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Abstract. Leray–Schauder topological degree theory and approximation-topological approach are
used to the boundary value problem for a system of equations that describes the stationary mathe-

matical model of weak aqueous polymer solutions motion with the smoothed Jaumann’s derivative.

Solvability of this problem in a weak sense is studied.
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1. Introduction

The motion of an incompressible fluid with the constant density filling a bounded
domain Ω ⊂ Rn, n = 2, 3, on a time interval [0, T ], T > 0, is described by the system
of equations in the Cauchy form (see, for example, [1]):

∂v

∂t
+

n∑
i=1

vi
∂v

∂xi
+ grad p = Div σ + f, (1.1)

div v = 0, (t, x) ∈ (0, T )× Ω, (1.2)

where v(x, t) = (v1, ..., vn) is the velocity vector of a particle at the point x at time t,
(v1, ..., vn) are the components of v, p = p(x, t) is the fluid pressure at the point x at
time t, and f = f(x, t) is the density of external forces (also called volumetric) acting
on the fluid. The symbol Div σ stands for the vector( n∑

j=1

∂σ1j

∂xj
,

n∑
j=1

∂σ2j

∂xj
, ...,

n∑
j=1

∂σnj
∂xj

)
,

whose coordinates are the divergence of rows of the matrix σ = (σij(x)), where σ is
the deviator of the stress tensor.
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System (1.1)–(1.2) describes flows of all kinds of fluids, but it contains the deviator
of the stress tensor which is not expressed explicitly via the unknowns of the system.
As a rule, to express the deviator of the stress tensor via the unknowns of system
(1.1)–(1.2) one uses relations between the deviator of the stress tensor and the tensor

of deformation velocities E(v) = (Eij(v))i=1,...,n
j=1,...,n, Eij(v) = 1

2 ( ∂vi∂xj
+
∂vj
∂xi

), and their time

derivatives. By establishing the connection between the deviator of the stress tensor
and the tensor of deformation velocities and their derivatives, we determine the type
of fluid. This relation is called the constitutive or rheological relation and is usually
obtained by the mechanistic model method (see, for example, [2]). In rheology, a
real structure is often replaced by some model by supposing that the behavior of this
model is analogous to the behavior of the structure. This model consists of elements
that do not exist in the real body: springs, pistons, hoists, etc. Note that these
relations are hypotheses to be checked out for concrete fluids by experimental data.

The rheological relation that describes the motion of viscoelastic medium is the
following

σ = 2νE + 2κĖ , (1.3)

where ν > 0 is the viscosity of fluid and κ > 0 is the time of retardation (delay).
This model of fluid motion describes the motion of a viscous non-Newtonian fluid
that needs time to start moving under the action of force instantly applied.

In rheological relation (1.3) we have a time derivative Ė . Unfortunately, method of
mechanistic models does not indicate which derivation we have to use (total, partial
or any special derivative). Mathematical investigations have begun with the consid-
eration of the partial derivative in (1.3). The corresponding model is called the Voigt
model. Then A.P. Oskolkov considered the case of the total derivative [3]. But later
in his work errors were found [4]. In the work [5] a complete proof of the existence of
weak solutions in the model (1.1)–(1.2) with a total derivative was given. Note that
the stationary case of this problem was considered in [6].

In the recent years rational mechanics [7] has influenced scientists in such a way,
that they have started to investigate the rheological relations that are independent of
the observer, i.e. that they do not vary under the Galilean change of variables:

t∗ = t+ a, (1.4)

x∗ = x∗0(t) +Q(t)(t− t0), (1.5)

where a is a time value, x0 is a point in a space, x∗0 is a time function, Q is a time
function with values in the set of orthogonal tensors.

In other words, if the original tensor function changes according to law (1.4)–(1.5),
will the rheological relation be the same in the different reference frames? In the case
of partial and total derivatives the answer is negative. The notion of an objective
derivative enables an affirmative answer to this question.

Definition 1.1. Let G be a symmetric tensor-valued function of two tensor arguments
and T (t, x) be a symmetric tensor-valued function. An operator of the form

DT (t, x)

Dt
=
dT (t, x)

dt
+G(∇v(t, x), T (t, x))
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is called an objective derivative, if for any change of frame (1.4)–(1.5) the equality

D∗T ∗(t, x)

Dt∗
= Q(t)

DT (t, x)

Dt
Q(t)T

holds for all frame-indifferent symmetric tensor-valued functions T (t, x).
An example of an objective derivative of a tensor is the smoothed Jaumann’s

derivative (see [8]):

DT (t, x)

Dt
=
dT (t, x)

dt
+ T (t, x)Wρ(t, x)−Wρ(t, x)T (t, x),

Wρ(v)(t, x) =

∫
Rn

ρ(x− y)W (t, y) dy,

where ρ : Rn → R is a smooth function with compact support such that

∫
Rn

ρ(y) dy = 1

and ρ(x) = ρ(y) for x and y with the same Euclidean norm;

W (v) = (Wij(v))i=1,...,n
j=1,...,n, Wij(v) =

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
is the vorticity tensor.

Substituting the right-hand side of (1.3) with the smoothed Jaumann’s derivative
for σ in equations (1.1)–(1.2) and considering stationary case, we obtain

n∑
i=1

vi
∂v

∂xi
− ν∆v − 2κDiv

(
vk
∂E(v)

∂xk

)
−

− 2κDiv
(
E(v)Wρ(v)−Wρ(v)E(v)

)
+ grad p = f, x ∈ Ω, (1.6)

div v = 0, x ∈ Ω. (1.7)

For system (1.6)–(1.7) we consider the boundary value problem with the boundary
condition

v|∂Ω = 0. (1.8)

In the present paper we study the existence of weak solution of boundary value
problem (1.6)-(1.8) which describes the motion of weak aqueous polymer solutions
filling a bounded domain Ω ⊂ Rn, n = 2, 3, governed by the rheological relation with
smoothed Jaumann’s derivative.

For this investigation the approximation and topological methods are used (see,
for example, [9], [10]). The boundary value problem is considered as an operator
equation. The involved operators often do not possess good properties, therefore
certain approximating of this equation is considered. Then the solvability of this
approximating equation is studied in a more smoothed space. For this purpose, we
apply the technique of the Leray-Schauder topological degree. The last step is the
passage to the limit in the approximating equation as the approximating parameters
tend to zero, and the solutions of the approximating equation converge to a solution
of the original equation.
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2. Weak setting

Denote by C∞0 (Ω)n the space of functions of class C∞ mapping Ω to Rn with
compact support in Ω. Also we will need the definitions of the following function
spaces: V = {v(x) = (v1, . . . , vn) ∈ C∞0 (Ω)n : divv = 0}; V is the closure V with
respect to the norm of space W 1

2 (Ω)n with the scalar product

((v, w)) =

∫
Ω

∇v : ∇w dx.

Here the symbol ∇v : ∇w, v = (v1, . . . , vn), w = (w1, . . . , wn), denotes the
component-wise matrix multiplication:

∇v : ∇w =

n∑
i,j=1

∂vi
∂xj

∂wi
∂xj

.

Let X be the closure of V with respect to the norm of space W 3
2 (Ω)n. Consider the

space X with the norm:

‖v‖X =

(∫
Ω

∇(∆v) : ∇(∆v) dx

)1/2

.

Definition 2.1. Let f belong to V ∗. A weak solution of boundary value problem
(1.6)–(1.8) is a function v ∈ V such that for any ϕ ∈ X it satisfies the equality

ν

∫
Ω

∇v : ∇ϕdx−
∫
Ω

n∑
i,j=1

vivj
∂ϕj
∂xi

dx− κ
∫
Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj
∂xi∂xk

dx−

κ
∫
Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj
∂xi∂xk

dx+ 2κ
∫
Ω

(E(v)Wρ(v)−Wρ(v)E(v)) : ∇ϕdx = 〈f, ϕ〉.

(2.1)

The main result of this paper is the following theorem:

Theorem 2.1. For any f ∈ V ∗ boundary value problem (1.6)–(1.8) has at least one
weak solution v∗ ∈ V.

3. Approximating problem

While studying problem (1.6)–(1.8), we use the approximation-topological ap-
proach to problems of hydrodynamics [10]. In fact, we investigate an approximating
problem with a small parameter ε > 0 :
Approximating problem. To find a function v ∈ X, which for any ϕ ∈ X satisfies
the following equality

ε

∫
Ω

∇ (∆v) : ∇ (∆ϕ) dx−
∫
Ω

n∑
i,j=1

vivj
∂ϕj
∂xi

dx+ ν

∫
Ω

∇v : ∇ϕdx
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−κ
∫
Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj
∂xi∂xk

dx− κ
∫
Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj
∂xi∂xk

dx

+2κ
∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇ϕdx = 〈f, ϕ〉. (3.1)

Note that (3.1) differs from (2.1) by the presence of the term

ε

∫
Ω

∇ (∆v) : ∇ (∆ϕ) dx.

At the first step we obtain a priori estimate of equality (3.1) in space X and
show by means of the topological degree methods that there exists a solution of the
approximating problem in X. Also we obtain in space V an estimate of solutions
to the approximating problem which does not depend on parameter ε. Then we
construct a sequence of such solutions and show that it admits a subsequence that
converges to a weak solution of boundary value problem (1.6)–(1.8) as the parameter
of approximation ε tends to zero.

Consider the following operators:

A : V → V ∗, 〈Av, ϕ〉 =

∫
Ω

∇v : ∇ϕdx, v, ϕ ∈ V ;

N : X → X∗, 〈Nv,ϕ〉 =

∫
Ω

∇(∆v) : ∇(∆ϕ) dx, v, ϕ ∈ X;

B1 : L4(Ω)n → V ∗, 〈B1(v), ϕ〉 =

∫
Ω

n∑
i,j=1

vivj
∂ϕj
∂xi

dx, v ∈ L4(Ω)n, ϕ ∈ V ;

B2 : V → X∗, 〈B2(v), ϕ〉 =

∫
Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj
∂xi∂xk

dx, v ∈ V, ϕ ∈ X;

B3 : V → X∗, 〈B3(v), ϕ〉 =

∫
Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj
∂xi∂xk

dx, v ∈ V, ϕ ∈ X;

D : V → X∗, 〈D(v), ϕ〉 =

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇ϕdx, v ∈ V, ϕ ∈ X.

Since in equality (3.1) the function ϕ ∈ X is arbitrary, this relation is equivalent
to the following operator equation:

εNv + νAv −B1(v)− κB2(v)− κB3(v) + 2κD(v) = f (3.2)

Thus a weak solution of the approximating problem is a solution v ∈ X of operator
equation (3.2).

We also define the following operators:

L : X → X∗, L(v) = εNv;

K : X → X∗, K(v) = νAv −B1(v)− κB2(v)− κB3(v) + 2κD(v).
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The problem of finding a solution of equation (3.2) is equivalent to the problem of
finding a solution for the following operator equation:

L(v) +K(v) = f. (3.3)

We will use the next assertions (the proofs of Lemma 3.1 – Lemma 3.4 can be
found, for example, in [5]).
Lemma 3.1. The operator A : V → V ∗ is continuous and it obeys the estimate:

‖Av‖V ∗ 6 C1‖v‖V .
Moreover, the operator A : X → X∗ is completely continuous.
Lemma 3.2. The operator L : X → X∗ is continuous, invertible and it obeys the
estimate:

‖Lv‖X∗ 6 ε‖v‖X .
Moreover, the inverse operator L−1 : X∗ → X is continuous.
Lemma 3.3. The operator B1 : L4(Ω)n → V ∗ is continuous and it obeys the estimate:

‖B1v‖V ∗ 6 C2‖v‖2L4(Ω)n .

Moreover, the operator B1 : X → X∗ is completely continuous.
Lemma 3.4. The mapping Bi : V → X∗, i = 2, 3, is continuous and it obeys the
estimate:

‖Biv‖X∗ 6 C3‖v‖2V .
Moreover, the operator Bi : X → X∗ is completely continuous.
Lemma 3.5. The operator D : V → X∗ is continuous and it obeys the estimate:

‖D(v)‖X∗ 6 C4‖v‖2V . (3.4)

Proof. We start by estimating E and Wρ.

‖E(v)‖2L2(Ω) =

n∑
i,j=1

‖Eij(v)‖2L2(Ω) 6 C5

n∑
i,j=1

∫
Ω

( ∂vi
∂xj

+
∂vj
∂xi

)2

dx

= C5

n∑
i,j=1

∫
Ω

( ∂vi
∂xj

∂vi
∂xj

+ 2
∂vi
∂xj

∂vj
∂xi

+
∂vj
∂xi

∂vj
∂xi

)
dx

= C5

n∑
i,j=1

[ ∫
Ω

∂vi
∂xj

∂vi
∂xj

dx− 2

∫
Ω

vi
∂2vj
∂xi∂xj

dx+

∫
Ω

∂vj
∂xi

∂vj
∂xi

dx
]

= C5

[ ∫
Ω

∇v : ∇v dx+

∫
Ω

∇v : ∇v dx
]
6 2C5‖v‖2V .

Therefore, ‖E(v)‖L2(Ω) 6 C6‖v‖V .

‖(Wρ)ij(v)‖L2(Ω) 6 ‖(Wρ)ij(v)‖L∞(Ω)

6
1

2
sup
x∈Ω

∣∣∣ ∫
Ω

ρ(x− y)(
∂vi(y)

∂yj
− ∂vj(y)

∂yi
) dy

∣∣∣
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6
1

2
sup
x∈Ω

∣∣∣ ∫
Ω

−∂ρ(x− y)

∂yj
vi(y) +

∂ρ(x− y)

∂yi
vj(y) dy

∣∣∣
6 ‖grad ρ‖L2(Ω)‖v(t)‖L2(Ω).

By definition, for any v ∈ V, ϕ ∈ X we have

|〈D(v), ϕ〉| =

∣∣∣∣∣∣
∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇ϕdx

∣∣∣∣∣∣ 6
6 C7

[
‖E(v)‖L2(Ω)‖Wρ(v)‖L2(Ω) + ‖Wρ(v)‖L2(Ω)‖E(v)‖L2(Ω)

]
‖∇ϕ‖C(Ω)n 6

6 C8‖v‖2V ‖ϕ‖X .

This yields estimate (3.4).
Now prove that the operator D continuous. For any vm, v0 ∈ V we have:∣∣∣〈D(vm), ϕ〉 − 〈D(v0), ϕ〉

∣∣∣ =
∣∣∣ ∫

Ω

(
E(vm)Wρ(v

m)−Wρ(v
m)E(vm)

)
: ∇ϕdx

−
∫
Ω

(
E(v0)Wρ(v

0)−Wρ(v
0)E(v0)

)
: ∇ϕdx

∣∣∣ 6 C9

∣∣∣ ∫
Ω

E(vm)Wρ(v
m)

−Wρ(v
m)E(vm)− E(v0)Wρ(v

0) +Wρ(v
0)E(v0) dx

∣∣∣‖ϕ‖X
6 C9

∣∣∣ ∫
Ω

E(vm)
(
Wρ(v

m)−Wρ(v
0)
)

+
(
E(vm)− E(v0)

)
Wρ(v

0)

−Wρ(v
m)
(
E(vm)− E(v0)

)
−
(
Wρ(v

m)−Wρ(v
0)
)
E(v0) dx

∣∣∣‖ϕ‖X
6 C10

[
‖E(vm)‖L2(Ω)‖Wρ(v

m − v0)‖L2(Ω) + ‖E(vm − v0)‖L2(Ω)

×‖Wρ(v
0)‖L2(Ω) + ‖Wρ(v

m)‖L2(Ω)‖E(vm − v0)‖L2(Ω) + ‖Wρ(v
m − v0)‖L2(Ω)

×‖E(v0)‖L2(Ω)

]
‖ϕ‖X 6 C11

[
‖vm‖V ‖vm − v0‖V + ‖vm − v0‖V ‖v0‖V

+‖vm‖V ‖vm − v0‖V + ‖vm − v0‖V ‖v0‖V
]
‖ϕ‖X

6 C12

(
‖vm‖V + ‖v0‖V

)
‖vm − v0‖V ‖ϕ‖X .

Thus we get
∥∥D(vm)−D(v0)

∥∥
X
6 C13

(
‖vm‖V +

∥∥v0
∥∥
V

) ∥∥vm − v0
∥∥
V
.

Let the sequence {vm} ⊂ V converge to some function v0 ∈ V. Then the continuity
of the mapping D : V → X follows from the previous inequality. �

Lemma 3.6. The operator K : X → X∗ is completely continuous.
Proof. The complete continuity of the operator K : X → X∗ follows from the
complete continuity of the operators

A : X → X∗ Lemma 3.1;

B1 : X → X∗ Lemma 3.3;

B2 : X → X∗ Lemma 3.4;
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B3 : X → X∗ Lemma 3.4;

D : X → X∗ Lemma 3.5. �

Along with equation (3.3) consider the following family of operator equations:

L(v) + λK(v) = λf, λ ∈ [0, 1], (3.5)

which coincides with equation (3.3) for λ = 1.

Theorem 3.1. If v ∈ X is a solution of operator equation (3.5) for some λ ∈ [0, 1],
then the following estimate holds:

ε‖v‖2X 6 C14, where C14 =
‖f‖2V ∗

2ν
. (3.6)

Moreover, if λ = 1, then the following estimate holds:

ν‖v‖2V 6 C15, where C15 =
‖f‖2V ∗
ν

. (3.7)

Proof. Let v ∈ X be a solution of (3.5). Then for any ϕ ∈ X the following equation
holds:

ε

∫
Ω

∇ (∆v) : ∇ (∆ϕ) dx− λ
∫
Ω

n∑
i,j=1

vivj
∂ϕj
∂xi

dx+ λν

∫
Ω

∇v : ∇ϕdx

−λκ
∫
Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj
∂xi∂xk

dx− λκ
∫
Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj
∂xi∂xk

dx

+2λκ
∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇ϕdx = λ〈f, ϕ〉 (3.8)

Note that ∫
Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj
∂xi∂xk

dx+

∫
Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj
∂xi∂xk

dx

= 2

∫
Ω

n∑
i,j,k=1

vk(t)Eij(v)
∂2ϕj
∂xi∂xk

dx = −2

∫
Ω

n∑
i,j,k=1

vk
∂Eij(v)

∂xk

∂ϕj
∂xi

dx

−2

∫
Ω

n∑
i,j,k=1

∂vk
∂xk
Eij(v)

∂ϕj
∂xi

dx = −2

∫
Ω

n∑
i,j,k=1

vk
∂Eij(v)

∂xk

∂ϕj
∂xi

dx.

Then (3.8) can be rewritten in the form

ε

∫
Ω

∇ (∆v) : ∇ (∆ϕ) dx− λ
∫
Ω

n∑
i,j=1

vivj
∂ϕj
∂xi

dx

+λν

∫
Ω

∇v : ∇ϕdx+ 2λκ
∫
Ω

n∑
i,j,k=1

vk
∂Eij(v)

∂xk

∂ϕj
∂xi

dx

+2λκ
∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇ϕdx = λ〈f, ϕ〉.
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Since the latter equation holds for all ϕ ∈ X, it is true for ϕ = v as well:

ε

∫
Ω

∇ (∆v) : ∇ (∆v) dx− λ
∫
Ω

n∑
i,j=1

vivj
∂vj
∂xi

dx

+λν

∫
Ω

∇v : ∇vdx+ 2λκ
∫
Ω

n∑
i,j,k=1

vk
∂Eij(v)

∂xk

∂vj
∂xi

dx

+2λκ
∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇v dx = λ〈f, v〉. (3.9)

We reduce the terms on the left-hand side of the equation (3.9) in the following way:

ε

∫
Ω

∇ (∆v) : ∇ (∆v) dx = ε‖v‖2X ;

∫
Ω

n∑
i,j=1

vivj
∂vj
∂xi

dx =

∫
Ω

n∑
i,j=1

vi
∂(vjvj)

∂xi
dx = −

∫
Ω

n∑
i,j=1

∂vi
∂xi

vjvj dx = 0;

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: ∇v dx =

1

2

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
:

:
(
E(v) +W (v)

)
dx =

1

2

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: E(v) dx

+
1

2

∫
Ω

(
E(v)Wρ(v)−Wρ(v)E(v)

)
: W (v) dx =

1

2

n∑
i,j,k=1

∫
Ω

(
Eij(Wρ)jkEik

−(Wρ)jkEkiEji
)
dx+

1

2

n∑
i,j,k=1

∫
Ω

(
Eij(Wρ)jkWik − (Wρ)kjEjiWki

)
dx

=
1

2

n∑
i,j,k=1

∫
Ω

Eij(Wρ)jkEik − Eij(Wρ)jkEik dx+
1

2

n∑
i,j,k=1

∫
Ω

Eij(Wρ)jkWik

−Eij(Wρ)jkWik dx = 0;∫
Ω

n∑
i,j,k=1

vk
∂Eij(v)

∂xk

∂vj
∂xi

dx =
1

2

(∫
Ω

n∑
i,j,k=1

vk
∂Eij(v)

∂xk

∂vj
∂xi

dx

+

∫
Ω

n∑
i,j,k=1

vk
∂Eij(v)

∂xk

∂vi
∂xj

dx
)

=

∫
Ω

n∑
i,j,k=1

vk
∂ (Eij(v)Eij(v))

∂xk
dx

= −
∫
Ω

n∑
k=1

∂vk
∂xk

n∑
i,j=1

Eij(v)Eij(v)dx = 0.
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Here we take into account that the strain-rate tensor E(v) is symmetric and tensors
Wρ(v) and W (v) are skew-symmetric. Hence, equation (3.9) can be rewritten in the
following form:

ε‖v‖2X + λν‖v‖2V = λ〈f, v〉.
Using the upper estimate of the right-hand side of the latter equation

λ〈f, v〉 6 λ |〈f, v〉| 6 λ‖f‖V ∗‖v‖V 6 ‖f‖V ∗‖v‖V 6 λ
‖f‖2V ∗

2δ
+ λ

δ‖v‖2V
2

for δ = ν we get

ε‖v‖2X + λν‖v‖2V 6 λ
‖f‖2V ∗

2ν
+ λ

ν‖v‖2V
2

,

ε‖v‖2X + λ
ν‖v‖2V

2
6 λ
‖f‖2V ∗

2ν
, ε‖v‖2X 6 λ

‖f‖2V ∗
2ν

6
‖f‖2V ∗

2ν
.

Similarly for λ = 1 we get ν‖v‖2V 6 λ
‖f‖2V ∗
ν

. This proves (3.6) and (3.7). �

Theorem 3.2. Operator equation (3.3) has at least one weak solution v 2 X:
Proof. To prove this theorem we use the Leray-Schauder degree theory for completely
continuous vector fields. By virtue of a priori estimate (3.6), all solutions of family of
equations (3.5) are contained in the ball BR ⊂ X of radius R = C14 + 1. By Lemma
3.6 the mapping [−K(·)+f ] : X → X∗ is completely continuous. By virtue of Lemma
3.2 the operator L−1 : X∗ → X is continuous.

Thus, the mapping L−1 [−K(·) + f ] : X → X is completely continuous. Then the
mapping G : [0, 1] × X → X, G(λ, v) = λL−1 [−K(v) + f ] is completely continuous
with respect to the two-dimensioned argument (λ, v). From the above, we get that
the completely continuous vector field Φ(λ, v) = v − G(λ, v) does not vanish on the
boundary of BR. By the homotopy invariance of the degree we get

degLS(Φ(0, ·), BR, 0) = degLS(Φ(1, ·), BR, 0).

Recall that Φ(0, ·) = I and by the degree normalization property degLS(I,BR, 0) = 1.
Hence, degLS(Φ(1, ·), BR, 0) = 1.

Thus, we see that there exists at least a solution v ∈ X of the equation

v − L−1 [−K(v) + f ] = 0

and, therefore, of equation (3.3).
Since there is a solution v ∈ X of equation (3.3), from the above it follows that

the approximating problem has at least one weak solution v ∈ X. �

4. Proof of Theorem 2.1

Proof. In (2.1), let us take εm =
1

m
. The sequence {εm} converges to zero as

m → +∞. By Theorem 3.2 for any εm there exists a weak solution vm ∈ X ⊂ V of
the approximation problem. Thus, each vm satisfies to the equation

εm

∫
Ω

∇ (∆vm) : ∇ (∆ϕ) dx−
∫
Ω

n∑
i,j=1

(vm)i(vm)j
∂ϕj
∂xi

dx+ ν

∫
Ω

∇vm : ∇ϕdx
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−κ
∫
Ω

n∑
i,j,k=1

(vm)k
∂(vm)i
∂xj

∂2ϕj
∂xi∂xk

dx− κ
∫
Ω

n∑
i,j,k=1

(vm)k
∂(vm)j
∂xi

∂2ϕj
∂xi∂xk

dx

+2κ
∫
Ω

(
E(vm)Wρ(vm)−Wρ(vm)E(vm)

)
: ∇ϕdx = 〈f, ϕ〉. (4.1)

Then by the definition of weak convergence

ν

∫
Ω

∇vm : ∇ϕdx→ ν

∫
Ω

∇v∗ : ∇ϕdx as m→ +∞, ϕ ∈ X.

Then, without loss of generality (passing to a subsequence if needed), from (3.6)
we see that

lim
m→∞

∣∣∣∣∣∣εm
∫
Ω

∇ (∆vm) : ∇ (∆ϕ) dx

∣∣∣∣∣∣ = lim
m→∞

√
εm lim

m→∞

∣∣∣∣∣∣√εm
∫
Ω

∇ (∆vm) : ∇ (∆ϕ) dx

∣∣∣∣∣∣
so we get εm

∫
Ω

∇ (∆vm) : ∇ (∆ϕ) dx→ 0,m→ +∞.

For the remaining integrals we have

κ
∫
Ω

n∑
i,j,k=1

(vm)k
∂(vm)i
∂xj

∂2ϕj
∂xi∂xk

dx→ κ
∫
Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)i
∂xj

∂2ϕj
∂xi∂xk

dx m→ +∞;

κ
∫
Ω

n∑
i,j,k=1

(vm)k
∂(vm)j
∂xi

∂2ϕj
∂xi∂xk

dx→ κ
∫
Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)j
∂xi

∂2ϕj
∂xi∂xk

dx m→ +∞.

Indeed, here the sequence vm converges to v∗ strongly in L4(Ω)n and ∇(vm) con-

verges to ∇v∗ weakly in L2(Ω)n
2

. Thus, their product converges to the product of
their limits.

In the last term we have∫
Ω

(E(vm)Wρ(vm)− E(v∗)Wρ(v∗)) : ∇ϕdx

=

∫
Ω

(E(vm)(Wρ(vm)−Wρ(v∗)) + (E(vm)− E(v∗))Wρ(v∗)) : ∇ϕdx

≤ ‖E(vm)‖L2(Ω)‖∇ϕ‖L2(Ω)‖Wρ(vm−v∗)‖L∞(Ω)
+‖Wρ(v∗)‖L∞(Ω)

∫
Ω

E(vm−v∗) : ∇ϕdx

≤ ‖E(vm)‖L2(Ω)‖∇ϕ‖L2(Ω)‖(vm − v∗)‖L2(Ω) + ‖Wρ(v∗)‖L∞(Ω)

∫
Ω

E(vm − v∗) : ∇ϕdx

≤ ‖E(vm)‖L2(Ω)‖∇ϕ‖L2(Ω)‖(vm−v∗)‖L4(Ω) + +‖Wρ(v∗)‖L∞(Ω)

∫
Ω

E(vm−v∗) : ∇ϕdx.
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Recall that the sequence vm converges to v∗ strongly in L4(Ω)n and ∇(vm) con-

verges to ∇v∗ weakly in L2(Ω)n
2

. Therefore, we have∫
Ω

E(vm)Wρ(vm) : ∇ϕdx→
∫
Ω

E(v∗)Wρ(v∗) : ∇ϕdx m→ +∞.

Similarly we obtain∫
Ω

Wρ(vm)E(vm) : ∇ϕdx→
∫
Ω

Wρ(v∗)E(v∗) : ∇ϕdx m→ +∞.

Thus, passing to the limit in equation (4.1) as m → +∞, we see that the limit
function v∗ satisfies the following equation:

ν

∫
Ω

∇v∗ : ∇ϕdx−
∫
Ω

n∑
i,j=1

(v∗)i(v∗)j
∂ϕj
∂xi

dx− κ
∫
Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)i
∂xj

∂2ϕj
∂xi∂xk

dx

−κ
∫
Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)j
∂xi

∂2ϕj
∂xi∂xk

dx+ 2κ
∫
Ω

(E(v∗)Wρ(v∗)−Wρ(v∗)E(v∗)) : ∇ϕdx

= 〈f, ϕ〉.
This proves that v∗ ∈ V. This completes the proof of Theorem 2.1. �
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