
Fixed Point Theory, 16(2015), No. 1, 185-190

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

AN APPLICATION OF THE COMMON FIXED POINT
THEOREMS TO THE THEORY OF STABILITY OF

FUNCTIONAL EQUATIONS

BARBARA PRZEBIERACZ

Institute of Mathematics, University of Silesia

ul. Bankowa 14, 40-007 Katowice, Poland

E-mail: barbara.przebieracz@us.edu.pl

Abstract. We present an application of the common fixed point theorems, i.e., Markov-Kakutani

fixed point theorem and DeMarr common fixed point theorem, to the stability of the functional
equation of the form

f(sx) = F (s, f(x)), s ∈ G, x ∈ X.
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