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Abstract. In this work, we consider two types of triple hierarchical variational inequalities (in short,

THVI), one with a single nonexpansive mapping and another one with a finite family of nonexpansive

mappings. In this paper, by combining the viscosity approximation method, hybrid steepest-descent
method and Mann’s iteration method, we propose the hybrid steepest-descent viscosity approxima-

tion method for solving the THVI. The strong convergence of this method to a unique solution of

the THVI is studied under some appropriate assumptions. Another iterative algorithm for solving
THVI is also presented. Under some mild conditions, we prove that the sequence generated by the

proposed algorithm converges strongly to a unique solution of THVI. The case of a finite family of

nonexpansive mappings will ve presented in the second part of this work.
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1. Introduction and formulations

Let H be a real Hilbert space with its inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. The set of all fixed points of a mapping T : H → H is denoted
by Fix(T ), that is, Fix(T ) = {x ∈ H : Tx = x}. The mapping T : H → H is called
L-Lipschitzian if there exists a constant L ≥ 0 such that ‖Tx − Ty‖ ≤ L‖x − y‖ for
all x, y ∈ H. In particular, if L ∈ [0, 1), T is called a contraction mapping, while if
L = 1, then T is called a nonexpansive mapping.
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Let K be a nonempty convex subset of a Hilbert space H and F : K → H be
a monotone mapping, that is, 〈Fx − Fy, x − y〉 ≥ 0, ∀x, y ∈ K. The monotone
variational inequality problem [19] is to find x∗ ∈ K such that

〈Fx∗, x− x∗〉 ≥ 0, ∀x ∈ K.

The set of solutions of this problem is denoted by VI(K,F ). The following variational
inequality problem defined over the set Fix(T ) of fixed points of a mapping T : H → H
is called hierarchical variational inequality problem (in short, HVIP).
Problem 1.1. Given a monotone, continuous operator A : H → H and a nonexpan-
sive mapping T : H → H,

find x∗ ∈ VI(Fix(T ), A) := {x∗ ∈ Fix(T ) : 〈Ax∗, v − x∗〉 ≥ 0, ∀v ∈ Fix(T )}.

Recently, it has been considered and studied by several authors; See, for example,
[1, 2, 7, 12, 14, 16, 17, 18, 23, 24, 30] and the references therein. Several iterative
methods for computing the approximate solutions of Problem 1.1 are proposed and
analyzed in these references. In 2001, Yamada [30] (see also [28]) introduced a hybrid
steepest-descent method for finding an element of VI(Fix(T ), A) so as to reduce the
complexity probably caused by the projection PFix(T ). Zeng et al. [32] introduced and
analyzed a modified hybrid steepest-descent algorithm with variable parameters which
produces a sequence that converges strongly to a unique element of VI(Fix(T ), A),
where A is η-strongly monotone and κ-Lipschitzian with constants η, κ > 0. They

also considered the case where Ω =

N⋂
i=1

Fix(Ti) and Ti : H → H, i = 1, 2, . . . , N , is

a nonexpansive mapping. They proposed another modified hybrid steepest-descent
algorithm with variable parameters which produces a sequence that converges strongly
to a unique element of VI(Ω , A). A hierarchical fixed point problem (in short, HFPP),
equivalent to a HVIP, has been discussed in [21, 23]. Some iterative algorithms for
solving HFPP are proposed. The solution presented in [21, 23] is not always unique,
so that there may be many solutions for this problem. In that case, a solution, that
results in practical systems and networks being more stable and reliable, must be
found from among candidate solutions. Hence, it wound be reasonable to identify
the unique minimizer of an appropriate objective function over the hierarchical fixed
point constraint. Such problem would be a three-stage problem. Very recently, Iiduka
[13, 15] introduced three-stage variational inequality problem, that is, the monotone
variational inequality problem over the solution set of HVIP.
Problem 1.2. Assume that

(A1) A1 : H → H is α-inverse-strongly monotone;
(A2) A2 : H → H is η-strongly monotone and κ-Lipschitzian;
(A3) T : H → H is a nonexpansive mapping with Fix(T ) 6= ∅;
(A4) VI (Fix(T ), A1) 6= ∅.

Then the objective is to find x∗ ∈ VI (VI(Fix(T ), A1), A2) , where

V I (V I(Ω, A1), A2) :=
{
x∗ ∈ V I (Ω, A1) : 〈A2x

∗, v − x∗〉 ≥ 0,∀v ∈ V I (Ω, A1)
}
.
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We remark that this problem has a triple structure in contrast with bilevel program-
ming problems [20] or hierarchical constrained optimization problems or hierarchical
fixed point problem. Thus it is referred as triple-hierarchical variational inequality
problem (THVIP). Ceng et al. [3] considered the THVIP and presented its example.
They proposed two iterative methods, one is implicit and another one is explicit, to
compute the approximate solutions of THVIP. The convergence analysis of the se-
quences generated by the proposed algorithms is also studied. The THVIP is further
considered and studied by Ceng et al. [4]. They proposed relaxed hybrid steepest-
descent algorithm with variable parameters for computing the approximate solutions
of Problem 1.2.

On the other hand, Ceng et al. [4] also considered the following monotone varia-
tional inequality problem over the solution set of the variational inequality which is
defined over the set of common fixed points of N nonexpansive mappings Ti : H → H,
with N ≥ 1 an integer.
Problem 1.3. Assume that

(B1) A1 : H → H is α-inverse-strongly monotone;
(B2) A2 : H → H is η-strongly monotone and κ-Lipschitzian;
(B3) for i = 1, 2, . . . , N , Ti : H → H is a nonexpansive mapping with⋂N

i=1 Fix(Ti) 6= ∅;
(B4) VI

(⋂N
i=1 Fix(Ti), A1

)
6= ∅.

Then the objective is to find x∗ ∈ VI
(

VI
(⋂N

i=1 Fix(Ti), A1

)
, A2

)
.

In [4], the authors also proposed another relaxed hybrid steepest-descent algorithm
with variable parameters for computing the approximate solutions of Problem 1.3.

We remark that T[k] := TkmodN for integer k ≥ 1 with the mod function taking
values in the set {1, 2, . . . , N}, that is, if k = jN + q for some integers j ≥ 0 and
0 ≤ q < N , then T[k] = TN if q = 0 and T[k] = Tq if 0 < q < N .

In this paper, by combining the viscosity approximation method [5, 22, 27], hybrid
steepest-descent method [6, 30] and Mann’s iteration method [25], we introduce two
hybrid steepest-descent viscosity approximation algorithms for computing the appro-
priate solutions of Problems 1.2 and, in the second part of this work, for Problem 1.3,
respectively. The strong convergence of the sequences generated by these algorithms
is derived under some appropriate conditions. Obviously, whenever βn = γn = 0,
∀n ≥ 0, these two algorithms reduce to Algorithms 1 and 2, respectively, in [4].
Therefore, our proposed method is quite general and flexible and includes as special
cases some other iterative methods in the literature.

2. Preliminaries

Let H be a real Hilbert space. We denote by xn ⇀ x (respectively, xn → x) to
indicate that the sequence {xn} converges weakly (respectively, strongly) to x.
Definition 2.1. An operator A : H → H is called
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(a) strongly monotone (or more precisely, α-strongly monotone) if there exists a
constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ H;

(b) inverse-strongly monotone (or more precisely, β-inverse-strongly monotone)
(also called co-coercive) if there exists a constant β > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ H;

(c) hemicontinuous if for all x, y ∈ H, the mapping g : [0, 1] → H, defined by
g(t) := A(tx+ (1− t)y), is continuous.

It is clear that every β-inverse strongly monotone mapping is 1
β -Lipschitzian.

Definition 2.2. Let C be a nonempty convex subset of a real Hilbert space H.
A function ϕ : C → R is said to be

(a) convex if for all x, y ∈ C and all λ ∈ [0, 1],

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y);

(b) strongly convex if there exists α > 0 such that for all x, y ∈ C and all λ ∈ [0, 1],

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)− 1

2
αλ(1− λ)‖x− y‖2.

Let ϕ : H → R be a Fréchet differentiable function. Then, it is well known that
ϕ is convex (respectively, strongly convex) if and only if ∇ϕ : H → H is monotone
(respectively, strongly monotone) [31, Proposition 25.10], [11, Sect. IV, Theorem
4.1.4]. If ϕ : H → R is convex and ∇ϕ : H → H is 1/L-Lipschitzian, then ∇ϕ is
L-inverse-strongly monotone.

The metric projection PC : H → C onto the nonempty, closed and convex subset
C of H is defined by PCx ∈ C and ‖x − PCx‖ = infx∈C ‖x − y‖, ∀x ∈ H. The
metric projection PC onto a given nonempty, closed and convex subset C of H is
nonexpansive with Fix(PC) = C [25, Theorem 3.1.4 (i)].

Related to the set of all fixed points of a nonexpansive mapping, we have the
following result.
Proposition 2.1. Let C be a nonempty, closed and convex subset C of a real Hilbert
space H, and T : C → C be a nonexpansive mapping. Then,

(a) [10, Proposition 5.3] Fix(T ) is closed and convex;
(b) [10, Theorem 5.1] Fix(T ) 6= ∅, provided C is bounded.

Some properties of the solution set of a monotone variational inequality are men-
tioned in the following result.
Proposition 2.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H, A : C → H be a monotone and hemicontinuous operator and ϕ : C → R be
a convex and Fréchet differentiable functional. Then,

(a) [19] VI(C,A) is equivalent to MVI(C,A) := {x∗ ∈ C : 〈Ay, y− x∗〉 ≥ 0, ∀y ∈
C}.

(b) [19] VI(C,A) 6= ∅ when C is bounded.
(c) [29, Lemma 2.24] VI(C,A) = Fix(PC(I − λA)) for all λ > 0, where I is the

identity mapping on H.
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(d) [29, Theorem 2.31] VI(C,A) consists of only one point, if A is strongly mono-
tone and Lipschitzian.

(e) [8, Chap. II, Proposition 2.1]

VI(C,∇ϕ) = Argminx∈Cϕ(x) :=

{
x∗ ∈ C : ϕ(x∗) = min

x∈C
ϕ(x)

}
.

The following proposition provides an example of a nonexpansive mapping in which
the set of all fixed points of a nonexpansive mapping is equal to the solution set of
the monotone variational inequality.
Proposition 2.3. [15, Proposition 2.3] (see also [13]) Let C be a nonempty, closed
and convex subset of a real Hilbert space H, and A : C → H be an α-inverse-strongly
monotone operator. Then, for any given λ ∈ [0, 2α], the mapping Sλ : H → H defined
by Sλx := PC(I − λA)x is nonexpansive and Fix(Sλ) = VI(C,A).

We need the following proposition to prove the main results of this paper.
Proposition 2.4. [30, Lemma 3.1] Let A : H → H be η-strongly monotone and
κ-Lipschitzian and let µ ∈ (0, 2η/κ2). For λ ∈ [0, 1], define T (λ,µ) : H → H by
T (λ,µ)x := x− λµAx, for all x ∈ H. Then,∥∥∥T (λ,µ)x− T (λ,µ)y

∥∥∥ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ H,

where τ := 1−
√

1− µ(2η − µκ2) ∈ (0, 1].
Recall that a Banach space X is said to satisfy Opial’s condition if whenever {xn}

is a sequence in X which converges weakly to x, then

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

It is well known that every Hilbert space H satisfies Opial’s condition (see [9]).

The following lemmas will be used in the proof of the main results of this paper.
Lemma 2.1. [26, Lemma 2.5] Let {an} be a sequence of nonnegative numbers such
that

an+1 ≤ (1− sn)an + sntn + νn, ∀n ≥ 0,

where {sn}, {tn} and {νn} are the sequences such that the following conditions hold:

(i) {sn} ⊂ [0, 1] and

∞∑
n=0

sn =∞, or

∞∏
n=0

(1− sn) := lim
n→∞

n∏
k=0

(1− sk) = 0;

(ii) lim sup
n→∞

tn ≤ 0;

(iii) νn ≥ 0 and

∞∑
n=0

νn <∞.

Then, lim
n→∞

an = 0.

The following lemma is an immediate consequence of the inner product properties,
Lemma 2.2. In a real Hilbert space H we have that ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,
for all x, y ∈ H.

The following lemma can be easily proved.
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Lemma 2.3. [4] Let {an} be a bounded sequence of nonnegative numbers and {bn}
be a sequence of real numbers such that lim sup

n→∞
bn ≤ 0. Then, lim sup

n→∞
anbn ≤ 0.

Lemma 2.4. [9, Demiclosedness Principle] Let C be a nonempty, closed and convex
subset of a real Hilbert space H and T : C → C be a nonexpansive mapping. If T
has a fixed point, then I − T is demiclosed, that is, whenever {xn} is a sequence in
C and weakly converges to some point x ∈ C and the sequence {(I − T )xn} strongly
converges to some point y, then (I − T )x = y, where I is the identity operator on H.
In particular, whenever y = 0, we have x ∈ Fix(T ).

3. Iterative methods involving a nonexpansive mapping

In this section, we first consider a hybrid steepest-descent viscosity iterative algo-
rithm for solving Problem 1.2 involving a nonexpansive mapping defined on a real
Hilbert space H. Suppose that the assumptions (A1)–(A4) in Problem 1.2 are satis-
fied.
Algorithm 3.1.
Step 0. Take {λn} ⊂ (0, 2α], {µn} ⊂

(
0, 2η/κ2

)
, {αn} ⊂ (0, 1] and {βn}, {γn} ⊂ [0, 1]

with βn + γn ≤ 1, ∀n ≥ 0. Choose x0 ∈ H arbitrarily, and let n := 0.
Step 1. Given xn ∈ H, compute xn+1 ∈ H as

yn := βnxn + γnf(xn) + (1− βn − γn)Tnxn,

xn+1 := yn − αnµnA2yn, n ≥ 0,

where Tn := T (I − λnA1), ∀n ≥ 0.
Update n := n+ 1 and go to Step 1.

In Algorithm 3.1, we introduce a sequence {µn} of positive parameters so as to
take into account possible inexact computation. Taking µ ∈

(
0, 2η/κ2

)
and putting

µn ≡ µ and βn = γn = 0 for all n ≥ 0, then Algorithm 3.1 reduces to [13, Algorithm
3.1] (that is, [15, Algorithm 4.1]). Thus, Algorithm 3.1 is more general and more
flexible than [13, Algorithm 3.1] (that is, [15, Algorithm 4.1]).

We present the convergence analysis of the sequences generated by Algorithm 3.1.
Theorem 3.1. Assume that the sequence {yn} generated by Algorithm 3.1 is bounded.
Let {µn} ⊂

(
0, η/κ2

]
, {αn} ⊂ (0, 1], {βn} ⊂ [0, 1], {γn} ⊂ (0, 1] and {λn} ⊂ (0, 2α]

be such that the following conditions hold:

(i)

∞∑
n=0

γn =∞,

(ii) lim
n→∞

(1/γn) |1/λn − 1/λn+1| = 0,

(iii) lim
n→∞

(1/λn+1) |1− γn+1/γn| = 0,

(iv) lim
n→∞

λn = 0,

(v) lim
n→∞

αnµn/λn = 0,

(vi) lim
n→∞

(
λnβn + γn + λ2

n

)
/αnµn = 0,
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(vii)

∞∑
n=1

(|βn − βn−1|+ |αnµn − αn−1µn−1|) /λn <∞.

Then, the sequence {xn} generated by Algorithm 3.1 satisfies the following assertions:

(a) The sequences {xn}, {A1xn} and {A2yn} are bounded;
(b) lim

n→∞
‖xn+1− xn‖/λn = 0, lim

n→∞
‖xn− yn‖/λn = 0 and lim

n→∞
‖xn− Txn‖ = 0;

(c) The sequence {xn} converges strongly to a unique solution of Problem 1.2
provided that there exists r > 0 such that ‖x − Tx‖ ≥ r inf

y∈Fix(T)
‖x − y‖ for

all x ∈ H.

Proof. (a) Suppose that VI (VI (Fix(T ), A1) , A2) has a unique solution {x∗}. As-
sumption (A2) guarantees that ‖A2yn − A2x

∗‖ ≤ κ‖yn − x∗‖ for all n ≥ 0. Hence,
the boundedness of {yn} implies that {A2yn} is bounded. From the definition
of {xn} and the boundedness of {yn} and {A2yn}, we deduce that {xn} is also
bounded. Since A1 is α-inverse-strongly monotone, it is 1

α -Lipschitzian, and hence,
‖A1xn −A1x

∗‖ ≤ (1/α)‖xn − x∗‖ for all n ≥ 0. Therefore, the boundedness of {xn}
ensures the boundedness of {A1xn}.

(b) We prove lim
n→∞

‖xn+1 − xn‖/λn = 0.

From assumption (A3), Proposition 2.3, and the condition λn ≤ 2α (∀n ≥ 0), we
obtain, for all n ≥ 0, that

‖Tn+1xn+1 − Tnxn‖ = ‖T (I − λn+1A1)xn+1 − T (I − λnA1)xn‖
≤ ‖(I − λn+1A1)xn+1 − (I − λnA1)xn‖
= ‖(I − λn+1A1)xn+1 − (I − λn+1A1)xn + (λn − λn+1)A1xn‖
≤ ‖(I − λn+1A1)xn+1 − (I − λn+1A1)xn‖+ |λn − λn+1|‖A1xn‖
≤ ‖xn+1 − xn‖+ |λn − λn+1|‖A1xn‖.

If we notice that M1 := sup
n≥0
{‖xn‖+ ‖f(xn)‖+ ‖Tnxn‖+ ‖A1xn‖} < ∞, then we

have that

‖yn+1 − yn‖ = ‖βn+1xn+1 + γn+1f(xn+1) + (1− βn+1 − γn+1)Tn+1xn+1

−βnxn − γnf(xn)− (1− βn − γn)Tnxn‖
≤ ‖βn+1xn+1 − βnxn‖+ ‖γn+1f(xn+1)− γnf(xn)‖

+‖(1− βn+1 − γn+1)Tn+1xn+1 − (1− βn − γn)Tnxn‖
≤ |βn+1 − βn|‖xn+1‖+ βn‖xn+1 − xn‖+ |γn+1 − γn|‖f(xn+1)‖

+γn‖f(xn+1)− f(xn)‖+ |(1− βn+1 − γn+1)− (1− βn − γn)|‖Tn+1xn+1‖
+(1− βn − γn)‖Tn+1xn+1 − Tnxn‖

≤ |βn+1 − βn|‖xn+1‖+ βn‖xn+1 − xn‖+ |γn+1 − γn|‖f(xn+1)‖
+γnρ‖xn+1 − xn‖+ (|βn+1 − βn|+ |γn+1 − γn|)‖Tn+1xn+1‖

+(1− βn − γn)[‖xn+1 − xn‖+ |λn − λn+1|‖A1xn‖]
≤ (|βn+1 − βn|+ |γn+1 − γn|)‖xn+1‖+ βn‖xn+1 − xn‖

+(|βn+1 − βn|+ |γn+1 − γn|)‖f(xn+1)‖+ γnρ‖xn+1 − xn‖
+(|βn+1 − βn|+ |γn+1 − γn|)‖Tn+1xn+1‖
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+(1− βn − γn)[‖xn+1 − xn‖+ |λn − λn+1|‖A1xn‖]
= [1− γn(1− ρ)]‖xn+1 − xn‖+ (1− βn − γn)|λn − λn+1|‖A1xn‖
+(|βn+1 − βn|+ |γn+1 − γn|)(‖xn+1‖+ ‖f(xn+1)‖+ ‖Tn+1xn+1‖)

≤ [1− γn(1− ρ)]‖xn+1 − xn‖
+ (|βn+1 − βn|+ |γn+1 − γn|+ |λn+1 − λn|)M1,

From Proposition 2.4 and the above evaluation, we get, for every n ≥ 1, that

‖xn+1 − xn‖ =
∥∥∥T (αn,µn)yn − T (αn−1,µn−1)yn−1

∥∥∥
≤
∥∥∥T (αn,µn)yn − T (αn,µn)yn−1

∥∥∥+
∥∥∥T (αn,µn)yn−1 − T (αn−1,µn−1)yn−1

∥∥∥
≤ (1− αnτn)‖yn − yn−1‖+ |αnµn − αn−1µn−1|‖A2yn−1‖

≤ (1− αnτn){[1− γn−1(1− ρ)]‖xn − xn−1‖+ (|βn − βn−1|+ |γn − γn−1|
+|λn − λn−1|)M1}+ |αnµn − αn−1µn−1|‖A2yn−1‖

≤ [1− γn−1(1− ρ)]‖xn − xn−1‖+ (|βn − βn−1|+ |γn − γn−1|
+|λn − λn−1|)M1 + |αnµn − αn−1µn−1|M2,

where τn := 1−
√

1− µn(2η − µnκ2) ∈ (0, 1] as in Proposition 2.4 and

M2 := sup
n≥0
‖A2yn‖ <∞.

So, for all n ≥ 1, we obtain

‖xn+1 − xn‖
λn

≤ [1− γn−1(1− ρ)]
‖xn − xn−1‖

λn

+
|βn − βn−1|+ |γn − γn−1|+ |λn − λn−1|

λn
M1 +

|αnµn − αn−1µn−1|
λn

M2

= [1− γn−1(1− ρ)]
‖xn − xn−1‖

λn−1
+ [1− γn−1(1− ρ)]

{
‖xn − xn−1‖

λn
− ‖xn − xn−1‖

λn−1

}
+
|βn − βn−1|+ |γn − γn−1|+ |λn − λn−1|

λn
M1 +

|αnµn − αn−1µn−1|
λn

M2

≤ [1− γn−1(1− ρ)]
‖xn − xn−1‖

λn−1
+M3

∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣
+
|γn − γn−1|+ |λn − λn−1|

λn
M3 +

|βn − βn−1|+ |αnµn − αn−1µn−1|
λn

M3

= [1− γn−1(1− ρ)]
‖xn − xn−1‖

λn−1
+

M3

1− ρ
γn−1(1− ρ)

1

γn−1

∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣
+

2αM3

1− ρ
γn−1(1− ρ)

1

γn−1

|λn − λn−1|
2αλn

+
M3

1− ρ
γn−1(1− ρ)

1

γn−1

|γn − γn−1|
λn

+
|βn − βn−1|+ αnµn − αn−1µn−1|

λn
M3

≤ [1− γn−1(1− ρ)]
‖xn − xn−1‖

λn−1
+

M3

1− ρ
γn−1(1− ρ)

1

γn−1

∣∣∣∣ 1

λn−1
− 1

λn

∣∣∣∣
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+
2αM3

1− ρ
γn−1(1− ρ)

1

γn−1

∣∣∣∣ 1

λn−1
− 1

λn

∣∣∣∣+
M3

1− ρ
γn−1(1− ρ)

1

λn

∣∣∣∣1− γn
γn−1

∣∣∣∣
+
|βn − βn−1|+ |αnµn − αn−1µn−1|

λn
M3 = [1− γn−1(1− ρ)]

‖xn − xn−1‖
λn−1

+γn−1(1− ρ) · M3

1− ρ

{
(1 + 2α)

1

γn−1

∣∣∣∣ 1

λn−1
− 1

λn

∣∣∣∣+
1

λn

∣∣∣∣1− γn
γn−1

∣∣∣∣ }
+
|βn − βn−1|+ |αnµn − αn−1µn−1|

λn
M3,

where M3 := sup
n≥0
‖xn+1 − xn‖ + M1 + M2 < ∞. Therefore, by Lemma 2.1 and the

conditions (i), (ii), (iii) and (vii) we have

lim
n→∞

‖xn+1 − xn‖
λn

= 0. (3.1)

Since

‖xn − yn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+ αnµnM2,

we have ‖xn−yn‖
λn

≤ ‖xn+1−xn‖
λn

+ αnµn

λn
M2. Therefore, by (3.1) and the condition (v),

we get

lim
n→∞

‖xn − yn‖
λn

= 0. (3.2)

By the condition (vi), (3.2) and (λn/αnµn)‖xn − yn‖ = (λ2
n/αnµn)(‖xn −

yn‖/λn), ∀n ≥ 0, we get that lim
n→∞

(λn/αnµn) ‖xn−yn‖ = 0. Put zn := xn−λnA1xn,

∀n ≥ 0. Then, we have ‖zn − xn‖ = λn‖A1xn‖ ≤ λnM1, and hence,

(λn/αnµn) ‖zn − xn‖ ≤
(
λ2
n/αnµn

)
M1, ∀n ≥ 0.

From condition (vi), we have lim
n→∞

(λn/αnµn) ‖zn − xn‖ = 0. Consequently, we get

lim
n→∞

λn‖zn − yn‖
αnµn

= 0. (3.3)

Moreover, from assumption (A3), we obtain

‖yn − Txn‖ = ‖βn(xn − Txn) + γn(f(xn)− Txn) + (1− βn − γn)(Tnxn − Txn)‖
≤ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖+ (1− βn − γn)‖Tnxn − Txn‖
≤ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖+ ‖T (xn − λnA1xn)− Txn‖
≤ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖+ λn‖A1xn‖.

Also, from conditions (v) and (vi), we have

lim
n→∞

γn
λn

= lim
n→∞

γn
αnµn

· αnµn
λn

= 0 and lim
n→∞

βn = lim
n→∞

λnβn
αnµn

· αnµn
λn

= 0.

Hence, by the condition (iv), we get lim
n→∞

‖yn − Txn‖ = 0. Therefore, utilizing

(3.2), we obtain lim
n→∞

‖xn − yn‖ = 0, Thus,

lim
n→∞

‖xn − Txn‖ = 0. (3.4)

(c) We divide the proof into the following three steps:
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(I) We prove lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 ≤ 0.

Choose a subsequence {xni
} of the sequence {xn} such that lim supn→∞〈x∗ −

xn, A2x
∗〉 = limi→∞〈x∗−xni

, A2x
∗〉. The boundedness of {xni

} implies the existence
of a subsequence {xnij

} of {xni
} and a point x̂ ∈ H such that {xnij

} converges weakly

to x̂. Since lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖zn − xn‖ = 0, we have limj→∞〈xnij
+1, w〉 =

limj→∞〈znij
, w〉 = limj→∞〈xnij

, w〉 = 〈x̂, w〉, ∀w ∈ H. Without loss of generality,

we may assume that lim
i→∞
〈xni , w〉 = 〈x̂, w〉, ∀w ∈ H. Assume x̂ 6= T x̂. By (3.4),

assumption (A3) and Opial’s condition, we have

lim inf
i→∞

‖xni
− x̂‖ < lim inf

i→∞
‖xni

− T x̂‖ = lim inf
i→∞

‖xni
− Txni

+ Txni
− T x̂‖

= lim inf
i→∞

‖Txni
− T x̂‖ ≤ lim inf

i→∞
‖xni

− x̂‖.
(3.5)

This is a contradiction, that is, x̂ ∈ Fix(T ). Let y ∈ Fix(T ) be a fixed arbitrary
point and put M4 := sup

n≥0
{‖xn − y‖+ ‖yn − y‖+ ‖f(xn)− y‖} < ∞. Then, from

assumption (A3) and Proposition 2.3, we have, for every n ≥ 0, that

‖yn − y‖2 = ‖βn(xn − y) + γn(f(xn)− y) + (1− βn − γn)(Tnxn − y)‖2

≤ βn‖xn − y‖2 + γn‖f(xn)− y‖2 + (1− βn − γn)‖T (xn − λnA1xn)− Ty‖2

≤ βn‖xn − y‖2 + γn‖f(xn)− y‖2 + (1− βn − γn)‖zn − y‖2

= βn‖xn − y‖2 + γn‖f(xn)− f(y) + f(y)− y‖2

+ (1− βn − γn)‖(xn − λnA1xn)− (y − λnA1y)− λnA1y‖2

≤ βn‖xn − y‖2 + γn[‖f(xn)− f(y)‖2 + 2〈f(y)− y, f(xn)− y〉]
+ (1− βn − γn)[‖(xn − λnA1xn)− (y − λnA1y)‖2 + 2λn〈y − zn, A1y〉]
≤ βn‖xn − y‖2 + γn[ρ2‖xn − y‖2 + 2‖f(y)− y‖‖f(xn)− y‖]
+ (1− βn − γn)[‖xn − y‖2 + 2λn〈y − zn, A1y〉]
≤ [1− γn(1− ρ)]‖xn − y‖2 + 2γn‖f(y)− y‖‖f(xn)− y‖
+ 2(1− βn − γn)λn〈y − zn, A1y〉
≤ ‖xn − y‖2 + 2γn‖f(y)− y‖‖f(xn)− y‖+ 2(1− βn − γn)λn〈y − zn, A1y〉, (3.6)

which implies that

0 ≤ 1

λn

(
c‖xn − y‖2 − ‖yn − y‖2

)
+ 2

γn
λn
‖f(y)− y‖‖f(xn)− y‖

+2(1− βn − γn)〈y − zn, A1y〉

≤ (‖xn − y‖+ ‖yn − y‖)
‖xn − y‖ − ‖yn − y‖

λn
+ 2

γn
λn
‖f(y)− y‖M4

+2(1− βn − γn)〈y − zn, A1y〉

≤M4
‖xn − y‖ − ‖yn − y‖

λn
+ 2

γn
λn
‖f(y)− y‖M4 + 2(1− βn − γn)〈y − zn, A1y〉
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≤M4

(
‖xn − yn‖

λn
+ 2

γn
λn
‖f(y)− y‖

)
+ 2(1− βn − γn)〈y − zn, A1y〉,

for every n ≥ 0.
By the weak convergence of {zni

} to x̂ ∈ Fix(T ), the condition (v), and (3.2), we
get 〈y − x̂, A1y〉 ≥ 0 for all y ∈ Fix(T ). By assumption (A1), we have

〈y − x̂, A1x̂〉 ≥ 0, ∀y ∈ Fix(T ),

that is, x̂ ∈ VI (Fix(T ), A1). Since {x∗} = VI (VI (Fix(T ), A1) , A2), we have

lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 = lim

i→∞
〈x∗ − xni+1, A2x

∗〉 = 〈x∗ − x̂, A2x
∗〉 ≤ 0. (3.7)

(II) We prove lim sup
n→∞

(λn/αnµn)〈x∗ − zn, A1x
∗〉 ≤ 0.

Since PFix(T )zn ∈ Fix(T ) and x∗ ∈ VI (Fix(T ), A1), we have

〈x∗ − zn, A1x
∗〉 = 〈PFix(T )zn − zn, A1x

∗〉+ 〈x∗ − PFix(T )zn, A1x
∗〉

≤ 〈PFix(T )zn − zn, A1x
∗〉 ≤ ‖PFix(T )zn − zn‖‖A1x

∗‖, ∀n ≥ 0.

By hypothesis, there exists r > 0 such that ‖x − Tx‖ ≥ r inf
y∈Fix(T)

‖x − y‖, for all

x ∈ H, and therefore, we have

〈x∗ − zn, A1x
∗〉 ≤ ‖PFix(T )zn − zn‖‖A1x

∗‖ ≤ 1

r
‖zn − Tzn‖‖A1x

∗‖

≤ 1

r
[‖zn − yn‖+ ‖yn − Tzn‖]‖A1x

∗‖

≤ 1

r
[‖zn − yn‖+ βn‖xn − Tzn‖+ γn‖f(xn)− Tzn‖]‖A1x

∗‖

≤ 1

r
[‖zn − yn‖+ (βn + γn)M5]‖A1x

∗‖,

for every n ≥ 0, where M5 := sup
n≥0
{‖xn − Tzn‖+ ‖f(xn)− Tzn‖} <∞. So, we obtain

λn
αnµn

〈x∗ − zn, A1x
∗〉 ≤ ‖A1x

∗‖
r

{
λn‖zn − yn‖

αnµn
+
λn(βn + γn)

αnµn
M5

}
, n ≥ 0.

This together with the condition (vi) and (3.3) implies that

lim sup
n→∞

λn
αnµn

〈x∗ − zn, A1x
∗〉 ≤ 0. (3.8)

(III) Finally, we prove lim
n→∞

‖xn − x∗‖ = 0.

Observe that for all n ≥ 0,√
1− µn(2η − µnκ2) ≤

√
1− µnη ≤ 1− 1

2
µnη,

and hence,

τn = 1−
√

1− µn(2η − µnκ2) ≥ 1− (1− 1

2
µnη) =

1

2
µnη, (3.9)

where 0 < µn ≤ η/κ2 for all n ≥ 0.
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By utilizing Lemma 2.2, Proposition 2.4 and relations (3.6) and (3.9), we conclude
that for all n ≥ 0,

‖xn+1 − x∗‖2 = ‖(yn − αnµnA2yn)− (x∗ − αnµnA2x
∗)− αnµnA2x

∗‖2

≤ ‖(yn − αnµnA2yn)− (x∗ − αnµnA2x
∗)‖2 + 2αnµn〈x∗ − xn+1, A2x

∗〉

≤ (1− αnτn)2‖yn − x∗‖2 + 2αnµn〈x∗ − xn+1, A2x
∗〉

≤ (1− αnτn)‖yn − x∗‖2 + 2αnµn〈x∗ − xn+1, A2x
∗〉

≤ (1− 1

2
αnµnη)‖yn − x∗‖2 + 2αnµn〈x∗ − xn+1, A2x

∗〉

≤ (1− 1

2
αnµnη){‖xn − x∗‖2 + 2γn‖f(x∗)− x∗‖‖f(xn)− x∗‖

+2(1− βn − γn)λn〈x∗ − zn, A1x
∗〉}+ 2αnµn〈x∗ − xn+1, A2x

∗〉

= (1− 1

2
αnµnη){‖xn − x∗‖2 + 2αnµn ·

γn
αnµn

‖f(x∗)− x∗‖‖f(xn)− x∗‖

+2αnµn(1− βn − γn) · λn
αnµn

〈x∗ − zn, A1x
∗〉}+ 2αnµn〈x∗ − xn+1, A2x

∗〉

= (1− 1

2
αnµnη)‖xn−x∗‖2+

1

2
αnµnη·

2

η

{
2(1− 1

2
αnµnη)

γn
αnµn

‖f(x∗)−x∗‖‖f(xn)−x∗‖

+2(1− 1

2
αnµnη)(1− βn − γn) · λn

αnµn
〈x∗ − zn, A1x

∗〉+ 2〈x∗ − xn+1, A2x
∗〉
}
. (3.10)

Since 0 ≤ 2
(
1− 1

2αnµnη
)

(1− βn − γn) ≤ 2, it follows from Lemma 2.3 and (3.8)
that

lim sup
n→∞

2

(
1− 1

2
αnµnη

)
(1− βn − γn) · λn

αnµn
〈x∗ − zn, A1x

∗〉 ≤ 0.

Since γn = o(αnµn) (by (vi)) and {f(xn)} is bounded, we have

lim
n→∞

{
2

(
1− 1

2
αnµnη

)
γn
αnµn

‖f(x∗)− x∗‖‖f(xn)− x∗‖
}

= 0.

Now, we put an = ‖xn − x∗‖2, sn = 1
2αnµnη, νn = 0 and

tn =
2

η

{
2

(
1− 1

2
αnµnη

)
γn
αnµn

‖f(x∗)− x∗‖‖f(xn)− x∗‖

+ 2

(
1− 1

2
αnµnη

)
(1− βn − γn) · λn

αnµn
〈x∗ − zn, A1x

∗〉

+ 2〈x∗ − xn+1, A2x
∗〉
}
. (3.11)
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Since

∞∑
n=0

γn = ∞ and γn = o(αnµn) (by (vi)), we have

∞∑
n=0

αnµn = ∞, and hence,

∞∑
n=0

sn =∞. It is clear from lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 ≤ 0, that

lim sup
n→∞

tn ≤
2

η

{
lim sup
n→∞

2

(
1− 1

2
αnµnη

)
γn
αnµn

‖f(x∗)− x∗‖‖f(xn)− x∗‖

+ lim sup
n→∞

2

(
1− 1

2
αnµnη

)
(1− βn − γn) · λn

αnµn
〈x∗ − zn, A1x

∗〉

+ lim sup
n→∞

2〈x∗ − xn+1, A2x
∗〉
}
≤ 0.

In terms of (3.10), it can readily be found that an+1 ≤ (1−sn)an+sntn+νn, ∀n ≥ 0.
By utilizing Lemma 2.1, we obtain

lim
n→∞

‖xn − x∗‖2 = lim
n→∞

an = 0,

that is, xn → x∗. This completes the proof. �

Remark 3.1. In the above proof of Theorem 3.1, we used the similar argument and
technique as in the proof of [13, Theorem 3.2], and used Lemma 2.1 to derive ‖xn+1−
xn‖/λn → 0 as n→∞. If we want only to prove limn→∞ ‖xn+1 − xn‖ = 0, then we

may consider only

∞∑
n=0

γn = ∞,

∞∑
n=1

(|βn − βn−1|+ |γn − γn−1|+ |λn − λn−1|) < ∞

and

∞∑
n=1

|αnµn −αn−1µn−1| <∞. In this case, we have ‖xn+1 − xn‖ ≤ [1− γn−1(1−

ρ)]‖xn−xn−1‖+(|βn−βn−1|+ |γn−γn−1|+ |λn−λn−1|)M1 + |αnµn−αn−1µn−1|M2.
By apply Lemma 2.1 to the last inequality, we obtain limn→∞ ‖xn+1 − xn‖ = 0.
Remark 3.2. We extended [13, Algorithm 3.1] to develop hybrid steepest-descent
viscosity approximation method for solving Problem 1.2. Our hybrid steepest-
descent viscosity approximation method is the combination of viscosity approximation
method, steepest-descent method and Mann’s iteration method. By Remark 3.1, we
can readily see that our Algorithm 3.1 is the generalization, improvement, supplement
and development of [13, Algorithm 3.1].
Remark 3.3. If for every n ≥ 1, we take

αnµn =
1

n2/5
, βn = γn =

1

n1/2
, and λn =

1

n1/3
,

then it is easy to see that the conditions (i)-(vii) are satisfied.
Theorem 3.2. Assume that the sequence {yn} generated by Algorithm 3.1 is bounded.
Suppose that the sequences {µn} ⊂ (0, η/κ2], {αn} ⊂ (0, 1], {βn} ⊂ [0, 1], {γn} ⊂
(0, 1] and {λn} ⊂ (0, 2α] satisfy the following conditions:

(i)

∞∑
n=0

αnµn =∞,
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(ii) lim
n→∞

(1/αnµn)|1/λn − 1/λn−1| = 0,

(iii) lim
n→∞

(1/λn)|1− αn−1µn−1/αnµn| = 0,

(iv) lim
n→∞

λn = 0,

(v) lim
n→∞

αnµn/λn = 0,

(vi) lim
n→∞

(
λnβn + γn + λ2

n

)
/αnµn = 0,

(vii)

∞∑
n=1

(|βn − βn−1|+ |γn − γn−1|) /λn <∞.

Then the sequence {xn} generated by Algorithm 3.1 satisfies the following assertions:

(a) The sequences {xn}, {A1xn} and {A2yn} are bounded;
(b) lim

n→∞
‖xn+1− xn‖/λn = 0, lim

n→∞
‖xn− yn‖/λn = 0 and lim

n→∞
‖xn− Txn‖ = 0;

(c) The sequence {xn} converges strongly to the unique solution of Problem 1.2
provided there exists r > 0 such that

‖xn − Txn‖ ≥ r inf
y∈Fix(T )

‖xn − y‖ ∀ n ≥ n0

for some integer n0 ≥ 1.

Proof. (a) By using the same argument as in the proof of Theorem 3.1 (a), we see
that the sequences {xn}, {A1xn} and {A2yn} are bounded.

(b) We prove lim
n→∞

‖xn+1 − xn‖/λn = 0.

By using the same argument as in the proof of Theorem 3.1 (b), we obtain

‖Tn+1xn+1 − Tnxn‖ ≤ ‖xn+1 − xn‖+ |λn − λn+1|‖A1xn‖, ∀n ≥ 0,

‖yn+1−yn‖ ≤ [1−γn(1−ρ)]‖xn+1−xn‖+(|βn+1−βn|+ |γn+1−γn|+ |λn+1−λn|)M1,

for every n ≥ 0, where M1 := sup
n≥0
{‖xn‖+ ‖f(xn)‖+ ‖Tnxn‖+ ‖A1xn‖} <∞, and

‖xn+1 − xn‖ ≤ (1− αnτn)‖xn − xn−1‖+ (|βn − βn−1|+ |γn − γn−1|
+ |λn − λn−1|)M1 + |αnµn − αn−1µn−1|M2,

for every n ≥ 1, where τn := 1 −
√

1− µn(2η − µnκ2) ∈ (0, 1] as in Proposition 2.4
and M2 := sup

n≥0
‖A2yn‖ <∞. For all n ≥ 0, we observe that

√
1− µn(2η − µnκ2) ≤

√
1− µnη ≤ 1− 1

2
µnη,

and hence,

τn = 1−
√

1− µn(2η − µnκ2) ≥ 1−
(

1− 1

2
µnη

)
=

1

2
µnη, (3.12)
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where 0 < µn ≤ η/κ2 for all n ≥ 0. Therefore, for all n ≥ 1, we obtain

‖xn+1 − xn‖
λn

≤
(

1− 1

2
αnµnη

)
‖xn − xn−1‖

λn

+
|βn − βn−1|+ |γn − γn−1|+ |λn − λn−1|

λn
M1

≤
(

1− 1

2
αnµnη

)
‖xn − xn−1‖

λn−1

+
1

2
αnµnη ·

2M3

η

{
(2α+ 1)

1

αnµn

∣∣∣∣ 1

λn
− 1

λn−1

∣∣∣∣+
1

λn
|1− αn−1µn−1

αnµn
|
}

+
|βn − βn−1|+ |γn − γn−1|

λn
M3,

where M3 = sup
n≥0
‖xn+1 − xn‖+M1 +M2 <∞, and also, we get

lim
n→∞

‖xn − Txn‖ = 0. (3.13)

(c) We divide the proof into three steps:
(I) As in the proof of Theorem 3.1 (c) (I), we have

lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 ≤ 0.

(II) We prove lim sup
n→∞

(λn/αnµn)〈x∗ − zn, A1x
∗〉 ≤ 0.

Without loss of generality, we may assume that

‖xn − Txn‖ ≥ r inf
y∈Fix(T )

‖xn − y‖, ∀n ≥ 0 and for some r > 0.

Since PFix(T )zn ∈ Fix(T ) and x∗ ∈ VI(Fix(T ), A1), we have

〈x∗ − zn, A1x
∗〉 = 〈PFix(T )zn − zn, A1x

∗〉+ 〈x∗ − PFix(T )zn, A1x
∗〉

≤ 〈PFix(T )zn − zn, A1x
∗〉

≤ ‖PFix(T )zn − zn‖‖A1x
∗‖

≤
[
‖PFix(T )zn − PFix(T )xn‖+ ‖PFix(T )xn − xn‖+ ‖xn − zn‖

]
‖A1x

∗‖
≤
[
2‖xn − zn‖+ ‖PFix(T )xn − xn‖

]
‖A1x

∗‖

for every n ≥ 0. This together with the hypothesis of (c) implies that

〈x∗ − zn, A1x
∗〉 ≤ ‖PFix(T )xn − xn‖‖A1x

∗‖+ 2‖xn − zn‖‖A1x
∗‖

≤ 1

r
‖xn − Txn‖‖A1x

∗‖+ 2‖xn − zn‖‖A1x
∗‖

≤ 1

r
[‖xn − yn‖+ ‖yn − Txn‖] ‖A1x

∗‖+ 2‖xn − zn‖‖A1x
∗‖

≤ 1

r

[
‖xn − yn‖+ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖

+(1− βn − γn)‖Tzn − Txn‖
]
‖A1x

∗‖+ 2‖xn − zn‖‖A1x
∗‖
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≤ 1

r

[
‖xn − yn‖+ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖

+‖zn − xn‖
]
‖A1x

∗‖+ 2‖xn − zn‖‖A1x
∗‖

=
1

r
[‖xn−yn‖+βn‖xn−Txn‖+γn‖f(xn)−Txn‖]‖A1x

∗‖+
(

1

r
+ 2

)
‖xn−zn‖‖A1x

∗‖

≤ 1

r
[‖xn − yn‖+ βnM5 + γnM5] ‖A1x

∗‖+

(
1

r
+ 2

)
‖xn − zn‖‖A1x

∗‖

=
1

r
[‖xn − yn‖+ (βn + γn)M5]‖A1x

∗‖+

(
1

r
+ 2

)
‖xn − zn‖‖A1x

∗‖

for every n ≥ 0, where M5 := supn≥0{‖xn − Txn‖+ ‖f(xn)− Txn‖} <∞.
So, we obtain

λn
αnµn

〈x∗ − zn, A1x
∗〉 ≤ ‖A1x

∗‖
r

{
λn‖xn − yn‖

αnµn
+
λn(βn + γn)

αnµn
M5

}
+

(
1

r
+ 2

)
λn‖xn − zn‖

αnµn
‖A1x

∗‖

=
‖A1x

∗‖
r

{
λ2
n

αnµn
· ‖xn − yn‖

λn
+
λn(βn + γn)

αnµn
M5

}
+

(
1

r
+ 2

)
λn‖xn − zn‖

αnµn
‖A1x

∗‖

for every n ≥ 0. This together with condition (vi) implies that

lim sup
n→∞

λn
αnµn

〈x∗ − zn, A1x
∗〉 ≤ 0. (3.14)

(III) Finally, we prove lim
n→∞

‖xn − x∗‖ = 0.

As in the proof of Theorem 3.1 (c) (III), we have for all n ≥ 0,

‖xn+1 − x∗‖2 = (1− 1

2
αnµnη)‖xn − x∗‖2

+
1

2
αnµnη ·

2

η

{
2
(

1− 1

2
αnµnη

) γn
αnµn

‖f(x∗)− x∗‖‖f(xn)− x∗‖

+ 2

(
1− 1

2
αnµnη

)
(1− βn − γn) · λn

αnµn
〈x∗ − zn, A1x

∗〉

+ 2〈x∗ − xn+1, A2x
∗〉
}
. (3.15)

Since

∞∑
n=0

αnµn =∞ implies

∞∑
n=0

sn =∞, it is clear from lim sup
n→∞

〈x∗−xn+1, A2x
∗〉 ≤ 0

that lim sup
n→∞

tn ≤ 0, where tn is the same as in (3.11). Following the same argument

as in the proof of Theorem 3.1 (c) (III), we obtain xn → x∗. This completes the
proof. �

Remark 3.4. In the above proof of Theorem 3.2, we used the similar argument and
technique as in [13, Theorem 3.2] and Lemma 2.1 to derive ‖xn+1 − xn‖/λn → 0
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as n → ∞. If we want to prove limn→∞ ‖xn+1 − xn‖ = 0, then we may consider
∞∑
n=0

αnνn =∞ in Theorem 3.1 and

∞∑
n=0

αnµn =∞ in Theorem 3.2,

∞∑
n=1

(|βn − βn−1|+ |γn − γn−1|+ |λn − λn−1|) <∞

and
∞∑
n=1

|αnµn − αn−1µn−1| <∞.

In this case, combining the proven inequality

‖xn+1 − xn‖ ≤ (1− αnτn)‖xn − xn−1‖+ (|βn − βn−1|+ |γn − γn−1|
+ |λn − λn−1|)M1 + |αnµn − αn−1µn−1|M2

and (3.12), we have ‖xn+1 − xn‖ ≤ (1− 1
2αnµnη)‖xn − xn−1‖+ (|βn − βn−1|+ |γn −

γn−1| + |λn − λn−1|)M1 + |αnµn − αn−1µn−1|M2. Then by applying Lemma 2.1 to
the last inequality, we immediately obtain

lim
n→∞

‖xn+1 − xn‖ = 0.

Remark 3.5. If for every n ≥ 1, we take αnµn = βn = 1
n1/2 , γn = 1

n3/5 , and λn =
1

n1/3 , then it is easy to see that the conditions (i) - (vii) are satisfied.
The following result is established under some suitable conditions, which are very

different from those in Theorems 3.1 and 3.2.
Theorem 3.3. Assume that the sequence {yn} generated by Algorithm 3.1 is bounded.
Let {µn} ⊂ (0, η/κ2], {αn} ⊂ (0, 1], {βn}, {γn} ⊂ [0, 1] and {λn} ⊂ (0, 2α] be such
that the following conditions hold:

(i)

∞∑
n=0

γn =∞ and lim
n→∞

(βn + γn) = 0;

(ii)

∞∑
n=0

(|βn+1 − βn|+ |γn+1 − γn|+ |λn+1 − λn|) <∞;

(iii)

∞∑
n=0

|αn+1µn+1 − αnµn| <∞ and lim
n→∞

αnµn = 0;

(iv) γn = o(λn) and λn ≤ αnµn, ∀n ≥ 0.

Then, the sequence {xn} generated by Algorithm 3.1 satisfies the following assertions:

(a) The sequences {xn}, {A1xn} and {A2yn} are bounded;
(b) lim

n→∞
‖xn − yn‖ = 0 and lim

n→∞
‖xn − Txn‖ = 0;

(c) The sequence {xn} converges strongly to a unique solution of Problem 1.2
provided ‖xn − yn‖ = o(λn).

Proof. (a) It is similar to the proof of Theorem 3.1 (a).
(b) We prove lim

n→∞
‖xn+1 − xn‖ = 0.
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As in the proof of Theorem 3.1 (b), we have

‖Tn+1xn+1 − Tnxn‖ ≤ ‖xn+1 − xn‖+ |λn − λn+1|‖A1xn‖, n ≥ 0,

and hence,

‖yn+1−yn‖ ≤ [1−γn(1−ρ)]‖xn+1−xn‖+(|βn+1−βn|+ |γn+1−γn|+ |λn+1−λn|)M1,

where M1 := sup
n≥0
{‖xn+1‖+ ‖f(xn+1)‖+ ‖Tn+1xn+1‖+ ‖A1xn‖} <∞, and

‖xn+1 − xn‖ ≤ [1− γn−1(1− ρ)]‖xn − xn−1‖+ (|βn − βn−1|+ |γn − γn−1|
+ |λn − λn−1|)M1 + |αnµn − αn−1µn−1|M2,

where τn := 1−
√

1− µn(2η − µnκ2) ∈ (0, 1] as in Proposition 2.4 and

M2 := sup
n≥0
‖A2yn‖ <∞.

Hence, for all n,m ≥ 0, we get

‖xn+m+1 − xn+m‖ ≤ [1− γn+m−1(1− ρ)]‖xn+m − xn+m−1‖
+ (|βn+m − βn+m−1|+ |γn+m − γn+m−1|+ |λn+m − λn+m−1|)M1

+ |αn+mµn+m − αn+m−1µn+m−1|M2

≤ [1− γn+m−1(1− ρ)]{[1− γn+m−2(1− ρ)]‖xn+m−1 − xn+m−2‖
+ (|βn+m−1 − βn+m−2|+ |γn+m−1 − γn+m−2|
+ |λn+m−1 − λn+m−2|)M1 + |αn+m−1µn+m−1 − αn+m−2µn+m−2|M2}
+M1(|βn+m − βn+m−1|+ |γn+m − γn+m−1|+ |λn+m − λn+m−1|)
+M2|αn+mµn+m − αn+m−1µn+m−1|

≤
n+m−1∏
k=m

[1− γk(1− ρ)]‖xm+1 − xm‖

+M1

n+m−1∑
k=m

(|βk+1 − βk|+ |γk+1 − γk|+ |λk+1 − λk|)

+M2

n+m−1∑
k=m

|αk+1µk+1 − αkµk|.

By condition (i), we have
∏∞
k=m[1 − γk(1 − ρ)] = 0, ∀m ≥ 0, and hence, for all

m ≥ 0, we obtain

lim sup
n→∞

‖xn+1 − xn‖2 = lim sup
n→∞

‖xn+m+1 − xn+m‖2

≤M1

∞∑
k=m

(|βk+1 − βk|+ |γk+1 − γk|+ |λk+1 − λk|)

+M2

∞∑
k=m

|αk+1µk+1 − αkµk|.
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This together with the conditions (ii) and (iii) ensures that lim sup
n→∞

‖xn+1 − xn‖ ≤ 0,

that is,

lim
n→∞

‖xn+1 − xn‖ = 0. (3.16)

From condition (iii) and ‖xn+1 − yn‖ = αnµn‖A2yn‖ ≤ M2αnµn, we get that
limn→∞ ‖xn+1 − yn‖ = 0.

Since ‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖, it follows from (3.16) that

lim
n→∞

‖xn − yn‖ = 0. (3.17)

Moreover, assumption (A3) guarantees that

‖yn − Txn‖ = ‖βn(xn − Txn) + γn(f(xn)− Txn) + (1− βn − γn)(Tnxn − Txn)‖
≤ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖+ (1− βn − γn)‖Tnxn − Txn‖
≤ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖+ ‖T (I − λnA1)xn − Txn‖
≤ βn‖xn − Txn‖+ γn‖f(xn)− Txn‖+ λn‖A1xn‖.

Hence, from conditions (i) and (iii), we have lim
n→∞

‖yn − Txn‖ = 0. Therefore, from

(3.17), we obtain

lim
n→∞

‖xn − Txn‖ = 0. (3.18)

(c) We first prove lim sup
n→∞

〈x∗ − xn, A1x
∗〉 ≤ 0.

Choose a subsequence {xni} of the sequence {xn} such that

lim sup
n→∞

〈x∗ − xn, A1x
∗〉 = lim

i→∞
〈x∗ − xni

, A1x
∗〉.

The boundedness of {xni} implies the existence of a subsequence {xnij
} of {xni} and

a point x̂ ∈ H such that {xnij
} converges weakly to x̂. We may assume without loss

of generality that

lim
i→∞
〈xni , w〉 = 〈x̂, w〉, ∀w ∈ H.

If we assume x̂ 6∈ Fix(T ), then (3.18) and (A3) guarantee that lim inf
i→∞

‖xni
− x̂‖ <

lim inf
i→∞

‖xni
− T x̂‖ = lim inf

i→∞
‖xni

− Txni
+ Txni

− T x̂‖ = lim inf
i→∞

‖Txni
− T x̂‖ ≤

lim inf
i→∞

‖xni − x̂‖, which is a contradiction. Therefore, x̂ ∈ Fix(T ). Since x∗ ∈
VI (Fix(T ), A1), we have

lim sup
n→∞

〈x∗ − xn, A1x
∗〉 = lim

i→∞
〈x∗ − xni , A1x

∗〉 = 〈x∗ − x̂, A1x
∗〉 ≤ 0. (3.19)

Next, we prove lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 ≤ 0.

The relation (3.16) guarantees the existence of two subsequences {xnk
} and

{xnk+1} of {xn} and x̄ ∈ H such that one have

lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 = lim

k→∞
〈x∗ − xnk+1, A2x

∗〉

and

lim
k→∞

〈xnk
, w〉 = lim

k→∞
〈xnk+1, w〉 = 〈x̄, w〉, ∀w ∈ H.
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By the same argument as that in the proof of x̂ ∈ Fix(T ), we have x̄ ∈ Fix(T ).
Let y ∈ Fix(T ) be fixed arbitrarily.

Then, it follows from (A1) and (A3) that for all n ≥ 0,

‖yn − y‖2 = ‖βn(xn − y) + γn(f(xn)− y) + (1− βn − γn)(Tnxn − Ty)‖2

≤ βn‖xn − y‖2 + γn‖f(xn)− y‖2 + (1− βn − γn)‖T (I − λnA1)xn − Ty‖2

≤ βn‖xn − y‖2 + γn‖f(xn)− f(y) + f(y)− y‖2

+ (1− βn − γn)‖(I − λnA1)xn − y‖2

≤ βn‖xn − y‖2 + γn[‖f(xn)− f(y)‖2 + 2〈f(y)− y, f(xn)− y〉]
+ (1− βn − γn)[‖xn − y‖2

+ 2λn〈y − xn, A1xn〉+ λ2
n‖A1xn‖2]

≤ βn‖xn − y‖2 + γn[ρ2‖xn − y‖2 + 2‖f(y)− y‖‖f(xn)− y‖]
+ (1− βn − γn)[‖xn − y‖2

+ 2λn〈y − xn, A1y〉+ λ2
nM

2
1 ]

≤ [1− γn(1− ρ)]‖xn − y‖2 + 2γn‖f(y)− y‖‖f(xn)− y‖
+ (1− βn − γn)[2λn〈y − xn, A1y〉+ λ2

nM
2
1 ]

≤ ‖xn − y‖2 + 2γn‖f(y)− y‖‖f(xn)− y‖
+ (1− βn − γn)[2λn〈y − xn, A1y〉+ λ2

nM
2
1 ], (3.20)

which implies that for all n ≥ 0,

0 ≤ 1

λn
(‖xn − y‖2 − ‖yn − y‖2) + 2

γn
λn
‖f(y)− y‖‖f(xn)− y‖

+(1− βn − γn)[2〈y − xn, A1y〉+ λnM
2
1 ]

= (‖xn − y‖+ ‖yn − y‖)
‖xn − y‖ − ‖yn − y‖

λn
+ 2

γn
λn
‖f(y)− y‖‖f(xn)− y‖

+(1− βn − γn)
[
2〈y − xn, A1y〉+ λnM

2
1

]
≤M3

‖xn − y‖ − ‖yn − y‖
λn

+2
γn
λn
‖f(y)−y‖M3+(1−βn−γn)

[
2〈y − xn, A1y〉+ λnM

2
1

]
≤M3

‖xn − yn‖
λn

+ 2
γn
λn
‖f(y)− y‖M3 + (1− βn − γn)

[
2〈y − xn, A1y〉+ λnM

2
1

]
,

where M3 := sup
n≥0
{‖xn − y‖+ ‖yn − y‖+ ‖f(xn)− y‖} <∞. This shows that

M3

1− βn − γn

[
‖xn − yn‖

λn
+ 2

γn
λn
‖f(y)− y‖

]
+ 2〈y − xn, A1y〉+ λnM

2
1 ≥ 0.

Since ‖xn−yn‖+γn = o(λn), from condition (i), for any ε > 0, there exists an integer
m0 ≥ 0 such that

M3

1− βn − γn

[
‖xn − yn‖

λn
+ 2

γn
λn
‖f(y)− y‖

]
+ λnM

2
1 ≤ ε, ∀ n ≥ m0.
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Hence,
0 ≤ ε+ 2〈y − xn, A1y〉, ∀n ≥ m0.

Putting n := nk, we have ε+2〈y− x̄, A1y〉 ≥ 0 as k →∞, from the weak convergence
of {xnk

} to x̄ ∈ Fix(T ). Since ε > 0 is arbitrary, we get

〈y − x̄, A1y〉 ≥ 0, ∀y ∈ Fix(T ).

By assumption (A1) and Proposition 2.2 (i), we have

〈y − x̄, A1x̄〉 ≥ 0, ∀y ∈ Fix(T );

that is, x̄ ∈ VI (Fix(T ), A1). Since {x∗} = VI (VI (Fix(T ), A1) , A2), we have

lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 = lim

k→∞
〈x∗ − xnk+1, A2x

∗〉 = 〈x∗ − x̄, A2x
∗〉 ≤ 0. (3.21)

Finally, we prove that lim
n→∞

‖xn − x∗‖ = 0.

Observe that
√

1− µn(2η − µnκ2) ≤
√

1− µnη ≤ 1 − 1
2µnη, for all n ≥ 0 and

hence,

τn = 1−
√

1− µn(2η − µnκ2) ≥ 1−
(

1− 1

2
µnη

)
=

1

2
µnη, (3.22)

where 0 < µn ≤ η/κ2 for all n ≥ 0.
By utilizing Lemma 2.2 and Proposition 2.4, from (3.20), (3.22) and the condition

(iv), we conclude that for all n ≥ 0,

‖xn+1 − x∗‖2 = ‖(I − αnµnA2)yn − (I − αnµnA2)x∗ − αnµnA2x
∗‖2

≤ ‖(I − αnµnA2)yn − (I − αnµnA2)x∗‖2 + 2αnµn〈x∗ − xn+1, A2x
∗〉

≤ (1− αnτn)2‖yn − x∗‖2 + 2αnµn〈x∗ − xn+1, A2x
∗〉

≤ (1− αnτn)‖yn − x∗‖2 + 2αnµn〈x∗ − xn+1, A2x
∗〉

≤ (1− 1

2
αnµnη)‖yn − x∗‖2 + 2αnµn〈x∗ − xn+1, A2x

∗〉

≤ (1− 1

2
αnµnη){‖xn − x∗‖2 + 2γn‖f(x∗)− x∗‖‖f(xn)− x∗‖

+(1− βn − γn)[2λn〈x∗ − xn, A1x
∗〉+ λ2

nM
2
1 ]}+ 2αnµn〈x∗ − xn+1, A2x

∗〉

=

(
1− 1

2
αnµnη

){
‖xn − x∗‖2 + 2αnµn ·

γn
αnµn

‖f(x∗)− x∗‖‖f(xn)− x∗‖

+(1− βn − γn)
[
2αnµn ·

λn
αnµn

〈x∗ − xn, A1x
∗〉

+αnµn ·
λ2
n

αnµn
M2

1

]}
+ 2αnµn〈x∗ − xn+1, A2x

∗〉

≤
(

1− 1

2
αnµnη

){
‖xn − x∗‖2 + 2αnµn ·

γn
λn
‖f(x∗)− x∗‖‖f(xn)− x∗‖

+(1− βn − γn)
[
2αnµn ·

λn
αnµn

〈x∗ − xn, A1x
∗〉

+αnµn · λnM2
1

]}
+ 2αnµn〈x∗ − xn+1, A2x

∗〉

≤ (1− 1

2
αnµnη)‖xn − x∗‖2 + 2αnµn ·

γn
λn
‖f(x∗)− x∗‖‖f(xn)− x∗‖
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+(1− 1

2
αnµnη)(1− βn − γn)2αnµn ·

λn
αnµn

〈x∗ − xn, A1x
∗〉

+αnµn · λnM2
1 + 2αnµn〈x∗ − xn+1, A2x

∗〉

= (1− 1

2
αnµnη)‖xn − x∗‖2 +

1

2
αnµnη ·

2

η

{2γn
λn
‖f(x∗)− x∗‖‖f(xn)− x∗‖

+(1− 1

2
αnµnη)(1− βn − γn)

2λn
αnµn

〈x∗ − xn, A1x
∗〉

+λnM
2
1 + 2〈x∗ − xn+1, A2x

∗〉
}
. (3.23)

Note that 0 ≤
(
1− 1

2αnµnη
)

(1 − βn − γn) 2λn

αnµn
≤ 2 (by the condition (iv)) and

lim sup
n→∞

〈x∗ − xn, A1x
∗〉 ≤ 0. Hence, it follows from Lemma 2.3 that

lim sup
n→∞

(1− 1

2
αnµnη)(1− βn − γn)

2λn
αnµn

〈x∗ − xn, A1x
∗〉 ≤ 0.

Since γn = o(λn) and {f(xn)} is bounded, we have

lim
n→∞

(
2γn
λn
‖f(x∗)− x∗‖‖f(xn)− x∗‖+ λnM

2
1

)
= 0.

Now, we put an = ‖xn − x∗‖2, sn = 1
2αnµnη and

tn =
2

η

{(2γn
λn
‖f(x∗)− x∗‖‖f(xn)− x∗‖+ λnM

2
1

)
+

(
1− 1

2
αnµnη

)
(1− βn − γn)

2λn
αnµn

〈x∗ − xn, A1x
∗〉

+ 2〈x∗ − xn+1, A2x
∗〉
}
.

Utilizing the condition (iv), we have

∞∑
n=0

sn =

∞∑
n=0

1

2
αnµnη ≥

1

2
η

∞∑
n=0

λn =∞.

Since lim sup
n→∞

〈x∗ − xn+1, A2x
∗〉 ≤ 0, we have

lim sup
n→∞

tn ≤
2

η

{
lim sup
n→∞

(
2γn
λn
‖f(x∗)− x∗‖‖f(xn)− x∗‖+ λnM

2
1

)
+ lim sup

n→∞
(1− 1

2
αnµnη)(1− βn − γn)

2λn
αnµn

〈x∗ − xn, A1x
∗〉

+ lim sup
n→∞

2〈x∗ − xn+1, A2x
∗〉
}
≤ 0.

In terms of (3.23), it can be easily seen that an+1 ≤ (1 − sn)an + sntn, ∀n ≥ 0.
Therefore, utilizing Lemma 2.1, we obtain limn→∞ ‖xn−x∗‖2 = limn→∞ an = 0, that
is, xn → x∗. This completes the proof. �
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