agx*>}. (3.23)
Note that 0 < (1 — %anunn) (1= Bn—) 2,

o= < 2 (by the condition (iv)) and
lim sup(z* — x,,, A12*) < 0. Hence, it follows from Lemma 2.3 that
n—oo

(" —xp, Ar1a™)

1 2
lim sup(1 — §anunn)(1 — Bn — Yn) (" — xp, A1z™) <0.
n—oo

ntn

Since v, = o(A\n) and {f(x,)} is bounded, we have

. 29 . . .
Jm (2076 - A — a7+ 0,02E) =0,

Now, we put a,, = ||z, — z*||?, s, =

— Lo, and
2¢ (2%,
o= 2 (3211~ 2 F ) = 271+ 2}

1 2\
1— —anpnn | (1 = B — Yn) ——(z* — 2,,, A1z*
+( 2@/“7)( B v)anﬂn@ Ty, Ayz™)
+ 2<$* — $n+17A2.I'*>}.

Utilizing the condition (iv), we have

S sn=) 5 Onfin] > inzkn = c0.
n=0 n=0 n=0

Since lim sup(z* — 41, A2z™) < 0, we have
n—oo

2 29
limsup ¢, < f{ lim sup <7||f(:13*) — " f(zy) — ™| + )\an2>
1 2Xn
+ limsup(1l — —appunn)(1 — Bn — Y
Hoop( 5 nftnn) (L= B = )anun

+ lim sup 2(z* — xn+1,A2z*>} <0.

(" — xp, Ar12™)
n— oo

In terms of (3.23), it can be easily seen that a,+1 < (1 — s,)a, + Sptn, Vn > 0.
Therefore, utilizing Lemma 2.1, we obtain lim,, oo ||, —2*]|? = lim,, 00 @,, = 0, that
is, &, — «*. This completes the proof.

O
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