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Abstract. For linear evolution families in Banach spaces, we establish the robustness of a weaker
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ble and unstable subspaces to be nonuniform and requires nothing from the angles between these
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1. Introduction

The notion of an exponential dichotomy plays an important role in a substantial
part of the theory of differential equations and dynamical systems, most notably in
what concerns topological conjugacies and invariant manifolds. The local instability of
the trajectories caused by the existence of an exponential dichotomy also influences the
global behavior of the system and together with the nontrivial recurrence caused by
the existence of a finite invariant measure turns out to be one of the main mechanisms
for the occurrence of stochastic behavior. Due to the important role played by the
notion of an exponential dichotomy it is important to understand how exponential
dichotomies vary under perturbations. In particular, it is well know that they are
robust. That is, any sufficiently small linear perturbation of an exponential dichotomy
is still an exponential dichotomy. We refer to the books [4, 9, 15] for details and
references on the theory of exponential dichotomies and its applications.

Nevertheless, the existence of an exponential dichotomy is often a stringent re-
quirement for the dynamics and it is of interest to look for more general types of
hyperbolic behavior. The notion of nonuniform exponential dichotomy turns out to
be much more typical, in particular in view of its ubiquity in the context of ergodic
theory. We refer to the books [1, 3] for details and reference on the measure-theoretical
and nonuniform parts of the theory. It is also of utmost interest to obtain information
on the persistence of the hyperbolic behavior under sufficiently small linear pertur-
bations. While in general the Lyapunov exponents need not be continuous on the
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dynamics (see [1]), it is nevertheless possible to give reasonable assumptions under
which one can establish a corresponding robustness property (see [3] for details, based
on our work [2]).

In this paper, we would like to propose a slightly different and in fact broader
perspective of the robustness problem. As a preliminary discussion, let us return to
the notion of (uniform) exponential dichotomy. The main requirement of this notion
is the existence of contraction and expansion bounds along subspaces that together
generate the whole space. But there is a second aspect, many times crucial, that
often is not stressed sufficiently: the angles between the stable and unstable spaces
(or the norms of the corresponding projections, in the infinite-dimensional setting)
are uniformly bounded away from zero. Indeed, the continuity of these subspaces on
the base point guarantees automatically that the angles between them are bounded
away from zero on compact hyperbolic sets and so along any trajectory in such sets.
We note that the fact that the angle is bounded away from zero (together with a lower
bound on the size of the stable and unstable manifolds) is the starting point for the
construction of a local product structure and so of Markov partitions. However, this
is not necessarily the case in noncompact invariant sets, such as for example when one
considers geodesic flows on certain noncompact factors of manifolds of nonconstant
negative curvature.

The outcome of the above discussion is that it is equally possible that:

(1) the contraction and expansion along the stable and unstable spaces are not
uniform (which is the general situation even when all Lyapunov exponents
are nonzero with respect to an ergodic invariant measure);

(2) the angle between the stable and unstable spaces goes to zero at some
points (in the context of ergodic theory the angles go to zero at most sub-
exponentially for almost all trajectories, although in a zero measure set that
may be dense and have full topological entropy the angle can in principle go
to zero at any prescribed speed).

In our former work [2], we established a version of the robustness property when the
expansion and contraction rates may deteriorate exponentially and simultaneously
the angles may go to zero exponentially (as explained before, this setting is strongly
motivated by results of ergodic theory).

In contrast, in the present work, our main aim is to effect a corresponding study
when the angle between the stable and unstable spaces is not known a priori. More
precisely, we still require that there exist contraction and expansion along stable and
unstable subspaces but no requirement is made on the relative position of these spaces.
Certainly, there is less to prove in the corresponding robustness property since now we
only need to show that any sufficiently small linear perturbation has again contraction
and contraction along (perturbed) stable and unstable subspaces. On the other hand,
one cannot use any a priori knowledge about the angles between the original stable
and unstable spaces. We emphasize that this information was used in a crucial manner
in [2] and, to the best of our knowledge, either in this manner or in some equivalent
form (such as in terms of norms of projections) in all former works on the robustness
property in the uniform case. Our proofs exhibit the dichotomies of the perturbed
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dynamics as explicitly as possible, in terms of fixed points of appropriate contractions.
Some of our arguments are inspired by work of Popescu in [14] in the uniform case.

In the case of uniform exponential dichotomies the study of robustness has a long
history. In particular, it was discussed by Massera and Schäffer [8] (building on
earlier work of Perron [12]; see also [9]), Coppel [6], and in the case of Banach spaces
by Dalec′kĭı and Krĕın [7], with different approaches and successive generalizations.
The continuous dependence of the projections for the exponential dichotomies of the
perturbed equations was obtained by Palmer [11]. For more recent works we refer to
[5, 10, 13, 14] and the references therein.

2. Robustness of exponential dichotomies

In this section we establish the robustness of a weak version of exponential di-
chotomy. We consider the general case of a linear dynamics that need not be invert-
ible.

We denote by B(X) the space of bounded linear operators in a Banach space X.
Let T (t, s) be an evolution family of linear operators in B(X) for t, s ∈ R with t ≥ s.
This means that:

(1) T (t, t) = Id and

T (t, τ)T (τ, s) = T (t, s), t ≥ τ ≥ s;

(2) (t, s, x) 7→ T (t, s)x is continuous in {(t, s, x) ∈ R2 ×X : t ≥ s}.
The evolution family T (t, s) is said to admit a nonuniform dichotomy if:

(1) there exist decompositions X = E(t)⊕ F (t) for each t ∈ R satisfying

T (t, s)E(s) = E(t) and T (t, s)F (s) = F (t) (2.1)

for t ≥ s, such that the map

T (t, s) := T (t, s)|F (s) : F (s)→ F (t)

is invertible for each t ≥ s;
(2) there exist constants λ,D > 0 and a ≥ 0 such that

‖T (t, s)y‖ ≤ De−λ(t−s)+a|s|‖y‖, t ≥ s, y ∈ E(s)

and

‖T (t, s)z‖ ≤ De−λ(s−t)+a|s|‖z‖, s ≥ t, z ∈ F (s),

where

T (t, s) = T (s, t)−1|F (s), t ≤ s.
Now let P (t) and Q(t) = Id − P (t) be the projections associated respectively to
the spaces E(t) and F (t) in the decomposition X = E(t) ⊕ F (t). It follows readily
from (2.1) that

T (t, s)P (s) = P (t)T (t, s), t ≥ s.
We also consider the perturbed equation

u(t) = T (t, s)u(s) +

∫ t

s

T (t, τ)B(τ)u(τ) dτ, t ≥ s, (2.2)
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for some function B : R → B(X) such that t 7→ B(t)x is continuous for each x ∈ X.

We always assume that equation (2.2) defines an evolution family T̂ (t, s) of bounded
linear operators.

The following is our robustness result for nonuniform dichotomies.

Theorem 2.1. Let T (t, s) be an evolution family admitting a nonuniform dichotomy
with λ > 2a > 0 and assume that

‖B(t)‖ ≤ δe−2a|t|

‖P (t)‖+ ‖Q(t)‖
, t ∈ R.

If δ is sufficiently small, then the evolution family T̂ (t, s) defined by equation (2.2)
admits a nonuniform dichotomy, with the constants λ and a replaced respectively by
λ and 2a.

Proof. We divide the proof of the theorem into several steps.

Step 1. Construction of bounded solutions I. We first construct bounded solutions
into the future. Given s ∈ R, let

Is = {t ∈ R : t ≥ s}.

We consider the Banach space

C =
{
U : Is → B(X) continuous: U(t)Q(s) = 0 for t ≥ s and ‖U‖ < +∞

}
,

with the norm

‖U‖ = sup
{
‖U(t)‖eλ(t−s)−a|s| : t ∈ Is

}
,

where B(E(s), X) is the space of bounded linear operators from E(s) to X.

Lemma 2.2. If δ is sufficiently small, then for each s ∈ R there exists a unique U =
Us ∈ C such that

U(t) = T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)U(τ) dτ

−
∫ ∞
t

T (t, τ)Q(τ)B(τ)U(τ) dτ

(2.3)

for t ∈ Is. Moreover, for each ξ ∈ X the function

u(t) = U(t)ξ = U(t)P (s)ξ, t ≥ s

is a solution of equation (2.2).

Proof of the lemma. We show that the operator L defined for each U ∈ C by

(LU)(t) = T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)U(τ) dτ

−
∫ ∞
t

T (t, τ)Q(τ)B(τ)U(τ) dτ

(2.4)
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has a unique fixed point in C. We first note that∫ ∞
t

‖T (t, τ)Q(τ)B(τ)U(τ)‖ dτ ≤ Dδe−λ(t−s)+a|s|‖U‖
∫ ∞
t

e−2λ(τ−t) dτ

=
D

2λ
δe−λ(t−s)+a|s|‖U‖ < +∞.

Therefore, (LU)(t) is well defined and

‖(LU)(t)‖ ≤ ‖T (t, s)|E(s)‖ · ‖P (s)‖+

∫ t

s

‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖U(τ)‖ dτ

+

∫ ∞
t

‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ · ‖U(τ)‖ dτ

≤ De−λ(t−s)+a|s|‖P (s)‖+Dδe−λ(t−s)+a|s|‖U‖
∫ t

s

e−2a|τ | dτ

+Dδe−λ(t−s)+a|s|‖U‖
∫ ∞
t

e−2λ(τ−t) dτ

≤ De−λ(t−s)+a|s|‖P (s)‖+
D

a
δe−λ(t−s)+a|s|‖U‖

+
D

2λ
δe−λ(t−s)+a|s|‖U‖.

(2.5)

This implies that

‖LU‖ ≤ D‖P (s)‖+ δD
(1

a
+

1

2λ

)
‖U‖ < +∞, (2.6)

and we obtain a well defined operator L : C → C. Using (2.4) and proceeding in a
similar manner to that in (2.5), we also obtain

‖LU1 − LU2‖ ≤ δD
(1

a
+

1

2λ

)
‖U1 − U2‖

for U1, U2 ∈ C. Therefore, for any sufficiently small δ the operator L is a contraction
and there exists a unique Us ∈ C such that LUs = Us.

Finally, we note that

U(t)− T (t, s)U(s) = T (t, s)P (s)− T (t, s)P (s) +

∫ t

s

T (t, τ)P (τ)B(τ)U(τ) dτ

+

∫ t

s

T (t, τ)Q(τ)B(τ)U(τ) dτ

=

∫ t

s

T (t, τ)B(τ)U(τ) dτ

for each t ≥ s. This completes the proof of the lemma. �

Now let Ū(t, s) : X → X be the linear operator Ū(t, s) = Us(t).

Lemma 2.3. If δ is sufficiently small, then

Ū(t, τ)Ū(τ, s) = Ū(t, s), t ≥ τ ≥ s.
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Proof of the lemma. We first note that

Ū(t, τ)Ū(τ, s) = T (t, s)P (s) +

∫ τ

s

T (t, σ)P (σ)B(σ)Ū(σ, τ)Ū(τ, s) dσ

+

∫ t

τ

T (t, σ)P (σ)B(σ)Ū(σ, τ)Ū(τ, s) dσ

−
∫ ∞
t

T (t, σ)Q(σ)B(σ)Ū(σ, τ)Ū(τ, s) dσ.

Given τ, s ∈ R with τ ≥ s, we consider the Banach space

Cτ =
{
H : Iτ → B(X) : H is continuous and ‖H‖τ < +∞

}
,

with the norm

‖H‖τ = sup
{
‖H(t)‖e−2a|t| : t ∈ Iτ

}
.

Writing

h(t) = Ū(t, τ)Ū(τ, s)− Ū(t, s)

for t ≥ τ , one can show that L1h = h, where

(L1H)(t) =

∫ t

τ

T (t, σ)P (σ)B(σ)H(σ) dσ −
∫ ∞
t

T (t, σ)Q(σ)B(σ)H(σ) dσ.

for each H ∈ Cτ and t ∈ Iτ . We have∫ t

τ

‖T (t, σ)P (σ)‖ · ‖B(σ)‖ · ‖H(σ)‖ dσ

+

∫ ∞
t

‖T (t, σ)Q(σ)‖ · ‖B(σ)‖ · ‖H(σ)‖ dσ

≤ D

λ
δ‖H‖τ +

D

λ
δ‖H‖τ =

2D

λ
δ‖H‖τ .

This shows that (L1H)(t) is well defined and that

‖L1H‖τ ≤
2D

λ
δ‖H‖τ < +∞.

We thus obtain an operator L1 : Cτ → Cτ . Moreover, for each H1, H2 ∈ Cτ and t ≥ τ ,
we have

‖(L1H1)(t)− (L1H2)(t)‖ ≤
∫ t

τ

‖T (t, σ)P (σ)‖ · ‖B(σ)‖ · ‖H1(σ)−H2(σ)‖ dσ

+

∫ ∞
t

‖T (t, σ)Q(σ)‖ · ‖B(σ)‖ · ‖H1(σ)−H2(σ)‖ dσ

≤ D

λ
δ‖H1 −H2‖τ +

D

λ
δ‖H1 −H2‖τ =

2D

λ
δ‖H1 −H2‖τ .

Therefore,

‖L1H1 − L1H2‖τ ≤
2D

λ
δ‖H1 −H2‖τ .
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This shows that for δ sufficiently small the operator L1 is a contraction, and hence,
there exists a unique H ∈ Cτ such that L1H = H. Since 0 ∈ Cτ also satisfies this
identity, we have H = 0. Now we show that h ∈ Cτ . It follows from Lemma 2.2 that

‖Ū(t, τ)Ū(τ, s)‖ ≤ ‖Ū(t, τ)‖ · ‖Ū(τ, s)‖

≤ ‖U‖2e−λ(t−s)+a(|τ |+|s|)

≤ ‖U‖2e−λ(t−s)ea(t−τ)ea(t−s)e2a|t|

≤ ‖U‖2e(2a−λ)(t−s)e2a|t|

and

‖Ū(t, s)‖ ≤ ‖U‖e−λ(t−s)+a|s| ≤ ‖U‖e(a−λ)(t−s)+a|t| ≤ ‖U‖e2a|t|

for t ≥ τ ≥ s. Since λ ≥ 2a, this shows that h ∈ Cτ and it follows from the uniqueness
of the fixed point of L1 that h = 0. �

Step 2. Construction of bounded solutions II. Now we construct bounded solutions
into the past. Consider the set Js = {t ∈ R : t ≤ s} and the Banach space

D =
{
V : Js → B(X) continuous: V (t)P (s) = 0 for t ≤ s and ‖V ‖ < +∞

}
,

with the norm

‖V ‖ = sup
{
‖V (t)‖e−λ(t−s)−a|s| : t ∈ Js

}
.

Lemma 2.4. If δ is sufficiently small, then for each s ∈ R there exists a unique V =
Vs ∈ D such that

V (t) = T (t, s)Q(s) +

∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ) dτ

−
∫ s

t

T (t, τ)Q(τ)B(τ)V (τ) dτ.

(2.7)

for t ∈ Js. Moreover, for each ξ ∈ X the function

V (t) = V (t)ξ = V (t)Q(s)ξ, t ≤ s

is a solution of equation (2.2).

Proof of the lemma. We show that the operator M defined for each V ∈ D by

(MV )(t) = T (t, s)Q(s) +

∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ) dτ

−
∫ s

t

T (t, τ)Q(τ)B(τ)V (τ) dτ

(2.8)

has a unique fixed point in D. We first note that∫ t

−∞
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖V (τ)‖ dτ ≤ Dδeλ(t−s)+a|s|‖V ‖

∫ t

−∞
e2λ(τ−t) dτ

≤ D

2λ
δeλ(t−s)+a|s|‖V ‖.
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Therefore, (MV )(t) is well defined, and

‖(MV )(t)‖ ≤ ‖T (t, s)|F (s)‖ · ‖Q(s)‖+

∫ t

−∞
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖V (τ)‖ dτ

+

∫ s

t

‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ · ‖V (τ)‖ dτ

≤ Deλ(t−s)+a|s|‖Q(s)‖+Dδeλ(t−s)+a|s|‖V ‖
∫ t

−∞
e2λ(τ−t) dτ

+Dδeλ(t−s)+a|s|‖V ‖
∫ s

t

e−2a|τ | dτ

≤ Deλ(t−s)+a|s|‖Q(s)‖+
D

2λ
δeλ(t−s)+as‖V ‖

+
D

a
δeλ(t−s)+a|s|‖V ‖.

(2.9)

This implies that

‖MV ‖ ≤ D‖Q(s)‖+ δD
( 1

2λ
+

1

a

)
‖V ‖ < +∞, (2.10)

and we obtain a well defined operator M : D → D. Using (2.8) and proceeding in a
similar manner to that in (2.9), we also obtain

‖MV1 −MV2‖ ≤ δD
( 1

2λ
+

1

a

)
‖V1 − V2‖

for V1, V2 ∈ D. Therefore, for any sufficiently small δ the operator M is a contraction
and there exists a unique Vs ∈ D such that MVs = Vs.

Moreover, we have

V (s)− T (s, t)V (t) = Q(s) +

∫ s

−∞
T (s, τ)P (τ)B(τ)V (τ) dτ − T (s, t)T (t, s)Q(s)

−T (s, t)

(∫ t

−∞
T (t, τ)P (τ)B(τ)V (τ) dτ +

∫ s

t

T (t, τ)Q(τ)B(τ)V (τ) dτ

)
= Q(s) +

∫ t

−∞
T (s, τ)P (τ)B(τ)V (τ) dτ +

∫ s

t

T (s, τ)P (τ)B(τ)V (τ) dτ

−Q(s)−
∫ t

−∞
T (s, τ)P (τ)B(τ)V (τ) dτ +

∫ s

t

T (s, τ)Q(τ)B(τ)V (τ) dτ

=

∫ s

t

T (s, τ)P (τ)B(τ)V (τ) dτ +

∫ s

t

T (s, τ)Q(τ)B(τ)V (τ) dτ

=

∫ s

t

T (s, τ)B(τ)V (τ) dτ

for each t ≤ s. This completes the proof of the lemma. �

Now let V̄ (t, s) : X → X be the linear operator V̄ (t, s) = Vs(t).
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Lemma 2.5. If δ is sufficiently small, then

V̄ (t, τ)V̄ (τ, s) = V̄ (t, s), t ≤ τ ≤ s.

Proof of the lemma. The argument is analogous to that in the proof of Lemma 2.3.
We have

V̄ (t, τ)V̄ (τ, s) = T (t, s)Q(s)−
∫ s

τ

T (t, σ)Q(σ)B(σ)V̄ (σ, s) dσ

+

∫ t

−∞
T (t, σ)P (σ)B(σ)V̄ (σ, τ)V̄ (τ, s) dσ

−
∫ τ

t

T (t, σ)Q(σ)B(σ)V̄ (σ, τ)V̄ (τ, s) dσ.

Given τ, s ∈ R with τ ≤ s, consider the Banach space

Dτ =
{
H̄ : Jτ → B(X) : H̄ is continuous and ‖H̄‖τ < +∞

}
,

with the norm

‖H̄‖τ = sup
{
‖H̄(t)‖e−2a|t| : t ∈ Jτ

}
.

Writing

h̄(t) = V̄ (t, τ)V̄ (τ, s)− V̄ (t, s)

for t ≤ τ , one can show that M1h̄ = h̄, where

(M1H̄)(t) =

∫ t

−∞
T (t, σ)P (σ)B(σ)H̄(σ) dσ −

∫ τ

t

T (t, σ)Q(σ)B(σ)H̄(σ) dσ

for each H̄ ∈ Dτ and t ∈ Jτ . Proceeding in a similar manner to that in the proof of
Lemma 2.3, one can show that 0 is the unique fixed point of M1 in Dτ . Since h̄ ∈ Dτ ,
we conclude that h̄ = 0. �

Step 3. Characterization of the bounded solutions. In the following two lemmas we
show that all bounded solutions of equation (2.2) with a certain growth are those
constructed in Lemmas 2.2 and 2.4.

We start with the solutions into the future.

Lemma 2.6. Given s ∈ R, if y : [s,+∞)→ X is a bounded solution of equation (2.2)
with y(s) = ξ and t 7→ Q(t)y(t) is bounded for t ≥ s, then y(t) = Ū(t, s)ξ for t ≥ s.

Proof of the lemma. For each p ≥ t ≥ s, we have

P (t)y(t) = T (t, s)P (s)ξ +

∫ t

s

T (t, τ)P (τ)B(τ)y(τ) dτ (2.11)

and

Q(p)y(p) = T (p, t)Q(t)y(t) +

∫ p

t

T (p, τ)Q(τ)B(τ)y(τ) dτ.

The last identity can be written in the form

Q(t)y(t) = T (t, p)Q(p)y(p)−
∫ p

t

T (t, τ)Q(τ)B(τ)y(τ) dτ. (2.12)
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Since Q(t)y(t) is bounded, we have

‖T (t, p)Q(p)y(p)‖ ≤ CDe−λ(p−t)+a|p|

for some constant C > 0. Since λ > 2a, taking limits in (2.12) when p → +∞, we
obtain

Q(t)y(t) = −
∫ +∞

t

T (t, τ)Q(τ)B(τ)y(τ) dτ.

Adding this identity to (2.11) yields the identity

y(t) = T (t, s)P (s)ξ +

∫ t

s

T (t, τ)P (τ)B(τ)y(τ) dτ

−
∫ ∞
t

T (t, τ)Q(τ)B(τ)y(τ) dτ

(2.13)

for t ≥ s. Now let z(t) = y(t)− Ū(t, s)ξ. It follows from Lemma 2.2 and (2.13) that

z(t) = −
∫ ∞
t

T (t, τ)Q(τ)B(τ)
(
y(τ)− Ū(τ, s)ξ

)
dτ

= −
∫ ∞
t

T (t, τ)Q(τ)B(τ)z(τ) dτ.

Letting
‖z‖∞ = sup

t≥s
‖z(t)‖,

we obtain

‖z(t)‖ ≤
∫ ∞
t

‖T (t, τ)|F (τ)‖ · ‖Q(τ)‖ · ‖B(τ)‖ · ‖z(τ)‖ dτ

≤ δD‖z‖∞
∫ ∞
t

e−λ(τ−t)+a|τ |e−2a|τ | dτ

≤ δD

λ
‖z‖∞

and thus,

‖z‖∞ ≤
δD

λ
‖z‖∞.

Taking δ sufficiently small, we conclude that ‖z‖∞ = 0 and z(t) = 0 for all t ≥ s.
This yields that y(t) = Ū(t, s)ξ for t ≥ s. �

Now we consider the solutions into the past.

Lemma 2.7. Given s ∈ R, if y : (−∞, s]→ X is a bounded solution of equation (2.2)
with y(s) = ξ and t 7→ P (t)y(t) is bounded for t ≤ s, then y(t) = V̄ (t, s)ξ for t ≤ s.

Proof of the lemma. For each p ≤ t ≤ s, we have

P (t)x(t) = T (t, p)P (p)y(p) +

∫ t

p

T (t, τ)P (τ)B(τ)y(τ) dτ (2.14)

and

Q(s)ξ = T (s, t)Q(t)y(t) +

∫ s

t

T (s, τ)Q(τ)B(τ)y(τ) dτ. (2.15)
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Since

‖T (t, p)P (p)y(p)‖ ≤ CDe−λ(t−p)+a|p|,

for some constant C > 0, and λ > 2a, taking limits in (2.14) when p → −∞, we
obtain

P (t)y(t) =

∫ t

−∞
T (t, τ)P (τ)B(τ)y(τ) dτ. (2.16)

On the other hand, by (2.15), we have

Q(t)y(t) = T (t, s)Q(s)ξ −
∫ s

t

T (t, τ)Q(τ)B(τ)y(τ) dτ. (2.17)

Adding (2.16) and (2.17) yields the identity

y(t) = T (t, s)Q(s)ξ +

∫ t

−∞
T (t, τ)P (τ)B(τ)y(τ) dτ

−
∫ s

t

T (t, τ)Q(τ)B(τ)y(τ) dτ

for t ≤ s. Now let w(t) = y(t)− V̄ (t, s)ξ. It follows from Lemma 2.4 that

w(t) =

∫ t

−∞
T (t, τ)P (τ)B(τ)

(
y(τ)− V̄ (τ, s)ξ

)
dτ

=

∫ t

−∞
T (t, τ)P (τ)B(τ)w(τ) dτ.

Letting

‖w‖∞ = sup
t≤s
‖w(t)‖,

we obtain

‖w(t)‖ ≤
∫ t

−∞
‖T (t, τ)|E(τ)‖ · ‖P (τ)‖ · ‖B(τ)‖ · ‖w(τ)‖ dτ

≤ δD‖w‖∞
∫ t

−∞
e−λ(t−τ)+a|τ |e−2a|τ | dτ

≤ δD

λ
‖w‖∞

and thus,

‖w‖∞ ≤
δD

λ
‖w‖∞.

Taking δ sufficiently small, we conclude that ‖w‖∞ = 0 and w(t) = 0 for all t ≤ s.
This yields that y(t) = V̄ (t, s)ξ for t ≤ s. �
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Step 4. Construction of invariant subspaces. Now we construct stable and unstable
invariant subspaces for the perturbed equation. For this we observe that the stable
and unstable subspaces should correspond to the bounded solutions respectively into
the future and into the past. However, since the perturbed dynamics need not be
invertible this requires a special care when establishing the invariance of the subspaces.

For each t ∈ R, we consider the linear subspaces

Ê(t) = Im Ū(t, t) and F̂ (t) = Im V̄ (t, t).

Lemma 2.8. For each t, s ∈ R with t ≥ s, we have

Ê(t) = T̂ (t, s)Ê(s) and F̂ (t) = T̂ (t, s)F̂ (s),

provided that δ is sufficiently small.

Proof of the lemma. By Lemma 2.2, for each ξ ∈ X the function Ū(t, s)ξ, t ≥ s
is a solution of equation (2.2) with initial condition at time s equal to Ū(s, s)ξ.

Therefore, Ū(t, s) = T̂ (t, s)Ū(s, s), where T̂ (t, s) is the evolution operator associated
to equation (2.2). Hence, by Lemma 2.3,

T̂ (t, s)Ê(s) = Im Ū(t, s)

= Im
(
Ū(t, t)Ū(t, s)

)
= Ū(t, t) Im Ū(t, s) ⊂ Ê(t)

for t ≥ s. Similarly, by Lemma 2.4, the function V̄ (t, s)ξ, t ≤ s is a solution of
equation (2.2), and hence,

V̄ (s, s) = T̂ (s, t)V̄ (t, s). (2.18)

This implies that

F̂ (s) = T̂ (s, t) Im V̄ (t, s)

= T̂ (s, t) Im
(
V̄ (t, t)V̄ (t, s)

)
⊂ T̂ (s, t)F̂ (t)

for t ≤ s.
Now we establish the reverse inclusions. For this we use Lemmas 2.6 and 2.7.

Take x ∈ Ê(t) and y ∈ T̂ (t, s)−1x. Then T̂ (τ, s)y = T̂ (τ, t)x for each τ ≥ t. Since

x ∈ Ê(t) = Im Ū(t, t), we have x = Ū(t, t)z for some z ∈ X and hence,

T̂ (τ, s)y = T̂ (τ, t)Ū(t, t)z = Ū(τ, t)z.

By (2.3), we have

Q(τ)T̂ (τ, s)y = Q(τ)Ū(τ, t)z = −
∫ ∞
τ

T (τ, r)Q(r)B(r)Ū(r, t)z dr.
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Thus, for τ ≥ t ≥ s we obtain

‖Q(τ)T̂ (τ, s)y‖ ≤
∫ ∞
τ

‖T (τ, r)|F (r)‖ · ‖Q(r)‖ · ‖B(r)‖ · ‖Ū(r, t)‖ · ‖z‖ dr

≤ Dδe−λ(τ−t)+a|t|‖U‖ · ‖z‖
∫ ∞
τ

e−2λ(r−τ) dr

≤ D

2λ
δe−λ(τ−t)+a|t|‖U‖ · ‖z‖ < +∞.

It follows from Lemma 2.6 that T̂ (τ, s)y = Ū(τ, s)y for τ ≥ s. In particular,

y = T̂ (s, s)y = Ū(s, s)y ∈ Ê(s).

Therefore, x = T̂ (t, s)y ∈ T̂ (t, s)Ê(s) and we obtain Ê(t) ⊂ T̂ (t, s)Ê(s). This estab-

lishes the first identity in the lemma. For the second identity, take x ∈ T̂ (s, t)F̂ (t)

and y ∈ T̂ (s, t)−1x with y = V̄ (t, t)z for some z ∈ X. Then the function V (τ, t)z,
τ ≤ t satisfies the hypothesis of Lemma 2.7 and the same happens with

(−∞, s] 3 τ 7→

{
V̄ (τ, t)z, τ ≤ t,
T̂ (τ, t)V̄ (t, t)z, t ≤ τ ≤ s.

(2.19)

By (2.7), we have

P (τ)T̂ (τ, s)y = P (τ)V̄ (τ, t)z =

∫ τ

−∞
T (τ, r)P (r)B(r)V̄ (r, t)z dr.

Thus, for τ ≤ t ≤ s we obtain

‖P (τ)T̂ (τ, s)y‖ ≤
∫ τ

−∞
‖T (τ, r)|E(r)‖ · ‖P (r)‖ · ‖B(r)‖ · ‖V̄ (r, t)‖ · ‖z‖ dr

≤ Dδe−λ(t−τ)+a|t|‖V ‖ · ‖z‖
∫ τ

−∞
e2λ(r−τ) dr

≤ D

2λ
δe−λ(t−τ)+a|t|‖V ‖ · ‖z‖ < +∞.

Hence, it follows from Lemma 2.7 that V̄ (τ, t)z = V̄ (τ, s)w, τ ≤ t for some w ∈ X.
In particular, by (2.18),

x = T̂ (s, t)V̄ (t, t)z = T̂ (s, t)V̄ (t, s)w = V̄ (s, s)w.

This shows that x ∈ F̂ (s), and hence T̂ (s, t)F̂ (t) ⊂ F̂ (s). This completes the proof of
the lemma. �

We first show that the dynamics is invertible along the spaces F̂ (t). Since

V̄ (s, s)2 = V̄ (s, s), restricting identity (2.18) to F̂ (s) yields the identity

IdF̂ (s) = V̄ (s, s)|F̂ (s) = T̂ (s, t)V̄ (t, s)|F̂ (s). (2.20)

Now we show that V̄ (t, s)F̂ (s) = F̂ (t) for t ≤ s. Since

V̄ (t, s) = V̄ (t, t)V̄ (t, s),

we have
V̄ (t, s)F̂ (s) ⊂ Im V̄ (t, t) = F̂ (t).
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For the reverse inclusion, we use a particular case of the argument in the former
lemma. Indeed, take x ∈ F̂ (t) and z ∈ X such that x = V̄ (t, t)z. Then the function
in (2.19) satisfies the hypotheses of Lemma 2.7 and V̄ (τ, t)z = V̄ (τ, s)w, τ ≤ t for
some w ∈ X. This shows that

x = V̄ (t, t)z = V̄ (t, s)w = V̄ (t, s)V̄ (s, s)w ∈ V̄ (t, s)F̂ (s).

Therefore, V̄ (t, s)F̂ (s) = F̂ (t). Hence it follows from (2.20) that the operator

T̂ (s, t)|F̂ (t) is invertible with(
T̂ (s, t)|F̂ (t)

)−1
= V̄ (t, s)|F̂ (s).

It follows from Lemma 2.8 that

T̂ (t, s)|Ê(s) = Ū(t, s)|Ê(s) : Ê(s)→ Ê(t), t ≥ s (2.21)

and (
T̂ (s, t)|F̂ (t)

)−1
= V̄ (t, s)|F̂ (s) : F̂ (s)→ F̂ (t), t ≤ s. (2.22)

Step 5. Exponential bounds along Ê(t) and F̂ (t). Now we obtain the required expo-
nential bounds for the perturbed dynamics.

Lemma 2.9. For δ sufficiently small, there exists K > 0 such that

‖T̂ (t, s)|Ê(s)‖ ≤ Ke−λ(t−s)+a|s|, t ≥ s. (2.23)

Proof of the lemma. It follows from (2.21) together with Lemma 2.3 that

‖T̂ (t, s)|Ê(s)‖ = sup
‖Ū(t, s)y‖
‖Ū(s, s)y‖

,

with the supremum taken over all y ∈ E(s) such that Ū(s, s)y 6= 0. By Lemma 2.2,
we have

‖Ū(t, s)y‖ ≤ ‖U‖e−λ(t−s)+a|s|‖y‖ (2.24)

for every y ∈ E(s). Moreover,

Ū(t, t) = P (t)−
∫ ∞
s

T (s, τ)Q(τ)B(τ)Ū(τ, s) dτ,

which yields the identity

Ū(t, t)y = y −
∫ ∞
s

T (s, τ)Q(τ)B(τ)Ū(τ, s)y dτ.

Using (2.24), we obtain∫ ∞
s

∥∥T (s, τ)Q(τ)B(τ)Ū(τ, s)y
∥∥ dτ ≤ Dδ‖U‖ · ‖y‖ ∫ ∞

s

e−2λ(τ−s) dτ

≤ Dδ

2λ
‖U‖‖y‖
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and thus,

‖Ū(t, t)y‖ ≥ ‖y‖ −
∫ ∞
s

∥∥T (s, τ)Q(τ)B(τ)Ū(τ, s)y
∥∥ dτ

≥ ‖y‖ − Dδ‖U‖
2λ

‖y‖ =

(
1− Dδ‖U‖

2λ

)
‖y‖.

Taking δ sufficiently small so that Dδ‖U‖/(2λ) ≤ 1/2, we obtain

‖Ū(s, s)y‖ ≥ 1

2
‖y‖.

Together with (2.24) this implies that

‖Ū(t, s)y‖
‖Ū(s, s)y‖

≤ ‖U‖e
−λ(t−s)+a|s|‖y‖
‖Ū(s, s)y‖

≤ 2‖U‖e−λ(t−s)+a|s|.

This concludes the proof of the lemma. �

Lemma 2.10. For δ sufficiently small, there exists K > 0 such that

‖
(
T̂ (s, t)|F̂ (t)

)−1‖ ≤ Ke−λ(s−t)+a|s|, t ≤ s. (2.25)

Proof of the lemma. It follows from (2.22) together with Lemma 2.5 that

‖
(
T̂ (s, t)|F̂ (t)

)−1‖ = sup
‖V̄ (t, s)z‖
‖V̄ (s, s)z‖

,

with the supremum taken over all z ∈ F (s) such that V̄ (s, s)z 6= 0. By Lemma 2.4,
we have

‖V̄ (t, s)z‖ ≤ ‖V ‖eλ(t−s)+a|s|‖z‖ (2.26)

for every z ∈ F (s). Moreover,

V̄ (s, s) = Q(s) +

∫ s

−∞
T (s, τ)P (τ)B(τ)V̄ (τ, s) dτ,

which yields the identity

V̄ (s, s)z = z +

∫ s

−∞
T (s, τ)P (τ)B(τ)V̄ (τ, s)z dτ.

Proceeding as in the proof of Lemma 2.9, we obtain∫ s

−∞

∥∥T (s, τ)P (τ)B(τ)V̄ (τ, s)z
∥∥ dτ ≤ Dδ‖V ‖

2λ
‖z‖

and thus,

‖V̄ (s, s)z‖ ≥
(

1− Dδ‖V ‖
2λ

)
‖z‖.

Taking δ sufficiently small so that Dδ‖U‖/(2λ) ≤ 1/2, we obtain

‖V̄ (s, s)z‖ ≥ 1

2
‖z‖.
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Together with (2.26) this implies that

‖V̄ (t, s)z‖
‖V̄ (s, s)z‖

≤ ‖V ‖e
λ(t−s)+a|s|‖z‖
‖V̄ (s, s)z‖

≤ 2‖V ‖eλ(t−s)+a|s|.

This concludes the proof of the lemma. �

Step 6. Construction of projections. Now we use the results in the former lemmas to
show that Ê(t) and F̂ (t) form a direct sum.

We start with an auxiliary statement about the operators

Ss = Ū(s, s) + V̄ (s, s).

Lemma 2.11. If δ is sufficiently small, then Ss is invertible for every s ∈ R.

Proof of the lemma. We have

Ss = Ū(s, s) + V̄ (s, s) = P (s)−
∫ ∞
s

T (s, τ)Q(τ)B(τ)Ū(τ, s) dτ

+Q(s) +

∫ s

−∞
T (s, τ)P (τ)B(τ)V̄ (τ, s) dτ

and hence,

Ss − Id = −
∫ ∞
s

T (s, τ)Q(τ)B(τ)Ū(τ, s) dτ +

∫ s

−∞
T (s, τ)P (τ)B(τ)V̄ (τ, s) dτ.

Therefore, using Lemmas 2.2 and 2.4, we obtain

‖Ss − Id‖ ≤
∫ ∞
s

‖T (s, τ)|F (τ)‖ · ‖Q(τ)‖ · ‖B(τ)‖ · ‖Ū(τ, s)‖ dτ

+

∫ s

−∞
‖T (s, τ)|E(τ)‖ · ‖P (τ)‖ · ‖B(τ)‖ · ‖V̄ (τ, s)‖ dτ

≤ Dδ‖U‖
∫ ∞
s

e−2λ(τ−s) dτ +Dδ‖V ‖
∫ s

−∞
e2λ(τ−s) dτ

≤ δD

λ

(
‖U‖+ ‖V ‖

)
.

Moreover, it follows from (2.6) and (2.10) that

‖U‖ ≤ D/
(

1− δD
(1

a
+

1

2λ

))
and

‖V ‖ ≤ D/
(

1− δD
(1

a
+

1

2λ

))
.

This implies that for δ sufficiently small (independent of s), the operator Ss is invert-
ible. �

Lemma 2.12. If δ is sufficiently small, then Ê(t)⊕ F̂ (t) = X for each t ∈ R.
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Proof of the lemma. Take ξ ∈ Ê(t) ∩ F̂ (t). It follows from (2.23) and (2.25) that

1

K
eλ(t−s)−a|t|‖ξ‖ ≤ ‖T̂ (t, s)ξ‖ ≤ Ke−λ(t−s)+a|s|‖ξ‖

for each t ≥ s. Since a < λ this implies that ξ = 0. Therefore, Ê(t) ∩ F̂ (t) = {0}.
Moreover, since the operator St is invertible, we have

X = StX ⊂ Im Ū(t, t) + Im V̄ (t, t) = Ê(t) + F̂ (t).

This concludes the proof of the lemma. �

The statements in the theorem follow now readily from the previous lemmas. �
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