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Abstract. In this work, we consider two types of triple hierarchical variational inequalities (in short,

THVI), one with a single nonexpansive mapping and another one with a finite family of nonexpansive
mappings. In this paper, by combining the viscosity approximation method, hybrid steepest-descent

method and Mann’s iteration method, we propose the hybrid steepest-descent viscosity approxima-
tion method for solving the THVI. The strong convergence of this method to a unique solution of

the THVI is studied under some appropriate assumptions. Another iterative algorithm for solving

THVI is also presented. Under some mild conditions, we prove that the sequence generated by the
proposed algorithm converges strongly to a unique solution of THVI. The case of a finite family of

nonexpansive mappings will ve presented in the second part of this work.
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