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1. Introduction

In 1929, Knaster, Kuratowski and Mazurkiewicz [1] first established the classical
KKM theorem in the setting of finite dimensional spaces. In 1961, Fan [2] generalized
the classical KKM theorem from finite dimensional spaces to infinite dimensional
Hausdorff topological vector spaces and established the following FKKM theorem.
Theorem A. Let X be a arbitrary subset of a Hausdorff topological vector space
Y . To each x ∈ X, let a closed set F (x) in Y be given such that the following two
conditions are satisfied:

(i) the convex hull of any finite subset {x0, ..., xn} of X is contained in
⋃n
i=0 F (xi);

(ii) F (x) is compact for at least one x ∈ X.
Then

⋂
x∈X F (x) 6= ∅.

Since then, a lot of generalized KKM type theorems and their applications have
been studied by many authors (see, for example, [3-7] and references therein). Lin
and Wan [8] proved some KKM type theorems in the framework of convex spaces.
By using these results, they derived some existence theorems of solutions to general-
ized vector equilibrium problems under suitable assumptions. Pathak and Khan [9]
introduced a new class of set-valued mappings called D-KKM mappings and proved a
general D-KKM theorem in convex spaces. At the same time, they applied this the-
orem to getting some existence results for maximal elements, generalized variational
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inequalities, and price equilibria. Recently, by applying a generalized KKM theorem,
Balaj and Lin [10] established some existence theorems of solutions to variational
relation problems in convex spaces with applications to fixed point theorems, gener-
alized maximal element theorems, a generalized coincidence theorem, and a section
theorem. They also showed that these existence theorems of solutions to variational
relation problems are equivalent to the generalized KKM theorem.

It is well known that the linear and convex assumptions play a crucial role in most
known KKM theorems and applications, which strictly restricts applications of the
KKM principle. In 1983, Horvath [11] gave a purely topological version of the general-
ized KKM theorem in which the convex assumptions were replaced by contractibility
and introduced the concept of H-space. Motivated by Horvath’s work, Bardaro and
Ceppitelli [12] proved a generalized H-KKM theorem under much weaker conditions
and applied it to establishing minimax inequalities without compact and convex hy-
potheses for functions taking values in ordered topological vector spaces. Later on,
Verma [13] generalized H-space by introducing the concept of G-H-space and obtained
an intersection theorem involving I-G-H-KKM mapping in G-H-spaces. He also ap-
plied this theorem to the theory of a new class of generalized minimax inequalities
in the setting of G-H-spaces. Kalmoun and Riahi [14] proved some topological KKM
theorems in the framework of G-convex spaces which do not have any linear structure
and gave applications to greatest element, fixed point, and vector saddle point prob-
lems. Recently, Lin and Yao [15] introduced the concept of pseudo H-space which
concludes the spaces mentioned above as special cases and obtained a general Pe-
leg KKM theorem in pseudo H-spaces. As applications of this Peleg KKM theorem,
they derived some new results for fixed point theorem and the system of variational
inequalities.

Motivated and inspired by these recent works on KKM theorems, in this paper, we
prove some new W-GPH-KKM theorems in pseudo H-spaces without any linear and
convex structure. As applications, some new coincidence theorems, maximal element
theorems, and existence theorems of solutions to generalized equilibrium problems
are obtained in pseudo H-spaces.

2. Preliminaries

Let X be a set. We shall denote by 2X the family of all subsets of X, by 〈X〉 the
family of nonempty finite subsets of X. For any A ∈ 〈X〉, we shall denote by |A| the
cardinality of A. If A is a subset of a topological space X, then int A and A stand for
the interior and the closure of A, respectively. If A is a subset of a vector space, we
shall denote by co A the convex hull of A. Let ∆n denote the standard n-dimensional
simplex with vertices {e0, e1, ..., en}. For a nonempty subset J ⊆ {0, 1, ..., n}, let
4|J|−1 denote the convex hull of the vertices {ej : j ∈ J}.

Let X and Y be two nonempty sets and let T : X → 2Y be a set-valued mapping.
Then the set-valued mappings T−1 : Y → 2X and T ∗ : Y → 2X are respectively
defined by T−1(y) = {x ∈ X : y ∈ T (x)} and T ∗(y) = X \ T−1(y) for each y ∈ Y .
T c : X → 2Y is defined by T c(x) = Y \T (x) for each x ∈ X. Let T (X0) = ∪x∈X0T (x)
for anyX0 ⊂ X. Note that the graph of T is the set {(x, y) ∈ X×Y : y ∈ T (x)}. Given
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a nonempty set Z and two set-valued mappings T : X → 2Y and S : Y → 2Z , the
composition S ◦T : X → 2Z is defined by (S ◦T )(x) = S(T (x)) = ∪{S(y) : y ∈ T (x)}
for each x ∈ X. Let X and Y be two topological spaces. A set-valued mapping
S : X → 2Y is called to be upper semicontinuous (resp., lower semicontinuous) at
x ∈ X if for each open set V ⊆ Y with S(x) ⊆ V (resp., S(x) ∩ V 6= ∅), there exists

an open neighborhood U(x) of x such that S(x
′
) ⊆ V (resp., S(x

′
) ∩ V 6= ∅) for all

x
′ ∈ U(x). S is said to be upper semicontinuous (resp., lower semicontinuous) on X

if S is upper semicontinuous (resp., lower semicontinuous) at each point of X.
Lemma 2.1. ([16]). Let X and Y be two topological spaces and S : X → 2Y be a
set-valued mapping. Then S is lower semicontinuous at x ∈ X if and only if for any
y ∈ S(x) and for any net {xα} in X converging to x, there is a net {yα} such that
yα ∈ S(xα) for every α and {yα} converges to y.
Lemma 2.2. ([17]). Let X and Y be two topological spaces and S : X → 2Y be a
set-valued mapping with compact values. Then S is upper semicontinuous at x ∈ X if
and only if for any net {xα} in X converging to x and any net {yα} with yα ∈ S(xα),
there exists y ∈ S(x) and a subnet {yβ} ⊆ {yα} such that {yβ} converges to y.

A subset A of a topological space X is said to be compactly closed (resp., compactly
open) in X if for each nonempty compact subset C ⊆ X, A∩C is closed (resp., open)
in C. The compact closure and the compact interior of A (see [18]) are defined by

ccl A =
⋂
{B : A ⊆ B and B is compactly closed in X} and

cint A =
⋃
{B : B ⊆ A and B is compactly open in X},

respectively. It is easy to see that ccl(X \ A) = X \ cintA, ccl A (resp., cint A )
is compactly closed (resp., compactly open) in X, and A is compactly closed (resp.,
compactly open) if and only if A = ccl A (resp., A = cint A). For each nonempty
compact subset C of X, we have (ccl A) ∩ C = clC (A ∩ C) and (cint A) ∩ C =
intC (A∩C), where clC (A∩C) and intC (A∩C) denote the closure and the interior
of A ∩ C in C, respectively.
Definition 2.1. ([18]). Let X be a topological space, Y be a nonempty set, and
let F : Y → 2X be a set-valued mapping. F is said to be transfer compactly closed-
valued (resp., transfer compactly open-valued) on Y if for each y ∈ Y and for each
nonempty compact subset C of X, x /∈ F (y) ∩ C (resp., x ∈ F (y) ∩ C) implies that

there exists y
′ ∈ Y such that x /∈ clC(F (y

′
) ∩ C) (resp., x ∈ intC(F (y

′
) ∩ C)).

From the above definition, we can easily verify that F is transfer compactly closed-
valued if and only if F c is transfer compactly open-valued.
Definition 2.2. ([19]). Let X be a topological space, D be a nonempty set. A triple
(X,D;ϕN ) is said to be a pseudo H-space if for each N = {d0, ..., dn} ∈ 〈D〉 where
some elements in N may be same, there exists an upper semicontinuous set-valued
mapping ϕN : ∆n → 2X with nonempty compact values. When D ⊆ X, the space is
denoted by (X ⊇ D;ϕN ). In case X = D, let (X;ϕN ) := (X,X;ϕN ).

Let A ⊆ D and B ⊆ Y . B is said to be a pseudo H-subspace of (X,D;ϕN ) relative
to A if for each N = {d0, ..., dn} ∈ 〈D〉 and for each {di0 , ..., dik} ⊆ A ∩ {d0, ..., dn},
we have ϕN (∆k) ⊆ B, where ∆k = co({ei0 , ..., eik}). We note that if A is nonempty
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and B is a pseudo H-subspace of (X,D;ϕN ) relative to A, then B is automatically
nonempty. When A = B, B is said to be a pseudo H-subspace of (X ⊇ D;ϕN ).
Remark 2.1. It is worthwhile noticing that convex subsets of topological vector
spaces, Lassonde’s convex spaces in [20], H-spaces introduced by Horvath [11], G-
convex spaces introduced by Park and Kim [21], L-convex spaces introduced by Ben-
El-Mechaiekh et al. [22], G-H-spaces introduced by Verma [13], GFC-spaces due to
Khanh et al. [23], FC-spaces due to Ding [24], and many other topological spaces
with abstract convex structure (see, for example, [25-26] and references therein) are
all particular forms of pseudo H-spaces.
Lemma 2.3. Let I be any index set. For each i ∈ I, let (Xi, Di;ϕNi

) be a pseudo
H-space. Let X =

∏
i∈I Xi, D =

∏
i∈I Di, and ϕN =

∏
i∈I ϕNi

. Then (X,D;ϕN ) is
also a pseudo H-space.
Proof. Let X be equipped with the product topology and for each i ∈ I, let πi :
X → Xi be the projection of X onto Xi. For any given N = {d0, ..., dn} ∈ 〈D〉, let
Ni = πi(N) = {πi(d0), ..., πi(dn)}. Since each (Xi, Di;ϕNi

) is a pseudo H-space, it
follows that there exists an upper semicontinuous set-valued mapping ϕNi

: ∆n → 2Xi

with nonempty compact values. Define a set-valued mapping ϕN : ∆n → 2X by

ϕN (z) =
∏
i∈I

ϕNi(z) for each z ∈ ∆n.

By Lemma 3 of Fan [27], ϕN is an upper semicontinuous set-valued mapping with
nonempty compact values. Therefore, (X,D;ϕN ) is also a pseudo H-space.
Definition 2.3. Let (X,D;ϕN ) be a pseudo H-space and Y be a topological space.

The class B̃(X,D, Y ) of better admissible mappings is defined as follows: a set-valued

mapping T : X → 2Y belongs to B̃(X,D, Y ) if and only if T is upper semicontinuous
mapping with compact values such that for any N = {d0, ..., dn} ∈ 〈D〉 and for any
continuous mapping ψ : T (ϕN (∆n))→ ∆n, the composition ψ◦T |ϕN (∆n)◦ϕN : ∆n →
2∆n has a fixed point. When X = D, we shall write B̃(X,Y ) instead of B̃(X,D, Y ).

The class B̃(X,D, Y ) unifies and extends many important classes of mappings, for
example, the class UKC (X,Y ) of Park [21], the class A(Y,X) of Ben-El-Mechaiekh et
al. [22] and the class B(Y,X) of Ding [24].
Definition 2.4. Let (X,D;ϕN ) be a pseudo H-space and Y be a nonempty set.
Let S : D → 2Y and T : X → 2Y be two set-valued mappings. S is said to be a
W-GPH-KKM mapping with respect to T if for each N = {d0, ..., dn} ∈ 〈D〉 and each
{di0 , ..., dik} ⊆ N , we have T (ϕN (∆k)) ⊆ ∪kj=0S(dij ).
Remark 2.2. Definition 2.4 generalizes the generalized R-KKM mapping of Verma
[13] and the R-KKM mapping of Deng and Xia [28] to pseudo H-spaces.

3. W-GPH-KKM theorems

In this section, we shall establish some new W-GPH-KKM theorems in pseudo
H-spaces, which are needed in the sequel.
Theorem 3.1. Let (X,D;ϕN ) be a pseudo H-space, Y be a Hausdorff topological

space. Let S : D → 2Y , R : D → 2X , and T ∈ B̃(X,D, Y ) be three set-valued
mappings such that
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(i) for each d ∈ D, S(d) is compactly closed;
(ii) S is a W-GPH-KKM mapping with respect to T ;
(iii) there exists a nonempty compact subset K of Y such that either
(iii1)

⋂
d∈N0

S(d) ⊆ K for some N0 ∈ 〈D〉; or

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

S(d)) ⊆ K.

Then T (X) ∩K ∩ (
⋂
d∈D S(d)) 6= ∅.

Proof. We prove Theorem 3.1 in the following two cases:
Case (iii1). Suppose that the conclusion of Theorem 3.1 does not hold. Then we

have T (X)∩K ⊆
⋃
d∈D S

c(d) and thus, T (X)∩K =
⋃
d∈D(Sc(d)∩T (X)∩K). Since

T (X) ∩K is compact and each Sc(d) is compactly open, it follows that there exists
N1 ∈ 〈D〉 such that

T (X) ∩K =
⋃
d∈N1

(Sc(d) ∩ T (X) ∩K) ⊆
⋃
d∈N1

Sc(d). (3.1)

By (iii1), we have

T (X) \K ⊆ Y \K ⊆
⋃
d∈N0

Sc(d) for some N0 ∈ 〈D〉. (3.2)

Then it follows from (3.1) and (3.2) that

T (X) = (T (X) \K) ∪ (T (X) ∩K) ⊆
⋃
d∈N

Sc(d), (3.3)

where N = N0∪N1 = {d0, ..., dn} ∈ 〈D〉. By the definition of a pseudo H-space, there
exists an upper semicontinuous set-valued mapping ϕN : ∆n → 2X with nonempty
compact values. By Proposition 3.1.11 of Aubin and Ekeland [29], we know that
ϕN (∆n) is compact subset of X. Since T is an upper semicontinuous set-valued
mapping with compact values, it follows from Proposition 3.1.11 of Aubin and Ekeland
[29] again that T (ϕN (∆n)) is compact subset of Y . By (3.3), we have

T (ϕN (∆n)) ⊆ T (X) ⊆
⋃
d∈N

Sc(d),

and thus, T (ϕN (∆n)) =
⋃
d∈N (Sc(d)∩T (ϕN (∆n))), i.e., {Sc(d)∩T (ϕN (∆n)) : d ∈ N}

is an open cover of the compact set T (ϕN (∆n)). Let {λi}ni=0 be the partition of unity
subordinated to this cover. Define a continuous mapping ψ : T (ϕN (∆n)) → ∆n by

ψ(y) =
∑n
i=0 λi(y)ei for each y ∈ T (ϕN (∆n)). Since T ∈ B̃(X,D, Y ), the composition

mapping ψ ◦ T |ϕN (∆n) ◦ ϕN has a fixed point z0 ∈ ∆n; that is, z0 ∈ ψ ◦ T |ϕN (∆n) ◦
ϕN (z0). Let y ∈ T (ϕN (z0)) such that z0 = ψ(y). Then we have

z0 = ψ(y) =
∑
j∈J(y)

λj(y)ej ∈ ∆|J(y)|−1,
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where J(y) = {j ∈ {0, ..., n} : λj(y) 6= 0}. By (ii), we have the following:

y ∈ T (ϕN (ψ(y)))

⊆ T (ϕN (∆|J(y)|−1))

⊆
⋃

j∈J(y)

S(dj).

Hence, there exists j ∈ J(y) such that y ∈ S(dj). On the other hand, by the definitions
of J(y) and the partition {λi}ni=0, we have

y ∈ Sc(dj) ∩ T (ϕN (∆n))

= (Y \ S(dj)) ∩ T (ϕN (∆n))

⊆ Y \ S(dj),

which is a contradiction. Therefore, the conclusion of Theorem 3.1 holds.
Case (iii2). Suppose that the conclusion of Theorem 3.1 is false. Then we have

∅ = T (X) ∩K ∩ (
⋂
d∈D

S(d))

=
⋂
d∈D

(T (X) ∩K ∩ S(d)).

By (i), {T (X) ∩K ∩ S(d) : d ∈ D} is a family of closed sets in K. Then there exists
N ∈ 〈D〉 such that

∅ =
⋂
d∈N

(T (X) ∩K ∩ S(d))

= T (X) ∩K ∩ (
⋂
d∈N

S(d)),

that is, T (X)∩ (
⋂
d∈N S(d)) ⊆ Y \K. By (iv2), there is a subset LN of D containing

N such that R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN
and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

S(d)) ⊆ K.

Since (T ◦ R)(LN ) ∩ (
⋂
d∈LN

S(d)) ⊆ T (X) ∩ (
⋂
d∈N S(d)) ⊆ Y \ K, it follows that

(T ◦R)(LN ) ∩ (
⋂
d∈LN

S(d)) = ∅. Therefore, we have

(T ◦R)(LN ) ⊆
⋃
d∈LN

Sc(d). (3.4)

Since T is upper semicontinuous with compact values and R(LN ) is compact, it follows
from Proposition 3.1.11 of Aubin and Ekeland [29] that (T ◦R)(LN ) is compact subset
of Y . Thus, by (3.4), there exists M = {d0, ..., dm} ∈ 〈LN 〉 such that

(T ◦R)(LN ) =
⋃
d∈M

((T ◦R)(LN ) ∩ Sc(d)).

Observe that R(LN ) is a pseudo H-subspace of (X,D;ϕN ) relative to LN and so
(R(LN ), LN ;ϕN ) is also a pseudo H-space. Then there exists an upper semicontinuous
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set-valued mapping ϕM : ∆m → 2R(LN ) with nonempty compact values. We may
assume that {λi}mi=0 is the partition of unity subordinated to the open cover {(T ◦
R)(LN ) ∩ Sc(d) : d ∈M}, which implies that for each i ∈ {0, 1, ...,m}, λi : (T ◦R)(LN )→ [0, 1] is continuous;

for each i ∈ {0, 1, ...,m}, λi(y) > 0⇒ y ∈ (T ◦R)(LN ) ∩ Sc(d);∑m
i=0 λi(y) = 1 for each y ∈ (T ◦R)(LN ).

Furthermore, we define a continuous mapping ψ : (T ◦ R)(LN ) → ∆m by ψ(y) =∑m
i=0 λi(y)ei for each y ∈ (T ◦R)(LN ). Let T

′
:= T |R(LN ). Since T ∈ B̃(X,D, Y ), it

obviously follows that T
′ ∈ B̃(R(LN ), LN , Y ). Then the composition ψ ◦T ′ |ϕM (∆m) ◦

ϕM : ∆m → 2∆m has a fixed point z0 ∈ ∆m; that is, z0 ∈ ψ ◦ T
′ |ϕM (∆m) ◦ ϕM (z0).

Let y ∈ T ′
(ϕM (z0)) such that z0 = ψ(y). Then we have

z0 = ψ(y) =
∑
j∈J(y)

λj(y)ej ∈ ∆|J(y)|−1,

where J(y) = {j ∈ {0, ...,m} : λj(y) 6= 0}. Let S
′

:= S|LN
. By (ii), it is easy to see

that S
′

is a W-GPH-KKM mapping with respect to T
′
. Thus, we have the following:

y ∈ T
′
(ϕM (ψ(y)))

⊆ T
′
(ϕM (∆|J(y)|−1))

⊆
⋃

j∈J(y)

S
′
(dj).

Hence, there exists j ∈ J(y) such that y ∈ S
′
(dj). On the other hand, by the

definitions of J(y) and the partition {λi}mi=0, we have

y ∈ Sc(dj) ∩ (T ◦R)(LN )

= (Y \ S(dj)) ∩ (T ◦R)(LN )

⊆ Y \ S(dj)

= Y \ S
′
(dj),

which is a contradiction. Therefore, the conclusion of Theorem 3.1 holds.
Remark 3.1. (1) Theorem 3.1 generalizes Theorem 3.3 of Yang and Deng [30] in
the following ways: (a) from FC-spaces to pseudo H-spaces; (b) from two set-valued

mappings to three set-valued mappings; (c) from UKC (X,Y ) to B̃(X,D, Y ); in turn,
it also generalizes Theorem 3 of Park and Kim [21] in several aspects.

(2) (ii) of Theorem 3.1 can be replaced by the following equivalent condition:

(ii)
′

for each y ∈ Y , T ∗(y) is a pseudo H-subspace of (X,D;ϕN ) relative to S∗(y).

Proof. (ii)⇒(ii)
′
: Let N = {d0, ..., dn} ∈ 〈D〉 and {di0 , ..., dik} ⊆ N ∩ S∗(y). Then

{di0 , ..., dik} ⊆ D \ S−1(y). Thus, y /∈
⋃k
j=0 S(dij ). Since T (ϕN (∆k)) ⊆

⋃k
j=0 S(dij ),

it follows that y /∈ T (ϕN (∆k)); that is, T−1(y) ∩ ϕN (∆k) = ∅. Therefore, we have
ϕN (∆k) ⊆ X \ T−1(y) = T ∗(y).
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(ii)
′⇒(ii): Let N = {d0, ..., dn} ∈ 〈D〉, {di0 , ..., dik} ⊆ N , and y ∈ T (ϕN (∆k)).

Then there exists x ∈ ϕN (∆k) such that y ∈ T (x). So, we have

x ∈ T−1(y) ∩ ϕN (∆k) = (Y \ T ∗(y)) ∩ ϕN (∆k) 6= ∅.

This means that ϕN (∆k) 6⊆ T ∗(y). By (ii)
′
, we have {di0 , ..., dik} 6⊆ N ∩ S∗(y)

and hence, {di0 , ..., dik} ∩ (D \ S∗(y)) 6= ∅, i.e., {di0 , ..., dik} ∩ S−1(y) 6= ∅. Let

d ∈ {di0 , ..., dik} ∩ S−1(y). Then y ∈ S(d) ⊆
⋃k
j=0 S(dij ), which implies that

T (ϕN (∆k)) ⊆
⋃k
j=0 S(dij ).

Theorem 3.2. Let (X,D;ϕN ) be a pseudo H-space, Y be a Hausdorff topological

space. Let S : D → 2Y , R : D → 2X , and T ∈ B̃(X,D, Y ) be three set-valued
mappings such that

(i) S is transfer compactly closed-valued;
(ii) for each N = {d0, ..., dn} ∈ 〈D〉 and each {di0 , ..., dik} ⊆ N , T (ϕN (∆k)) ⊆

∪kj=0ccl S(dij );
(iii) there exists a nonempty compact subset K of Y such that either
(iii1)

⋂
d∈N0

ccl S(d) ⊆ K for some N0 ∈ 〈D〉; or

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

ccl S(d)) ⊆ K.

Then T (X) ∩K ∩ (
⋂
d∈D S(d)) 6= ∅.

Proof. Define a set-valued mapping S̃ : D → 2Y by S̃(d) = ccl S(d) for each d ∈
D. Then for each d ∈ D, S̃(d) is compactly closed. By using the same argument

as that used in the proof of Theorem 3.1, we can easily prove that T (X) ∩ K ∩
(
⋂
d∈D ccl S(d)) 6= ∅. So, it suffices to prove T (X) ∩K ∩ (

⋂
d∈D ccl S(d)) = T (X) ∩

K ∩ (
⋂
d∈D S(d)). Clearly, T (X) ∩K ∩ (

⋂
d∈D S(d)) ⊆ T (X) ∩K ∩ (

⋂
d∈D ccl S(d)).

If T (X) ∩ K ∩ (
⋂
d∈D ccl S(d)) 6⊆ T (X) ∩ K ∩ (

⋂
d∈D S(d)), then there exists y ∈

T (X)∩K∩(
⋂
d∈D ccl S(d)) such that y /∈ T (X)∩K∩(

⋂
d∈D S(d)). Since S is transfer

compactly closed-valued, there exists a d
′ ∈ D such that y 6∈ cl

T (X)∩K((S(d
′
)∩T (X)∩

K)), which is a contradiction. Hence, T (X) ∩K ∩ (
⋂
d∈D S(d)) 6= ∅, This completes

the proof.
Remark 3.2. (1) Theorem 3.2 generalizes and improves Theorem 2.1 of Kalmoun
and Riahi [14] in the following ways: (a) from G-convex spaces to pseudo H-spaces;

(b) D needs not to be a subset of X; (c) from UKC (X,Y ) to B̃(X,D, Y ); (d) from
TG-KKM mappings to W-GPH-KKM mappings; (e) (iii1) and (iii2) are weaker than
(i) and (ii) of Theorem 2.1 of Kalmoun and Riahi [14], respectively. Theorem 3.2 also
generalizes Theorem 3.2 of Fang and Huang [31] in several aspects.

(2) We have shown that Theorem 3.1 implies Theorem 3.2. It is obvious that
Theorem 3.2 implies Theorem 3.1. Therefore, Theorem 3.1 is equivalent to Theorem
3.2.
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4. Coincidence and maximal element theorems

Theorem 4.1. Let (X,D;ϕN ) be a pseudo H-space and Y be a Hausdorff topological

space. Let G, H : Y → 2D, R : D → 2X , and T ∈ B̃(X,D, Y ) be four set-valued
mappings such that

(i) for each d ∈ D, H−1(d) is compactly open;
(ii) for each x ∈ X, y ∈ T (x), R(G(y)) is a pseudo H-space of (X,D;ϕN ) relative

to H(y);

(iii) there exists a nonempty compact subset K of Y such that T (X)∩K ⊆ H−1(D);
(iv) either
(iv1)

⋂
d∈N0

(Y \H−1(d)) ⊆ K for some N0 ∈ 〈D〉; or

(iv2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

(Y \H−1(d))) ⊆ K.

Then there exists (x, d, y) ∈ X ×D × Y such that x ∈ R(d), d ∈ G(y), y ∈ T (x).
Proof. Define a set-valued mapping S : D → 2Y by S(d) = Y \ H−1(d) for each
d ∈ D. By (i), each S(d) is compactly closed. Thus, (i) of Theorem 3.1 is satisfied.
It is easy to see that (iv1) and (iv2) imply that (iii1) and (iii2) of Theorem 3.1 hold,
respectively. By (iii), we have

T (X) ∩K ∩ (
⋂
d∈D

S(d)) ⊆ H−1(D) ∩ (
⋂
d∈D

S(d)) = ∅.

Hence, by Theorem 3.1, (ii) of this theorem must be violated; that is, S is not W-GPH-
KKM mapping with respect to T , which implies that there exist N = {d0, ..., dn} ∈
〈D〉 and {di0 , ..., dik} ⊆ N such that

T (ϕN (∆k)) 6⊆
k⋃
j=0

(Y \H−1(dij )).

Therefore, we can choose some point x ∈ ϕN (∆k) and y ∈ T (x) such that y /∈
Y \H−1(dij ) for all j = 0, ..., k; that is, y ∈ H−1(dij ) for all j = 0, ..., k. By (ii), we
have

x ∈ ϕN (∆k) ⊆ R(G(y)).

Hence, there exists d ∈ G(y) such that x ∈ R(d). This completes the proof.
When X = D and R is the identity mapping on X, we can obtain the following

theorem.
Theorem 4.2. Let (X;ϕN ) be a pseudo H-space and Y be a Hausdorff topological

space. Let G, H : Y → 2X , and T ∈ B̃(X,Y ) be three set-valued mappings such that
(i) for each x ∈ X, H−1(x) is compactly open;
(ii) for each x ∈ X, y ∈ T (x), G(y) is a pseudo H-space of (X;ϕN ) relative to

H(y);

(iii) there exists a nonempty compact subset K of Y such that T (X)∩K ⊆ H−1(X);
(iv) either
(iv1)

⋂
x∈N0

(Y \H−1(x)) ⊆ K for some N0 ∈ 〈X〉; or
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(iv2) for each N ∈ 〈X〉, there exists a compact pseudo H-subspace LN of (X;ϕN )
containing N such that

T (LN ) ∩ (
⋂

x∈LN

(Y \H−1(x))) ⊆ K.

Then there exists (x, y) ∈ X × Y such that x ∈ G(y) and y ∈ T (x).
Remark 4.1. Theorem 4.2 generalizes Theorem 1 of Browder [32], Theorem 1 of
Tarafdar [33], Theorem 2.3 of Mehta and Sessa [34], and Theorem 4.3 of Balaj and
Lin [10] from topological vector spaces to pseudo H-spaces without any linear and
convex structure. By setting F (x) = H−1(x) for each x ∈ X, Theorem 4.2 can
be restated with the conclusion that there exists a point (x, y) ∈ X × Y such that
y ∈ T (x) ∩ F (x). Thus, Theorem 4.2 generalizes Theorem 3.1 of Yang and Deng [30]
in several aspects: (a) from FC-spaces to pseudo H-spaces; (b) from UKC (X,Y ) to

B̃(X,Y ); (c) from two set-valued mappings to three set-valued mappings.
Theorem 4.3. Let (X,D;ϕN ) be a pseudo H-space and Y be a Hausdorff topological

space. Let G, H : Y → 2D, R : D → 2X , and T ∈ B̃(X,D, Y ) be four set-valued
mappings such that

(i) for each d ∈ D, H−1(d) is compactly open;
(ii) for each x ∈ X, y ∈ T (x), R(G(y)) is a pseudo H-space of (X,D;ϕN ) relative

to (cint H−1)−1(y);

(iii) there exists a nonempty compact subset K of Y such that T (X) ∩ K ⊆
cint H−1(D);

(iv) either
(iv1)

⋂
d∈N0

(Y \ cint H−1(d)) ⊆ K for some N0 ∈ 〈D〉; or

(iv2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

(Y \ cint H−1(d))) ⊆ K.

Then there exists (x, d, y) ∈ X ×D × Y such that x ∈ R(d), d ∈ G(y), y ∈ T (x).

Proof. Define a set-valued mapping H̃ : Y → 2D by H̃(y) = (cint H−1)−1(y) for each

y ∈ Y . Then by (i), we have H̃−1(d) = cint H−1(d) = H−1(d) for each d ∈ D, which
is compactly open. Hence, (i) of Theorem 4.1 is satisfied. By (ii), for each x ∈ X,

y ∈ T (x), R(G(y)) is a pseudo H-space of (X,D;ϕN ) relative to H̃(y). By (iii), there

exists a nonempty compact subset K of Y such that T (X) ∩K ⊆ H̃−1(D). Suppose

that (iv1) holds. Then by (iv1), we have
⋂
d∈N0

(Y \ H̃−1(d)) ⊆ K for some N0 ∈ 〈D〉.
If (iv2) is satisfied, then by (iv2), for each N ∈ 〈D〉, there exists a subset LN of D
containing N such that R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative
to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

(Y \ H̃−1(d))) ⊆ K.

Thus, all the requirements of Theorem 4.1 are satisfied. Therefore, by Theorem 4.1,
there exists (x, d, y) ∈ X ×D × Y such that x ∈ R(d), d ∈ G(y), y ∈ T (x).
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Remark 4.2. (1) We have shown that Theorem 4.1 implies Theorem 4.3. It is
obvious that Theorem 4.3 implies Theorem 4.1. Therefore, Theorem 4.1 is equivalent
to Theorem 4.3.

(2) Theorem 4.3 generalizes Theorem 3.1 of Fang and Huang [31] in the following

aspects: (a) from FC-spaces to pseudo H-spaces; (b) from B(Y,X) to B̃(X,D, Y );
(c) from two set-valued mappings to four set-valued mappings; (d) (iii) and (iv2) are
weaker than (ii) and (iii) of Theorem 3.1 of Fang and Huang [31], respectively.
Theorem 4.4. Let (X,D;ϕN ) be a pseudo H-space, Y be a Hausdorff topological
space, and K ⊆ Y be a nonempty and compact set. Let H : Y → 2D, R : D → 2X ,

and T ∈ B̃(X,D, Y ) be three set-valued mappings such that
(i) for each d ∈ D, H−1(d) is compactly open;
(ii) for each N = {d0, ..., dn} ∈ 〈D〉 and each {di0 , ..., dik} ⊆ N ,

T (ϕN (∆k)) ∩ (

k⋂
j=0

H−1(dij )) = ∅;

(iii) one of the following conditions holds:
(iii1) there exists N0 ∈ 〈D〉 such that Y \K ⊆

⋃
d∈N0

H−1(d);

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) \K ⊆
⋃
d∈LN

H−1(d).

Then there exists a point y ∈ T (X) ∩K such that H(y) = ∅.
Proof. Define a set-valued mapping S : D → 2Y by S(d) = Y \ H−1(d) for each

d ∈ D. By (ii), we have T (ϕN (∆k)) ⊆
⋃k
j=0 S(dij ) for each N = {d0, ..., dn} ∈ 〈D〉

and each {di0 , ..., dik} ⊆ N , which implies that S is a W-GPH-KKM mapping with
respect to T . It follows from (iii1) that⋂

d∈N0

S(d) =
⋂
d∈N0

(Y \H−1(d))

= Y \
⋃
d∈N0

H−1(d)

⊆ Y \ (Y \K) = K.

By (iii2), we have, for each N ∈ 〈D〉, there exists a subset LN of D containing N
such that R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

S(d)) = (T ◦R)(LN ) ∩ (Y \
⋃
d∈LN

H−1(d))

⊆ (T ◦R)(LN ) ∩ (Y \ ((T ◦R)(LN ) \K))

⊆ K.

It is clear that (i) implies that (i) of Theorem 3.1 holds. Therefore, the set-valued
mappings S, R, and T satisfy all the requirements of Theorem 3.1, and hence, by
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Theorem 3.1, we have

∅ 6= T (X) ∩K ∩ (
⋂
d∈D

S(d))

= T (X) ∩K ∩ (Y \
⋃
d∈D

H−1(d)).

Then there exists y ∈ T (X) ∩ K such that y /∈ H−1(d) for each d ∈ D; that is,
d /∈ H(y) for each d ∈ D, which implies that H(y) = ∅. This completes the proof.

By using Theorem 3.2 and the similar argument as in the proof of Theorem 4.4,
we can obtain the following maximal element theorem. We omit the proof.
Theorem 4.5. Let (X,D;ϕN ) be a pseudo H-space, Y be a Hausdorff topological
space, and K ⊆ Y be nonempty and compact. Let H : Y → 2D, R : D → 2X , and

T ∈ B̃(X,D, Y ) be three set-valued mappings such that
(i) H−1 : D → 2Y is transfer compactly open-valued;
(ii) for each N = {d0, ..., dn} ∈ 〈D〉 and each {di0 , ..., dik} ⊆ N ,

T (ϕN (∆k)) ∩ (

k⋂
j=0

cint H−1(dij )) = ∅;

(iii) one of the following conditions holds:
(iii1) there exists N0 ∈ 〈D〉 such that Y \K ⊆

⋃
d∈N0

cint H−1(d);

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) \K ⊆
⋃
d∈LN

cint H−1(d).

Then there exists a point y ∈ T (X) ∩K such that H(y) = ∅.
Remark 4.3. (1) Even X = D and R is the identity mapping on X, Theorem 4.5
generalizes Theorem 2.2 of Ding [24] from FC-spaces to pseudo H-spaces; in turn,
Theorem 4.5 also generalizes Theorem 2.1 of Shen [35], Theorem 2 of Tulcea [36], and
Theorem 5.1 of Yannelis and Prabhakar [37] in several aspects.

(2) Theorem 4.4 is equivalent to Theorem 4.5. Firstly, we show that Theorem 4.5
implies Theorem 4.4. Suppose that all the conditions of Theorem 4.4 are satisfied.
Since H−1 is compactly open-valued, it follows that H−1 is transfer compactly open-
valued and H−1(y) = cint H−1(y) for each y ∈ Y . It is easy to check that the
other conditions of Theorem 4.5 hold and hence, by Theorem 4.5, there exists a point
y ∈ T (X) ∩ K such that H(y) = ∅. Secondly, we prove that Theorem 4.4 implies
Theorem 4.5. Suppose that all the conditions of Theorem 4.5 are fulfilled. Define a

set-valued mapping H̃ : Y → 2D by H̃(y) = (cint H−1)−1(y) for each y ∈ Y . Then

H̃−1(d) = cint H−1(d) for each d ∈ D and so, each H̃−1(d) is compactly open. It is
easy to see that the other conditions of Theorem 4.4 are satisfied. Hence, by Theorem

4.4, there exists a point y ∈ T (X) ∩K such that H̃(y) = (cint H−1)−1(y) = ∅. Now,
we prove that H(y) = ∅. Suppose the contrary. Then H(y) 6= ∅. Taking d ∈ H(y)
leads to y ∈ H−1(d) ∩K. Since H−1 is transfer compactly open-valued, there exists
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d
′ ∈ D such that

y ∈ cint H−1(d
′
) ∩K ⊆ cint H−1(d

′
);

that is, d
′ ∈ (cint H−1)−1(y), which contradicts (cint H−1)−1(y) = ∅. Therefore, we

have H(y) = ∅.
Theorem 4.6. Let I be any index set, Y be a Hausdorff topological space, and K ⊆ Y
be nonempty and compact. For each i ∈ I, let (Xi, Di;ϕNi

) be a pseudo H-space. Let
X =

∏
i∈I Xi, D =

∏
i∈I Di, and ϕN =

∏
i∈I ϕNi

such that (X,D;ϕN ) is a pseudo

H-space defined as in Lemma 2.3. Let R : D → 2X , T ∈ B̃(X,D, Y ), and for each
i ∈ I, Hi : Y → 2Di be a set-valued mapping such that

(i) H−1
i : Di → 2Y is transfer compactly open-valued;

(ii) for each y ∈ Y , I(y) = {i ∈ I : Hi(y) 6= ∅} is finite;
(iii) for each N = {d0, ..., dn} ∈ 〈D〉 and each {dm0

, ..., dmk
} ⊆ N ,

T (ϕN (∆k)) ∩ (

k⋂
j=0

cint H−1
i (πi(dmj

))) = ∅;

(iv) one of the following conditions holds:

(iv1) there exists N0 ∈ 〈D〉 such that for each y ∈ Y \K, there exists d̃ ∈ N0 such

that for each i ∈ I(y), y ∈ cint H−1
i (πi(d̃));

(iv2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and for each y ∈
(T ◦R)(LN )\K, there exists d̃ ∈ LN such that for each i ∈ I(y), y ∈ cint H−1

i (πi(d̃)).

Then there exists y ∈ T (X) ∩K such that Hi(y) = ∅ for each i ∈ I.
Proof. Define a set-valued mapping H : Y → 2D by

H(y) =

{ ⋂
i∈I(y)H

′

i (y), if I(y) 6= ∅,
∅, if I(y) = ∅,

where H
′

i (y) = π−1
i (Hi(y)) for each y ∈ Y . Then I(y) 6= ∅ if and only if H(y) 6= ∅.

We shall show that H−1 : D → 2Y is transfer compactly open-valued. Indeed, for
each d ∈ D and for each nonempty compact subset C of Y , if y ∈ H−1(d)∩C, then for
each i ∈ I(y), y ∈ H−1

i (πi(d))∩C. Since each H−1
i is transfer compactly open-valued,

there exists di ∈ Di such that

y ∈ intC (H−1
i (di) ∩ C) for each i ∈ I(y). (4.1)

For each i ∈ I(y), let d = (di, di), where di ∈ Di =
∏
j 6=iDj is a fixed element. Now,

we have

y ∈ H
′

i

−1
(d) ⇔ d ∈ H

′

i (y) = π−1
i (Hi(y))

⇔ di ∈ Hi(y) and di ∈ Di

⇔ y ∈ H−1
i (di) and di ∈ Di.

This shows that H
′

i

−1
(d) = H−1

i (di) for each fixed di ∈ Di. Therefore, combining
(4.1), we have

y ∈
⋂

i∈I(y)

intC (H
′

i

−1
(d) ∩ C). (4.2)
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By (ii), I(y) is finite and hence, by (4.2), we have

y ∈ intC (
⋂

i∈I(y)

H
′

i

−1
(d) ∩ C) = intC (H−1(d) ∩ C).

Hence, H−1 is transfer compactly open-valued and so (i) of Theorem 4.5 holds.

Let y ∈ Y with H(y) 6= ∅. Then there exists î ∈ I(y) such that Hî(y) 6= ∅. For
each d ∈ D, we have

H−1(d) = {y ∈ Y : d ∈
⋂

i∈I(y)

H
′

i (y)}

= {y ∈ Y : πi(d) ∈ Hi(y), for each i ∈ I(y)}
⊆ {y ∈ Y : y ∈ H−1

î
(πî(d))} = H−1

î
(πî(d)).

For each N = {d0, ..., dn} ∈ 〈D〉 and each {dm0
, ..., dmk

} ⊆ N , if

y ∈
k⋂
j=0

cint H−1(dmj
),

then

y ∈
k⋂
j=0

cint H−1

î
(πî(dmj

)).

By (iii), we have y /∈ T (ϕN (∆k)), which implies that

T (ϕN (∆k)) ∩ (

k⋂
j=0

cint H−1(dmj
)) = ∅.

So, (ii) of Theorem 4.5 is satisfied.
Suppose that (iv1) holds. Then there exists N0 ∈ 〈D〉 such that for each y ∈ Y \K,

there exists d̃ ∈ N0 such that for each i ∈ I(y), y ∈ cint H−1
i (πi(d̃)). Therefore, y ∈⋂

i∈I(y) cint H−1
i (πi(d̃)). Since H−1(d) = {y ∈ Y : πi(d) ∈ Hi(y), for each i ∈ I(y)}

for each d ∈ D and I(y) is finite, we have

y ∈
⋂

i∈I(y)

cint H−1
i (πi(d̃)) ⊆ cint H−1(d̃),

which implies that Y \K ⊆
⋃
d∈N0

cint H−1(d). Hence, (iii1) of Theorem 4.5 holds.

Suppose that (iv2) is fulfilled. Then it is easy to see that for each N ∈ 〈D〉, there exists
a subset LN of D containing N such that R(LN ) is a compact pseudo H-subspace of
(X,D;ϕN ) relative to LN and (T ◦ R)(LN ) \ K ⊆

⋃
d∈LN

cint H−1(d). Therefore,

(iii2) of Theorem 4.5 is satisfied. By Theorem 4.5, there exists y ∈ T (X) ∩ K such
that H(y) = ∅. This implies that I(y) = ∅ and hence, Hi(y) = ∅ for each i ∈ I.
Remark 4.4. Theorem 4.6 generalizes Theorem 4.1 of Lin, Yu and Lai [38] from
topological vector spaces to pseudo H-spaces without any linear and convex structure.



W-GPH-KKM THEOREMS IN PSEUDO H-SPACES AND THEIR APPLICATIONS 157

5. Generalized equilibrium theorems

In recent years, many authors (see, for example, [8,14,31] and references therein)
studied one or more of the following generalized equilibrium problems.

Let D and Z be two nonempty sets, Y be a topological space. Let L : Y ×D → 2Z

and W : Y → 2Z be two set-valued mappings. Find y ∈ Y such that one of the
following conditions occurs:

L(y, d) ⊆W (y) for each d ∈ D;

L(y, d) ∩W (y) 6= ∅ for each d ∈ D;

L(y, d) 6⊆W (y) for each d ∈ D;

L(y, d) ∩W (y) = ∅ for each d ∈ D.
Recently, Balaj [39-40] adopted a unified approach for all these problems mentioned

above considering a (binary) relation ρ on 2Z and looking for a point y ∈ Y such that
L(y, d)ρ W (y) for all d ∈ D. Denote by ρc the complementary relation of ρ, which
implies that for any U, V ⊆ Z, exactly one of the following relations Uρ V , Uρc V
holds.

Motivated and inspired by these recent works on generalized equilibrium problems,
in this section, we shall prove some new existence theorems of solutions to generalized
equilibrium problems in the setting of noncompact pseudo H-spaces without any linear
and convex structure.
Theorem 5.1. Let (X,D;ϕN ) be a pseudo H-space, Y be a Hausdorff topological
space, Z be a nonempty set. Let L : Y ×D → 2Z , F, W : Y → 2Z , R : D → 2X , and

T ∈ B̃(X,D, Y ) be five set-valued mappings such that
(i) for each d ∈ D, the set {y ∈ Y : L(y, d)ρ W (y)} is compactly closed;
(ii) for each y ∈ Y , the set T ∗(y) is a pseudo H-subspace of (X,D;ϕN ) relative to

the set {d ∈ D : L(y, d)ρc W (y)};
(iii) there exists a nonempty compact subset K of Y such that either
(iii1)

⋂
d∈N0

{y ∈ Y : L(y, d)ρ W (y)} ⊆ K for some N0 ∈ 〈D〉; or

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

{y ∈ Y : L(y, d)ρ W (y)}) ⊆ K.

Then there exists a point y ∈ K ∩ T (X) such that L(y, d)ρ W (y) for each d ∈ D.
Proof. Define a set-valued mapping S : D → 2Y by

S(d) = {y ∈ Y : L(y, d)ρ W (y)} for each d ∈ D.

Then it follows from (i) that each S(d) is compactly closed. Now, we show that (ii) of
Theorem 3.1 is satisfied. Suppose the contrary. Then there exists N = {d0, ..., dn} ∈
〈D〉 and {di0 , ..., dik} ⊆ N such that

T (ϕN (∆k)) 6⊆
k⋃
j=0

S(dij ).
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Thus, there exists y∗ ∈ T (ϕN (∆k)) such that y∗ /∈ S(dij ) for each j ∈ {0, ..., k};
that is, dij ∈ {d ∈ D : L(y∗, d)ρc W (y∗)}, By (ii), we have ϕN (∆k) ⊆ T ∗(y∗), which
implies that

x ∈ T ∗(y∗) for each x ∈ ϕN (∆k). (5.1)

Since y∗ ∈ T (ϕN (∆k)), it follows that there exists x ∈ ϕN (∆k) such that y∗ ∈
T (x), i.e., x /∈ T ∗(y∗), which contradicts (5.1). Therefore, (ii) of Theorem 3.1 holds.
Suppose that (iii1) of Theorem 5.1 is fulfilled. Then it follows from the definition of
S that there exists N0 ∈ 〈D〉 such that

⋂
d∈N0

S(d) ⊆ K, which implies that (iii1) of

Theorem 3.1 is satisfied. If (iii2) of Theorem 5.1 holds, then by the definition of S
again, we know that for each N ∈ 〈D〉, there exists a subset LN of D containing N
such that R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

S(d)) ⊆ K.

Therefore, (iii2) of Theorem 3.1 is satisfied. Thus, all the conditions of Theorem 3.1
are fulfilled. By Theorem 3.1, we have

T (X) ∩K ∩ (
⋂
d∈D

S(d)) 6= ∅.

Hence, there exists a point y ∈ K ∩ T (X) such that L(y, d)ρ W (y) for each d ∈ D.
This completes the proof.
Remark 5.1. The solution set of the generalized equilibrium problem considered in
Theorem 5.1 is a compact subset of T (X) ∩ K. Indeed, the solution set is T (X) ∩
K ∩ (

⋂
d∈D S(d)), which is compactly closed subset of the compact set T (X) ∩K.

For each y ∈ Y and each d ∈ D, let ρ denote the relations between L(y, d) and
W (y) represented by L(y, d) ⊆ W (y), L(y, d) 6⊆ W (y), L(y, d) ∩ W (y) 6= ∅, and
L(y, d) ∩W (y) = ∅, respectively. Then by Theorem 5.1, we can obtain the following
results.
Corollary 5.1. Let (X,D;ϕN ), Y , Z, L, F , W , R, and T be as in Theorem 5.1.
Suppose that the following conditions are fulfilled:

(i) for each d ∈ D, the set {y ∈ Y : L(y, d) ⊆W (y)} is compactly closed;
(ii) for each y ∈ Y , the set T ∗(y) is a pseudo H-subspace of (X,D;ϕN ) relative to

the set {d ∈ D : L(y, d) 6⊆W (y)};
(iii) there exists a nonempty compact subset K of Y such that either
(iii1)

⋂
d∈N0

{y ∈ Y : L(y, d) ⊆W (y)} ⊆ K for some N0 ∈ 〈D〉; or

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

{y ∈ Y : L(y, d) ⊆W (y)}) ⊆ K.

Then there exists a point y ∈ K ∩ T (X) such that L(y, d) ⊆W (y) for each d ∈ D.
Remark 5.2. (1) Corollary 5.1 generalizes Theorem 4.1 of Fang and Huang [31]
in the following aspects: (a) from FC-spaces to pseudo H-spaces; (b) from B(Y,X)

to B̃(X,Y ); (c) from three set-valued mappings to five set-valued mappings; (d) (ii)
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and (iii2) are weaker than (iii) and (iv) of Theorem 4.1 of Fang and Huang [31],
respectively.

(2) When Z in Corollary 5.1 is a topological space, (i) of Corollary 5.1 can be
replaced by the following condition:

(i)
′

for each d ∈ D, y 7→ L(y, d) is lower semicontinuous on each compact subset of
Y and the graph of W is closed in Y × Z.

In fact, for each d ∈ D and each compact subset C of Y , let {yν} be a net
in {y ∈ Y : L(y, d) ⊆ W (y)} ∩ C such that {yν} converges to y0. Since Y is a
Hausdorff topological space, it follows that C is closed and hence, y0 ∈ C. Since
{yν} ⊆ {y ∈ Y : L(y, d) ⊆ W (y)} ∩ C, we have L(yν , d) ⊆ W (yν) for all ν. Let
z ∈ L(y0, d). Then by Lemma 2.1 and the fact that for each d ∈ D, y 7→ L(y, d) is
lower semicontinuous on each compact subset of Y , there exists a net {zν} ⊆ L(yν , d)
such that {zν} converges to z. Thus, zν ∈ W (yν) for all ν. Since the graph of W
is closed in Y × Z, we have z ∈ W (y0) and hence, L(y0, d) ⊆ W (y0). Therefore,
y0 ∈ {y ∈ Y : L(y, d) ⊆ W (y)} ∩ C, which implies that for each d ∈ D, the set
{y ∈ Y : L(y, d) ⊆W (y)} is compactly closed.
Corollary 5.2. Let (X,D;ϕN ), Y , Z, L, F , W , R, and T be as in Theorem 5.1.
Suppose that the following conditions are fulfilled:

(i) for each d ∈ D, the set {y ∈ Y : L(y, d) 6⊆W (y)} is compactly closed;
(ii) for each y ∈ Y , the set T ∗(y) is a pseudo H-subspace of (X,D;ϕN ) relative to

the set {d ∈ D : L(y, d) ⊆W (y)};
(iii) there exists a nonempty compact subset K of Y such that either
(iii1)

⋂
d∈N0

{y ∈ Y : L(y, d) 6⊆W (y)} ⊆ K for some N0 ∈ 〈D〉; or

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

{y ∈ Y : L(y, d) 6⊆W (y)}) ⊆ K.

Then there exists a point y ∈ K ∩ T (X) such that L(y, d) 6⊆W (y) for each d ∈ D.
Remark 5.3. When Z in Corollary 5.2 is a topological space, (i) of Corollary 5.2
can be replaced by the following condition:

(i)
′
L has nonempty compact values and for each d ∈ D, y 7→ L(y, d) is upper

semicontinuous on each compact subset of Y ;
(i)

′′
The graph of W is open in Y × Z.

In fact, for each d ∈ D and each compact subset C of Y , let {yν} be a net in
{y ∈ Y : L(y, d) 6⊆ W (y)} ∩ C such that {yν} converges to y0. Then we have
L(yν , d) 6⊆ W (yν) for all ν; that is, there exists zν ∈ L(yν , d) such that zν /∈ W (yν),
or zν ∈ Z \W (yν) for all ν. By Lemma 2.2, there exists z ∈ L(y0, d) and a subnet of
{zν} such that this subnet converges to z. Without loss of generality, we may assume
that {zν} converges to z. Also since W has open graph in Y ×Z, we have z /∈W (y0).
Therefore, L(y0, d) 6⊆ W (y0). By the fact that Y is a Hausdorff topological space,
we know that C is closed subset of Y and hence, y0 ∈ C. Consequently, y0 ∈ {y ∈
Y : L(y, d) 6⊆ W (y)} ∩ C, which implies that the set {y ∈ Y : L(y, d) 6⊆ W (y)} is
compactly closed for each d ∈ D.
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Corollary 5.3. Let (X,D;ϕN ), Y , Z, L, F , W , R, and T be as in Theorem 5.1.
Suppose that the following conditions are fulfilled:

(i) for each d ∈ D, the set {y ∈ Y : L(y, d) ∩W (y) 6= ∅} is compactly closed;
(ii) for each y ∈ Y , the set T ∗(y) is a pseudo H-subspace of (X,D;ϕN ) relative to

the set {d ∈ D : L(y, d) ∩W (y) = ∅};
(iii) there exists a nonempty compact subset K of Y such that either
(iii1)

⋂
d∈N0

{y ∈ Y : L(y, d) ∩W (y) 6= ∅} ⊆ K for some N0 ∈ 〈D〉; or

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

{y ∈ Y : L(y, d) ∩W (y) 6= ∅}) ⊆ K.

Then there exists a point y ∈ K ∩ T (X) such that L(y, d) ∩W (y) 6= ∅ for each
d ∈ D.
Corollary 5.4. Let (X,D;ϕN ), Y , Z, L, F , W , R, and T be as in Theorem 5.1.
Suppose that the following conditions are fulfilled:

(i) for each d ∈ D, the set {y ∈ Y : L(y, d) ∩W (y) = ∅} is compactly closed;
(ii) for each y ∈ Y , the set T ∗(y) is a pseudo H-subspace of (X,D;ϕN ) relative to

the set {d ∈ D : L(y, d) ∩W (y) 6= ∅};
(iii) there exists a nonempty compact subset K of Y such that either
(iii1)

⋂
d∈N0

{y ∈ Y : L(y, d) ∩W (y) = ∅} ⊆ K for some N0 ∈ 〈D〉; or

(iii2) for each N ∈ 〈D〉, there exists a subset LN of D containing N such that
R(LN ) is a compact pseudo H-subspace of (X,D;ϕN ) relative to LN and

(T ◦R)(LN ) ∩ (
⋂
d∈LN

{y ∈ Y : L(y, d) ∩W (y) = ∅}) ⊆ K.

Then there exists a point y ∈ K ∩ T (X) such that L(y, d) ∩W (y) = ∅ for each
d ∈ D.
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