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1. Introduction

The main result of this paper (see Theorem 8.1 below) is concerned with families of
commuting holomorphic self-mappings of domains in Cartesian products of complex
Banach spaces. It declares that under certain appropriate conditions, the (nonempty)
common fixed point set of such a family is a holomorphic retract. Our proof uses the
metric approach to holomorphic fixed point theory (see [18] and [31]) and is based on
a method due to R. E. Bruck (see [2] and [3]).

Our paper is organized as follows. In Section 2 we recall basic properties of the
Kobayashi distance kD on a bounded and convex domain D in a complex Banach
space. In addition, we also prove a modification of the Harris theorem characterizing
kD-bounded sets. This modified theorem is applied in our constructions of families of
equi-bounded and locally equi-uniformly linearly convex domains (see Section 4). We
also recall connections between the Kobayashi distance and holomorphic mappings.
In Section 3 we deal with locally uniform convexity of a bounded and convex domain
D with respect to the Kobayashi distance kD. This is a basic notion which appears
in the assumptions of our main theorems in Sections 7 and 8 (Theorems 7.1 and 8.1).
In this section we also investigate a modulus of linear convexity for the Kobayashi
distance kD. In Section 4 we first establish a theorem describing the behavior of the
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Kobayashi distances corresponding to a decreasing sequence of bounded and convex
domains in Cn (Theorem 4.4). This theorem and the known theorem regarding the be-
havior of the Kobayashi distances corresponding to an increasing sequence of bounded
and convex domains in Cn (Theorem 4.1) are the basic tools in the constructions of
families of equi-bounded and equi-uniformly linearly convex domains presented in this
section. Section 5 is devoted to the Khamsi conditions which guarantee existence of a
common fixed point of a commuting family of nonexpansive mappings. In Section 6
we introduce a bounded and convex domain D in `∞(Xj , J) generated by the Carte-
sian product of equi-bounded and convex domains Dj in (Xj , ‖ · ‖), j ∈ J . Under
some additional assumptions, this domain D is locally admissible in the Khamsi sense
as we prove in Section 7. The last section is devoted to proving the main theorem
(Theorem 8.1) of our paper. Namely, we prove that if D in `∞(Xj , J) is generated
by the Cartesian product of equi-bounded, convex and locally equi-uniformly linearly
convex domains Dj in (Xj , ‖ ·‖), j ∈ J, then for any family F of commuting holomor-
phic (kD-nonexpansive) self-mappings of D with a nonempty common fixed point set
Fix(F), the set Fix(F) is a holomorphic (kD-nonexpansive) retract of D.

2. The Kobayashi distance and holomorphic mappings

Throughout this paper all Banach spaces X are complex and all domains D ⊂ X
are bounded and convex.

Let ∆ be the open unit disc in the complex plane C. Recall that the Poincaré
distance k∆ = ω on ∆ is given by

k∆ (z, w) = ω (z, w) := arg tanh

∣∣∣∣ z − w1− zw

∣∣∣∣
= arg tanh (1− σ (z, w))

1
2 ,

where

σ (z, w) :=

(
1− |z|2

)(
1− |w|2

)
|1− zw|2

, z, w ∈ ∆

[18], [31].
Next, let D be a bounded and convex domain in a complex Banach space (X, ‖·‖) .

We use the following definition of the Lempert function δD, which, in this case, is
equal to the Kobayashi distance kD:

kD (x, y) = δD (x, y)

:= inf {ω (0, λ) : λ ∈ [0, 1) & there exists f ∈ H(∆, D) so that f (0) = x, f (λ) = y} ,
where x, y ∈ D [34], [15] (see also [17], [21], [25], [26] and [37]). To arrive at an equiv-
alent definition of the Kobayashi distance we first define the infinitesimal Kobayashi
pseudometric κD : D ×X → R+ for D by

κD (x, v) := inf {η > 0 : ∃ g ∈ H(∆, D) with g (0) = x, g′ (0) η = v}

for all x ∈ D and v ∈ X. Now for a given pair of points x, y ∈ D, we consider the
family of all curves γ̃ : [0, 1] → D that join x and y and have piecewise continuous
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derivatives. We call such curves admissible and define

L (γ̃) :=

∫ 1

0

κD (γ̃ (t) , γ̃′ (t)) dt.

We now recall the following theorem.

Theorem 2.1. [38] Let D be a bounded and convex domain in a complex Banach
space (X, ‖·‖) . The Kobayashi distance kD is the integrated form of κD, that is,

kD (x, y) = inf {L (γ̃) : γ̃ is admissible with γ̃ (0) = x and γ̃ (1) = y}
for all x, y ∈ D.

It is known that the Kobayashi distance kD is locally equivalent to the norm ‖·‖
in X [19]. Indeed, if

dist‖·‖ (x, ∂D) := inf{‖x− y‖ : y ∈ ∂D}
denotes the distance in (X, ‖·‖) between a point x and the boundary ∂D of the domain
D and

diam‖·‖D := sup{‖x− y‖ : x, y ∈ D}
is the diameter of D in (X, ‖·‖), then the following theorem holds.

Theorem 2.2. If D is a bounded and convex domain in a complex Banach space
(X, ‖·‖), then

arg tanh

(
‖x− y‖

diam‖·‖D

)
≤ kD(x, y)

for all x, y ∈ D and

kD(x, y) ≤ arg tanh

(
‖x− y‖

dist‖·‖(x, ∂D)

)
whenever ‖x− y‖ < dist‖·‖ (x, ∂D).

We also use the following result. Let D be a bounded and convex domain in a
complex Banach space (X, ‖·‖). If x, y, w, z ∈ D and s ∈ [0, 1], then

kD (sx+ (1− s) y, sw + (1− s) z)

≤ max {kD (x,w) , kD (y, z)} .
Hence each open (closed) kD-ball in the metric space (D, kD) is convex [33].

We now turn to a characterization of kD-bounded sets due to L. A. Harris ([19]).
Let D be a bounded and convex domain in a complex Banach space (X, ‖·‖).

A nonempty subset C of D is said to lie strictly inside D if

dist‖·‖ (C, ∂D) := inf{‖x− y‖ : x ∈ C & y ∈ ∂D} > 0.

L. A. Harris proved the following theorem for bounded and convex domains (see
Proposition 23 in [19]).

Theorem 2.3. Let D be a bounded and convex domain in a complex Banach space
(X, ‖·‖). A nonempty subset C of D is kD-bounded if and only if C lies strictly inside
D.
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We now observe that a modification of the proof of Theorem 2.3 can be used
to prove the following theorem, which we later apply in constructions of families of
equi-bounded and equi-uniformly linearly convex domains in Section 5.

Theorem 2.4. Let (X, ‖ · ‖) be a complex Banach space and let B‖·‖(x,R) denote
the open ball in (X, ‖ · ‖) of center x and radius R.

(i) Given R > 0 and ε > 0, there exists r1 > 0 such that for each x̃ ∈ X,
each bounded and convex domain D ⊂ B‖·‖(x̃, R) with x̃ ∈ D, and for each
nonempty subset C ⊂ D with C + B‖·‖(0, ε) ⊂ D, we have C ⊂ BkD (x̃, r1),
where BkD (x̃, r1) denotes an open ball in (D, kD) of center x̃ and radius r1. .

(ii) Given r > 0 and r2 > 0, there exists ε > 0 such that for each x̃ ∈ X, each
bounded and convex domain D containing the open ball B‖·‖(x̃, r), and for the

closed ball BkD (x̃, r2) ⊂ D in (D, kD), we have BkD (x̃, r2) +B‖·‖(0, ε) ⊂ D.

Proof. As we have already mentioned above, the proof of this theorem is a slight
modification of the Harris proof of Theorem 2.3 (see [19]). We provide this modified
proof here for the convenience of the reader.

(i) Assume that R > 0, D ⊂ B‖·‖(x̃, R) ⊂ X is a convex domain with x̃ ∈ D,
and C is a nonempty subset of D such that C + B‖·‖(0, ε) ⊂ D for some ε > 0.
Without loss of generality we may assume that x̃ ∈ C replacing, if need be, ε by
min{ε,dist‖·‖ (x̃, ∂D)}. Observe that for each x ∈ D such that B‖·‖(x, ε) ⊂ D and for
each v ∈ X \ {0}, the function f : ∆ → X given by f(z) = x + zv

η , z ∈ ∆, where

η = ‖v‖
ε , maps the unit disc ∆ holomorphically into D and satisfies f(0) = x and

f ′(0)η = v. Therefore for the infinitesimal Kobayashi pseudometric κD we get

κD(x, v) ≤ ‖v‖
ε
.

Next, for x1, x2 ∈ C, 0 ≤ t ≤ 1 and γ(t) = (1− t)x1 + tx2, we have

B‖·‖(γ(t), ε) ⊂ (1− t)B‖·‖(x1, ε) + tB‖·‖(x2, ε) ⊂ D,
which implies that

κD(γ(t), γ′(t)) ≤ ‖x2 − x1‖
ε

.

Hence by Theorem 2.1, we obtain kD(x1, x2) ≤ 2R
ε . Since x̃ ∈ C, we may set r1 = 2R+1

ε
to get C ⊂ BkD (x̃, r1).

(ii) Without any loss of generality we may assume that x̃ = 0 ∈ D and let 0 <
r0 < 1 be such that

r2 = k∆ (0, r) = ω (0, r) = arg tanh(r0).

If f : C \ {2} → C is defined by f(z) = z(2− z)−1, then we have

(1− |f(z)|2)|2− z|2 = 4(1− Re z).

Hence there exists 0 < t < 1 such that Re z ≤ t whenever |f(z)| ≤ r0 and Re z ≤ 1.
By the above equality, we also get that the holomorphic mapping g = f ◦ l transforms
D into ∆ for each l ∈ X∗ such that Re l(x) < 1 for each x ∈ D. Next, we have

arg tanh(|g(x)|) = k∆(g(x), g(0)) ≤ kD(x, 0) ≤ r2 = arg tanh(r0)
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for each x ∈ BkD (0, r2). This means that |g(x)| ≤ r0 and therefore Re l(x) ≤ t

or equivalently, Re l(xt ) ≤ 1 for each x ∈ BkD (0, r2). Applying the Hahn-Banach

separation theorem ([39]), we get 1
tBkD (0, r2) ⊂ D and hence we have

BkD (0, r2) + (1− t)B‖·‖(0, r) ⊂ tD + (1− t)D = D.

We now complete the proof by setting ε = (1− t)r. �

Complex geodesics are one of the basic tools in our proofs. Recall the following
definition [13].

Definition 2.1. Let D be a bounded and convex domain in a complex Banach space
X. A mapping f ∈ H(∆, X) is a complex geodesic if f(∆) ⊂ D and there exist
z1, z2 ∈ ∆ such that

k∆(z1, z2) = kD(f(z1), f(z2)).

If, moreover, z1 = 0 and z2 ∈ R+ we call f a normalized complex kD-geodesic joining
f(z1) and f(z2).

Theorem 2.5. [13] Every complex geodesic is an isometric kD-embedding.

The next observation regarding complex geodesics is due to S. Dineen and R. M.
Timoney [14].

Theorem 2.6. If X is a complex reflexive Banach space and D ⊂ X is a bounded
and strictly convex domain in X (that is, D is strictly convex in X), then any two
points in D can be joined by a unique normalized complex kD-geodesic.

Now, let D1 and D2 be two bounded and convex domains in two complex Banach
spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2), respectively. A mapping f : D1 → D2 is said to be
nonexpansive with respect to the Kobayashi distance if

kD2 (f(x), f(y)) ≤ kD1 (x, y)

for all x, y ∈ D1. If D1 = D2 = D, then we say that f is kD-nonexpansive. Every
holomorphic mapping f : D1 → D2 is nonexpansive with respect to the Kobayashi
distance [18].

In order to formulate a characterization of holomorphic mappings, we need the
concept of a norming set.

Let (X, ‖·‖) be a complex Banach space and let N be a nonempty subset of its
dual X∗. If there exist positive constants c and C such that

sup {|l (x)| : l ∈ N , ‖l‖ ≤ C} ≥ c ‖x‖
for each x ∈ X, then we say that N is a norming set for X [16].

We now recall several known results concerning the Hausdorff linear topology
σ (X,N ) on X.

Theorem 2.7. [8] If X is a complex Banach space, N is a norming set for X, and
D ⊂ X is a bounded and convex domain such that its norm closure D is compact in
σ (X,N ), then any two points in D can be joined by at least one normalized complex
kD-geodesic.
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Theorem 2.8. [22] (see also [28] and [11]) Let X be a complex Banach space, N a
norming set for X, and let D ⊂ X be a bounded and convex domain such that its
norm closure D is compact in σ (X,N ). If {xβ}β∈J and {yβ}β∈J are nets in D which

are convergent in σ (X,N ) to x and y, respectively, and x, y ∈ D, then

kD (x, y) ≤ lim inf
β

kD (xβ , yβ) .

Theorem 2.9. [8] Let D1, D2 be two bounded and convex domains in complex Ba-
nach spaces (X1, ‖·‖1) and (X2, ‖·‖2) , respectively, and let N be a norming set in
(X2, ‖·‖2). If {fλ}λ∈J is a net of holomorphic mappings fλ : D1 → D2 which is

pointwise convergent in the topology σ (X2,N ) to a function f : D1 → D2 and there
exists a point z0 ∈ D1 such that f (z0) ∈ D2, then f : D1 → D2 and f is holomorphic.

Finally, we mention an analogous property of kD-nonexpansive mappings.

Theorem 2.10. [22] Let D1, D2 be two bounded and convex domains in two complex
Banach spaces (X1, ‖·‖1) and (X2, ‖·‖2) , respectively, and let N be a norming set in

(X2, ‖·‖2). If D2 is compact in σ (X2,N ), {fλ}λ∈J is a net of nonexpansive (with
respect to the Kobayashi distance) mappings fλ : D1 → D2, which is pointwise con-
vergent in the topology σ (X2,N ) to a function f : D1 → D2, and there exists a point
z0 ∈ D1 such that f (z0) ∈ D2, then f also maps D1 into D2 and is nonexpansive
with respect to the Kobayashi distance.

3. Locally uniform linear convexity of a domain D with respect to
the Kobayashi distance

In 2003 the first author introduced the notion of locally uniform linear convexity
of a domain D with respect to the Kobayashi distance [5].

Definition 3.1. Let D be bounded and convex domain in a complex Banach space
X. The metric space (D, kD) is said to be locally uniformly linearly convex if there
exist a point w ∈ D and a real function

δ̃D(w, ·, ·, ·, ·)

such that for all R1 > 0, 0 < R2 ≤ R3 and 0 < ε ≤ 2, we have

δ̃D (w,R1, R2, R3, ε) > 0,

and the implication

kD (z, x) ≤ R
kD (z, y) ≤ R
kD (x, y) ≥ εR

⇒ kD

(
z,

1

2
x+

1

2
y

)
≤
(

1− δ̃D (w,R1, R2, R3, ε)
)
R

is valid for each z ∈ D with kD(w, z) ≤ R1, each 0 < R2 ≤ R ≤ R3 and for all

x, y ∈ D. The function δ̃D(w, ·, ·, ·, ·, ) is called a modulus of linear convexity for the
Kobayashi distance kD.

It is easy to observe that the point w in the above definition of locally uniform
linear convexity may be replaced by any other point w′ ∈ D.
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Examples of such domains and their applications to holomorphic fixed point theory
can be found in [6] (see also [27], [4] and Section 4 of the present paper).

In [6] it was proved that if the metric space (BX , kBX
) is locally uniformly linearly

convex, then the Banach space (X, ‖ · ‖) is uniformly convex and therefore (X, ‖ · ‖)
is reflexive. We also have a general result which shows that the locally uniform linear
convexity of (D, kD) implies the reflexivity of the Banach space X.

Theorem 3.1. [10] Let X be a complex Banach space and let D ⊂ X be a bounded
and convex domain in X. If the metric space (D, kD) is locally uniformly linearly
convex, then the Banach space X is reflexive.

Now we formulate the following equivalent definition of a locally uniformly linearly
convex bounded domain.

Theorem 3.2. Let D be bounded and convex domain in a complex Banach space
(X, ‖ · ‖). The following conditions are equivalent:

(i) the metric space (D, kD) is locally uniformly linearly convex, that is, there
exist a point w ∈ D and a function

δ̃D(w, ·, ·, ·, ·)
such that for all R1 > 0, 0 < R2 ≤ R3 and 0 < ε ≤ 2, we have

δ̃D (w,R1, R2, R3, ε) > 0,

and the implication

kD (z, x) ≤ R
kD (z, y) ≤ R
kD (x, y) ≥ εR

⇒ kD

(
z,

1

2
x+

1

2
y

)
≤
(

1− δ̃D (w,R1, R2, R3, ε)
)
R

is valid for each z ∈ D with kD(w, z) ≤ R1, each 0 < R2 ≤ R ≤ R3 and for
all x, y ∈ D;

(ii) there exist a point w ∈ D and a function

δ̃D,1(w, ·, ·, ·, ·)
such that for all R1 > 0, 0 < R2 ≤ R3 and 0 < ε ≤ 2, we have

δ̃D,1 (w,R1, R2, R3, ε) > 0,

and the implication

kD (z, x) ≤ R
kD (z, y) ≤ R
kD (x, y) = εR

⇒ kD

(
z,

1

2
x+

1

2
y

)
≤
(

1− δ̃D,1 (w,R1, R2, R3, ε)
)
R

is valid for each z ∈ D with kD(w, z) ≤ R1, each 0 < R2 ≤ R ≤ R3 and for
all x, y ∈ D.

Proof. (i)⇒ (ii) We simply can take δ̃D,1 := δ̃D.
(ii)⇒ (i) We first observe that if kD (z, x) ≤ R, kD (z, y) ≤ R and kD (x, y) ≥ εR,

then there exist points x1 and y1 on the linear segment [x, y] such that kD (x1, y1) = εR
and x1+y1

2 = x+y
2 . We also have kD (z, x1) ≤ R and kD (z, y1) ≤ R. Therefore we may

set δ̃D := δ̃D,1. �
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Next we recall that if the bounded domain D is strictly convex, that is, D is strictly
convex in a complex reflexive Banach space (X, ‖·‖), then we have more information
regarding the linear convexity of balls in (D, kD).

Theorem 3.3. ([8], [9], [36], [40], [41]) Let D be a bounded and convex domain in a
complex reflexive Banach space (X, ‖·‖) . If D is strictly convex, then each kD-ball is
also strictly convex in the linear sense.

Remark 3.1. Directly from the above theorem we get that for each bounded and
strictly convex domain D in Cn, the metric space (D, kD) is locally uniformly linearly
convex.

Finally, we introduce the notion of a common modulus of linear convexity.

Definition 3.2. Let {Dj}j∈J be a family of equi-bounded and convex domains Dj

in reflexive Banach spaces (Xj , ‖ · ‖), j ∈ J , such that there exist 0 < r1 < r2 and a
point x̃ = {x̃j}j∈J ∈ `

∞(Xj , J) with

Bj(x̃j , r1) ⊂ Dj ⊂ Bj(x̃j , r2)

for each j ∈ J. Also, for each j ∈ J , let the function δ̃Dj
(xj , ·, ·, ·, ·) be a modulus of

linear convexity for the Kobayashi distance kDj
. If

δ̃{Dj}j∈J
(x̃, R1, R2, R3, ε) = inf

j∈J
δ̃Dj

(xj , R1, R2, R3, ε) > 0

for all 0 < ε ≤ 2, R1 > 0 and 0 < R2 ≤ R3, then we say that the family {Dj}j∈J of
equi-bounded and convex domains is locally equi-uniformly linearly convex, or that
this family has a common modulus of linear convexity δ̃{Dj}j∈J

(x̃, ·, ·, ·, ·).

Remark 3.2. It is easy to observe that in the above definition we may replace the
modulus δ̃Dj (xj , ·, ·, ·, ·) with the modulus δ̃Dj ,1(xj , ·, ·, ·, ·).

4. Constructions of examples of locally equi-uniformly linearly
convex domains

In this section we consider domains which are generated by either decreasing or
increasing sequences of domains. In the case of bounded and convex domains in Cn,
we have the following results on the behavior of the Kobayashi distance on a bounded
and convex domain D generated by a monotone sequence of bounded and convex
domains.

Theorem 4.1. [20], [21], [26] Let D be a bounded and convex domain in Cn and let
D =

⋃∞
m=1Dm, where {Dm}∞m=1 be an increasing sequence of bounded and convex

domains. Then the sequence {kDm
}∞m=1 of the corresponding Kobayashi distances

converges as m tends to infinity to kD, uniformly on compact sets.

Before we state the second result we recall the following definitions.

Definition 4.1. We call {Dm}∞m=1 a decreasing sequence of bounded and convex do-
mains in Cn converging to a bounded and convex domain D if the sequence {Dm}∞m=1

satisfies the following two conditions:

(i) Dm ⊃⊃ Dm+1 for all m ∈ N;
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(ii)
⋂∞
m=1Dm = D,

where Dm ⊃⊃ Dm+1 means that Dm+1 is a relatively compact subset of Dm and D
denotes the closure of D in Cn.

Definition 4.2. Let D be a bounded domain in Cn. A holomorphic function P
defined in a neighborhood of the closure D of D is called a weak peak function for D
at a boundary point ξ ∈ ∂D if ‖P (ξ)‖ = 1 and ‖P (x)‖ < 1 for all x ∈ D.

Theorem 4.2. [24] Let D be a bounded domain in Cn such that there exists a weak
peak function for each point of ∂D and let {Dm}∞m=1 be a decreasing sequence of
bounded and convex domains converging to D. Then the sequence {kDm}∞m=1 of the
corresponding Kobayashi distances converges as m tends to infinity to kD, uniformly
on compact sets.

It turns out that in the case of bounded and convex domains, the assumption
regarding weak peak functions (see Corollary 2.1.11 in [1]) and the assumption that
Dm ⊃⊃ Dm+1 for all m ∈ N are not necessary. We may simply assume that Dm ⊃
Dm+1 for all m ∈ N and that

⋂∞
m=1Dm = D. We precede the statement and the proof

of our theorem with the following lemma.

Lemma 4.3. Let D be a bounded and convex domain in Cn, x̃ ∈ D, and let {Dm}∞m=1

be a sequence of bounded and convex domains in Cn such that Dm ⊃ Dm+1 for all

m ∈ N and
⋂∞
m=1Dm = D. Then

lim
m

inf
x∈Dm

sup{0 ≤ t ≤ 1 : x̃+ t(x− x̃) ∈ D} = 1.

Proof. Without any loss of generality we may assume that x̃ = 0 ∈ D and that
B‖·‖(0, r) ⊂ D ⊂ D1 ⊂ B‖·‖(0, R) for some 0 < r < R. Assume that

lim
m

inf
x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D} = s < 1.

We obviously have s ≥ r
R > 0. Also, there exist sequences {tm}∞m=1 and {xm}∞m=1

such that xm ∈ Dm, tmxm ∈ D \B‖·‖(0, r) and

inf
x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D} − 1

m
≤ tm

≤ sup{0 ≤ t ≤ 1 : txm ∈ D} ≤ inf
x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D}+
1

m

for each m = 1, 2, .... Hence limm tm = s. In addition, the compactness of Dm,
the inclusions Dm ⊃ Dm+1 for all m ∈ N and the convexity of each Dm imply the

equality
⋂∞
m=1Dm =

⋂∞
m=1Dm = D. By passing, if need be, to a subsequence, we

may assume that there exists x ∈ D such that limm ‖xm − x‖ = 0. Next, since
‖x‖ ≥ r > 0 and D is a convex open domain containing the closed ball B‖·‖(0, r), we
have B‖·‖(sx, (1− s)r) ⊂ D. Therefore sx+ (1− s) r

2‖x‖x is an element of D and this

implies that

tmxm + (1− s) r

2‖x‖
xm = [tm + (1− s) r

2‖x‖
]xm ∈ D
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for all sufficiently large m. Hence we get

inf
x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D} − 1

m
≤ tm < tm + (1− s) r

2‖x‖

≤ sup{0 ≤ t ≤ 1 : txm ∈ D} ≤ inf
x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D}+
1

m
.

Taking m to infinity, we get the following contradiction:

s = lim
m
tm < s+ (1− s) r

2‖x‖
= lim

m
[tm + (1− s) r

2‖x‖
]

≤ lim
m

[ inf
x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D}+
1

m
] = s.

This completes our proof. �

Theorem 4.4. Let D be a bounded and convex domain in Cn, and let {Dm}∞m=1 be a
sequence of bounded and convex domains in Cn such that Dm ⊃ Dm+1 for all m ∈ N
and

⋂∞
m=1Dm = D. Then the sequence {kDm

}∞m=1 of the corresponding Kobayashi
distances converges as m tends to infinity to kD, uniformly on compact sets.

Proof. Without any loss of generality we may assume that 0 ∈ D. Observe that
kDm

(x, y) ≤ kD(x, y) for each x, y ∈ D and m = 1, 2, ... because D ⊂ Dm for each
m = 1, 2, .... This implies that

lim sup
m→∞

kDm
(x, y) ≤ kD(x, y).

Next, since by Lemma 4.3,

lim
m

inf
x∈Dm

sup{0 ≤ t ≤ 1 : x̃+ t(x− x̃) ∈ D} = 1,

we get an increasing sequence {tm}∞m=1 such that limm→∞ tm = 1, 0 < tm < 1 and
tmDm ⊂ D for each m. Hence for x, y ∈ D, we obtain

kDm
(x, y) = ktmDm

(tmx, tmy) ≥ kD(tmx, tmy)

and therefore

lim inf
m→∞

kDm
(x, y) ≥ lim

m→∞
kD(tmx, tmy) = kD(x, y).

So we have limm→∞ kDm
(x, y) = kD(x, y). Applying Theorem 2.2, we observe that

this convergence to kD is uniform on compact subsets of D. �

Using the above results and compactness, it is not difficult to construct a decreasing
or increasing sequence of equi-bounded and locally equi-uniformly linearly convex
domains in Cn.

Next, consider the Banach spaces `2 × `2 with the norms ‖(x, y)‖2,p :=

(‖x‖p2 + ‖y‖p2)
1
p for (x, y) ∈ `2 × `2, where ‖ · ‖2 is the standard norm in the Hilbert

space `2 and 1 < p <∞. Let B2,p be the open unit ball in (`2×`2, ‖(·, ·)‖2,p). Observe
that each three points in B2,p may be considered points in the strictly convex open
unit ball B6

2,p in (C3 × C3, ‖(·, ·)‖2,p) and since (B6
2,p, kB6

2,p
) is locally uniformly lin-

early convex (see Remark 3.1), the same is true for the metric space (B2,p, kB2,p) (see
[4] and [6]). Let 1 < p1 < p2 <∞ be fixed. By Theorems 2.4, 4.1 and 4.4, the family
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{B6
2,p}p1≤p≤p2 , treated as a family of domains in (C6, ‖ · ‖), is locally equi-uniformly

linearly convex. Hence the family {B2,p}p1≤p≤p2 is also locally equi-uniformly linearly
convex.

5. A few facts from metric fixed point theory

Throughout this section we use the notations of [23].
Let (M,d) be a metric space. The symbol B(x, r) will stand for the closed ball of

radius r > 0 centered at x ∈M . For any nonempty and bounded subset A ⊂M , we
set

rx(A) = sup{d(x, a) : a ∈ A}, x ∈M ;

r(A) = inf{ra(A) : a ∈ A};

δ(A) = diam(A) = sup{ra(A) : a ∈ A} = sup{d(x, y) : x, y ∈ A}.

Recall that r(A) is called the Chebyshev radius of A.
For a nonempty and bounded set A of M , set

cov(A) =
⋂
{B(x, r) : x ∈M, A ⊂ B(x, r)}.

We will say that a nonempty and bounded set A is an admissible set if and only if
A = cov(A), that is, A is an intersection of closed balls. The family of all admissible
subsets of M will be denoted by A(M).

A family S ⊂ 2M is called a convexity structure if
(i) ∅,M ∈ S,
(ii) {x} ∈ S for each x ∈M ,
(iii) S contains the closed balls of M ,
(iv) S is closed under arbitrary intersections.
Observe that the smallest convexity structure is the family A(M) of all admissible

subsets of M .
We say that a convexity structure S of M is compact if each descending chain of

nonempty sets in S has a nonempty intersection.
A convexity structure S is said to be normal if for each A ∈ S, we have either

δ(A) = 0 or r(A) < δ(A).
The following theorem due to M. A. Khamsi plays a crucial role in our subsequent

considerations.

Theorem 5.1. [23] Let (M,d) be a bounded metric space with a convexity structure
A(M) (that is, the family of all admissible subsets of M). If A(M) is compact and
normal, then any commuting family F of nonexpansive self-mappings of M has a
common fixed point.

6. The complex Banach space (`∞(Xj , J), ‖ · ‖∞)

In this section we introduce and study the complex Banach space (`∞(Xj , J), ‖ · ‖∞).
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Definition 6.1. Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖ · ‖j)
be a complex reflexive Banach space. Then

`∞ (Xj , J) := {x = {xj}j∈J ∈
∏
j∈J

Xj : sup
j∈J
‖xj‖j <∞}.

We endow `∞(Xj , J) with the supremum norm ‖ · ‖∞.

In (`∞(Xj , J), ‖ · ‖∞) we also use another topology, namely, the topology σ(X,N )
generated by the following norming set:

N = {x∗ = {x∗j} ∈ (`∞ (Xj , J))
∗

: x∗j ∈ X∗j for each j ∈ J and there exists j′ ∈ J

such that x∗j” = 0 for each j” 6= j′}.
Now we recall a well-known fact regarding holomorphic mappings [12].

Theorem 6.1. Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖ · ‖j)
be a complex reflexive Banach space. Let X be a complex Banach space and D a
nonempty open subset of X. If f : D −→ `∞ (Xj , J) is locally bounded, then the
following two statements are equivalent:

(i) f = {fj} is holomorphic;
(ii) each fj : D −→ Xj is holomorphic.

In (`∞(Xj , J), ‖ · ‖∞) we only consider certain special domains, namely, those
domains generated by the Cartesian product of equi-bounded and convex domains
Dj ⊂ (Xj , ‖ · ‖), j ∈ J.

Definition 6.2. Consider the Banach space (`∞(Xj , J), ‖ · ‖∞). For each j ∈ J ,
we denote by Bj(xj , r) the open ball in (Xj , ‖ · ‖j) centered at xj ∈ Xj and of
radius r > 0. Consider a family of bounded and convex domains {Dj}j∈J , where
∅ 6= Dj ⊂ Xj for each j ∈ J. Assume that there exist numbers 0 < r1 < r2 and a
point x̃ = {x̃j}j∈J ∈ `

∞(Xj , J) such that

Bj(x̃j , r1) ⊂ Dj ⊂ Bj(x̃j , r2)

for each j ∈ J. Then the domain

D = int(
∏
j∈J

Dj) ∈ `∞(Xj , J),

where “int” denotes the interior of a set, is called the bounded and convex domain
in `∞(Xj , J) generated by the Cartesian product of the equi-bounded and convex
domains Dj ⊂ (Xj , ‖ · ‖), j ∈ J .

Using this definition and the above-mentioned norming set in `∞(Xj , J), we can get
a formula for the Kobayashi distance in a bounded and convex domain in `∞(Xj , J),
which is generated by the Cartesian product of equi-bounded and convex domains
Dj ⊂ (Xj , ‖ · ‖), j ∈ J (see also [8] and [29]).

Theorem 6.2. Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖ · ‖j)
be a complex and reflexive Banach space. Let D be a bounded and convex domain in
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`∞(Xj , J) generated by the Cartesian product of equi-bounded and convex domains
Dj ⊂ (Xj , ‖ · ‖), j ∈ J . Then the Kobayashi distance in D is given by

kD (x, y) = sup
j∈J

kDj
(xj , yj)

for each x = {xj} and y = {yj} in D.

Proof. Using the standard projection of `∞ (Xj , J) onto Xj , we get

kDj (xj , yj) ≤ kD(x, y)

for each j ∈ J and consequently,

sup
j∈J

kDj (xj , yj) ≤ kD(x, y).

On the other hand, if we take two distinct points x = {xj} and y = {yj} in D,
then by Theorem 2.7, for each j′ ∈ J with xj′ 6= yj′ , one can find a normalized
complex kDj′ -geodesic fj′ : ∆ → Dj′ , so that f(0) = xj′ , f(zj′) = yj′ , zj′ > 0 and

kDj′ (xj′ , yj′) = k∆(0, zj′). For other j” ∈ J , let fj” : ∆ → Dj” be the constant

function f(z) = xj” = yj” and let zj” = 0. Now, we put

0 < z̃ = sup
j∈J

zj < 1.

Then setting

sj =
zj
z̃

and

gj(z) = fj(sjz)

for z ∈ ∆ and j ∈ J , we get a mapping g : ∆→ D such that g(0) = x and g(z̃) = y.
By Theorem 6.1, this mapping g is holomorphic. Hence we have

kD (x, y) ≤ k∆(0, z̃) = sup
j∈J

kDj (xj , yj) .

So

kD (x, y) = sup
j∈J

kDj (xj , yj)

and the proof is complete. �

7. Local admissibility of a domain D in `∞(Xj , J) generated by the
Cartesian product of equi-bounded, convex and locally

equi-uniformly linearly convex domains Dj in (Xj , ‖ · ‖), j ∈ J

Before we consider the common fixed point set of a commuting family of holo-
morphic mappings in a domain D in `∞(Xj , J) generated by the Cartesian product
of equi-bounded, convex and locally equi-uniformly linearly convex domains Dj in
(Xj , ‖ · ‖), j ∈ J , we present the following theorem.
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Theorem 7.1. Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖·‖j) be
a complex and reflexive Banach space. Let a domain D in `∞(Xj , J) be generated by
the Cartesian product of equi-bounded and convex domains Dj in (Xj , ‖·‖), j ∈ J. Let

G =
∏
j∈J

Gj be a kD-bounded product of nonempty, closed and convex subsets Gj of

Dj, j ∈ J . If all (Dj , kDj
) are locally equi-uniformly linearly convex, then the family

A(G) of all admissible sets in the metric space (G, kD) is compact and normal.

Proof. It is sufficient to observe that each nonempty admissible set E in (G, kD) is
a product of nonempty, closed and convex subsets of Dj , which are weakly compact,
and that by assumption, each metric space

(
Dj , kDj

)
is locally equi-uniformly linearly

convex. �

Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖·‖j) be a complex and
reflexive Banach space. Let a domain D in `∞(Xj , J) be generated by the Cartesian
product of equi-bounded and convex domains Dj in (Xj , ‖ · ‖), j ∈ J. We denote by
Fix (f) the fixed point set of a self-mapping f of D and by Fix (F) the common fixed
point set of a family F of self-mappings of D.

Corollary 7.2. Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖ · ‖j)
be a complex and reflexive Banach space. Let a domain D in `∞(Xj , J) be generated
by the Cartesian product of equi-bounded and convex domains Dj in (Xj , ‖ · ‖), j ∈ J.
Let G =

∏
j∈J

Gj be a kD-bounded product of nonempty, closed and convex subsets of

Dj. Assume that all (Dj , kDj ) are locally equi-uniformly linearly convex. If F is a
commuting family of kD-nonexpansive self-mappings of G, then F has a common fixed
point in G.

Proof. It is sufficient to apply Theorems 5.1 and 7.1. �

Corollary 7.3. Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖ · ‖j)
be a complex and reflexive Banach. Let a domain D in `∞(Xj , J) be generated by the
Cartesian product of equi-bounded and convex domains Dj in (Xj , ‖·‖), j ∈ J. Assume
that all (Dj , kDj

) are locally equi-uniformly linearly convex. Let F be a commuting

family of kD-nonexpansive self-mappings of D and let G =
∏
j∈J

Gj be a kD-bounded

product of nonempty, closed and convex subsets of Dj, which is F-invariant. If F has
a common fixed point in D, then F has a common fixed point in G.

Proof. Let x be a common fixed point of F in D and let BkD (x, r) be a closed ball in

(D, kD). For sufficiently large r > 0, the set G̃ = G∩BkD (x, r) ⊂ G is a nonempty, kD-
bounded and F-invariant product of closed and convex subsets of Dj . By Corollary

7.2, F has a common fixed point in G̃. �

Remark 7.1. We remark in passing that the papers [35], [32], [8] and [10] are closely
related to this section.
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8. The common fixed point set of commuting holomorphic
self-mappings of a domain D in `∞(Xj , J) generated by the Cartesian

product of equi-bounded, convex and locally equi-uniformly
linearly convex domains Dj in (Xj , ‖ · ‖), j ∈ J

Now we are able to formulate and establish the main theorem of this paper.

Theorem 8.1. Let J be an infinite set of indices and for each j ∈ J , let (Xj , ‖ · ‖j)
be a complex and reflexive Banach space. Let D be a domain in `∞(Xj , J) generated
by the Cartesian product of equi-bounded and convex domains Dj in (Xj , ‖ · ‖), j ∈ J.
Assume that all (Dj , kDj

) are locally equi-uniformly linearly convex. For any family
F of commuting holomorphic (kD-nonexpansive) self-mappings of D with a nonempty
common fixed point set Fix(F), the set Fix(F) is a holomorphic (kD-nonexpansive)
retract of D.

Proof. We base our proof on Bruck’s method [2], [3] and confine our attention to the
holomorphic case. Let

M∞ = {g : g is a holomorphic self-mapping of D, Fix (F) ⊂ Fix (g)}

and let x0 = {x0j} ∈ Fix (F) be fixed. The set M∞ is a subset of the following
Cartesian product:∏

x∈D

∏
j∈J

{
yj ∈ Dj : kDj (yj , x0j) ≤ kD (x, x0)

}
=
∏
x∈D

∏
j∈J

D′x,j .

Endowing each D′x,j with the weak topology, we obtain that each D′x,j is weakly

compact and therefore, by Tychonoff’s Theorem, the product
∏
x∈D

∏
j∈J

D′x,j is compact

in the product topology or equivalently, the product
∏
x∈D

(
∏
j∈J

D′x,j) is compact in the

product topology of σ(X,N ), where σ(X,N ) is generated by the following norming
set:

N = {x∗ = {x∗j} ∈ (`∞ (Xj , J))
∗

: x∗j ∈ X∗j for each j ∈ J and there exists j′ ∈ J

such that x∗j” = 0 for each j” 6= j′}
(see Section 6). The setM∞ is closed in the above product topology or equivalently,
in the topology of coordinate pointwise σ(X,N )-convergence. This holds by Theorem
2.9 for holomorphic mappings and by Theorem 2.10 in the case of kD-nonexpansive
mappings. Observe that D is compact in the topology σ(X,N ). Now, we define a
preorder ≤ in M∞ as follows: g ≤ h if and only if

kD (g (x) , w) ≤ kD (h (x) , w)

for all w ∈ Fix (F) and x ∈ D. It follows from the compactness of
∏
x∈D

(
∏
j∈J

D′x,j) in

the product topology of σ(X,N ), the lower semicontinuity of kD with respect to the
topology σ(X,N ) (see Theorem 2.8) and the Kuratowski-Zorn Lemma that the set
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M∞ contains a minimal element r. We claim this r is a holomorphic retraction of D
onto Fix (F). Indeed, we only need to show that

r(D) ⊂ Fix (F) .

Assume, contrary to our claim, that there exists y ∈ D such that y0 = r (y) /∈ Fix (F).
Then by the minimality of r in M∞ and the inequality r ◦ r ≤ r, we obtain

kD (r (y0) , w) = kD (r (r (y)) , w)

= kD (r (y) , w) = kD (y0, w) > 0

for all w ∈ Fix (F). We can even glean more information regarding the structure
of the set M∞. Since for each j ∈ J, after interchanging the j-coordinate functions
between two arbitrarily chosen mappings from M∞, we also end up with a mapping
in M∞, and since for each g, h ∈ M∞ and 0 ≤ β ≤ 1, the mapping βg + (1− β)h
also belongs to M∞, for each x ∈ D, the set

M∞(x) = {g(x) : g ∈M∞}

is equal to
∏
j∈J

Dj”, where each Dj” is convex and weakly compact. Let

C = {(g ◦ r)(y0) : g ∈M∞} .

Using the information on the shape ofM∞(x), we see that C is kD-bounded and C =∏
j∈J

Cj , where each Cj is convex and weakly compact. Directly from the definitions

ofM∞, C and r, we obtain that the set C is F-invariant and hence by Corollary 7.3,
C ∩ Fix (F) 6= ∅. Now, we choose an arbitrary point w0 = (g ◦ r) (y0) ∈ C ∩ Fix (F) .
Then by the minimality of r inM∞ and the inequality g ◦ r ≤ r, we get the following
contradiction:

0 < kD (r (y0) , w0) = kD ((g ◦ r) (y0) , w0)

= kD ((g ◦ r) (y0) , (g ◦ r) (y0)) = 0.

This completes the proof of Theorem 8.1. �

Remark 8.1. Recall that the example given in [30] shows that the assumption in the
above theorem that the common fixed point set Fix(F) is nonempty is essential.

Remark 8.2. Theorem 8.1 is an extension of the theorems established in [7] and [10].
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