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1. Introduction

Let C be a nonempty subset of a Banach space E with the norm ‖ · ‖ and let T be
a mapping from C to E. Throughout this paper, let F (T ) = {x ∈ E : Tx = x}, the
set of all fixed point of a mapping T and let N and R be the sets of positive integers
and real numbers, respectively. The normalized duality mapping J from E into 2E

∗

is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}.

A mapping T is called Lipschitzian if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ C.
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T is said to be nonexpansive if L = 1 in the above inequality. T is called λ-strictly
pseudocontractive if there exists λ ∈ (0, 1) and j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2 − λ||x− y − (Tx− Ty)||2 for all x, y ∈ D(T ). (1.1)

T is called pseudocontractive if λ ≡ 0 in (1.1). Obviously, each λ-strictly pseudocon-
tractive mapping is a Lipschitzian and pseudocontractive mapping with L = λ+1

λ .
In particular, a nonexpansive mapping is λ-strictly pseudocontractive mapping in a
Hilbert space, but the conversion may be false.

A Banach space E is said to satisfy Opial’s condition ([5]) if, for any sequence {xn}
in E, xn ⇀ x implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ E with x 6= y.

In particular, Opial’s condition is independent of uniformly convex (smooth) since the
lp spaces satisfy this condition for 1 < p <∞ while it fails for the Lp (p 6= 2) spaces.
In fact, spaces satisfying Opial’s condition need not even by isomorphic to uniformly
convex spaces ([3]).

Marino and Xu [4] studied weak and strong convergence theorems for strict pseudo-
contractions in Hilbert spaces. Recently, Zhou [8] proved a weak convergence theorem
of λ-strictly pseudo-contractive mapping T in a 2-uniformly smooth Banach space.

Theorem Z. (Zhou [8, Theorem 2.1]) Let E be a real 2-uniformly smooth Banach
space with the smooth constant K, and let C be a closed convex subset of E, and let
T : C → C be a λ-strict pseudo-contraction with F (T ) 6= ∅. Suppose that E is either
uniformly convex or satisfies Opial’s condition. Given u, x0 ∈ C, a sequence {xn} is
generated by

xn+1 = αnTxn + (1− αn)xn, (1.2)

where {αn} in (0, 1) satisfies:
(i) αn ∈ [0, µ], µ = min{1, λ

K2 };

(ii)
∞∑
n=0

αn(λ−K2αn) =∞.

Then the sequence {xn} converges weakly to a fixed point z of T .

Recently, Zhou [9] further discussed the convergent properties of iterates of (a
finite family of) λ-strict pseudo-contraction in a real q-uniformly smooth Banach
space, and obtained the strong convergence of the modified Mann’s iteration. Zhang
and Su [10, 11] also showed the strong convergence of λ-strict pseudo-contraction for
finding some fixed point of such mappings. Still in a real q-uniformly smooth Banach
space, Cai and Hu [2] studied strong convergence of an iteration for a finite family
of λ-strict pseudo-contraction. Very recently, Chai and Song [1] studied the strong
convergence of the modified Mann’s iteration (1.3).

Theorem CS. (Chai and Song [1, Theorem 3.1]) Let E be a real 2-uniformly smooth
Banach space with the smooth constant K, and let C be a closed convex subset of E,
and let T : C → C be a λ-strict pseudo-contraction with F (T ) 6= ∅. Given u, x0 ∈ C,
a sequence {xn} is generated by

xn+1 = βnu+ (1− βn)[αnTxn + (1− αn)xn], (1.3)
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where {αn} and {βn} in (0, 1) satisfy the following control conditions:
(i) αn ∈ [a, µ], µ = min{1, λ

K2 } for some constant a ∈ (0, µ);

(ii)
∞∑
n=1
|αn+1 − αn| <∞;

(iii) lim
n→∞

βn = 0,
∞∑
n=1

βn =∞ and
∞∑
n=1
|βn+1 − βn| <∞.

Then, the sequence {xn} converges strongly to a fixed point z of T .

In this paper, we will deal with strong convergence of the Mann iteration

xn+1 = βnTxn + (1− βn)xn (1.4)

where the sequence {βn} in [0, µ], µ = min{1, λ
K2 } such that

lim inf
n→∞

βn(λ−K2βn) > 0. (1.5)

Our results obviously develop and complement the corresponding ones of Chai and
Song [1], Cai and Hu [2], Marino and Xu [4], Zhou [8, 9], Zhang and Su [10, 11] and
others.

2. Preliminaries and basic results

For achieving our purposes, the following facts and results are needed.
Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x ∈ S(E), ‖y‖ ≤ t

}
.

Let q > 1. A Banach space E is said to be q-uniformly smooth if there exists a

fixed constant c > 0 such that ρE(t) ≤ ctq and uniformly smooth if limt→0
ρE(t)
t = 0.

Clearly, a q-uniformly smooth space must be uniformly smooth. Typical example
of uniformly smooth Banach spaces is Lp (p > 1). More precisely, Lp is min{p, 2}-
uniformly smooth for every p > 1.

Lemma 2.1. (Zhou [8, Lemma 1.2]) Let C be a nonempty subset of a real 2-uniformly
smooth Banach space E with the best smooth constant K, and let T : C → C be a
λ-strict pseudo-contraction. For any α ∈ (0, 1), we define Tα = (1−α)x+αTx. Then,

‖Tαx−Tαy‖2 ≤ ‖x− y‖2− 2α(λ−K2α)‖Tx−Ty− (x− y)‖2 for all x, y ∈ C. (2.1)

In particular, as α ∈ (0, λ
K2 ], Tα : C → C is nonexpansive such that F (Tα) = F (T ).

Lemma 2.2. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth Banach space E with the best smooth constant K and let T : C → C be a
λ-strict pseudo-contraction with F (T ) 6= ∅. Suppose that the sequence {xn} is defined
by the Mann iteration (1.4) and the sequence {βn} in [0, µ], µ = min{1, λ

K2 }. Then
(i) the sequence {xn} is bounded;
(ii) ‖xn+1 − u‖ ≤ ‖xn − u‖ for each u ∈ F (T );
(iii) the limit lim

n→∞
‖xn − u‖ exists for each u ∈ F (T );

if, in addition, {βn} satisfy the condition (1.5), then
(iv) lim

n→∞
‖xn − Txn‖ = 0.
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Proof. Let u ∈ F (T ) and Tβn = βnT + (1 − βn)I. It follows from Lemma 2.1 that
Tβn

is nonexpansive and F (Tβn
) = F (T ), and so

‖xn+1 − u‖ = ‖Tβn
xn − u‖ ≤ ‖xn − u‖ ≤ · · · ≤ ‖x1 − u‖.

So the sequence {xn} is bounded and the sequence {‖xn − u‖} is monotone non-
increasing, and hence the limit lim

n→∞
‖xn − u‖ exists for each u ∈ F (T ).

Now we show (iv). From Lemma 2.1, it follows that Tβn
u = u for all n and

‖xn+1 − u‖2 = ‖(βnTxn + (1− βn)xn)− u‖2 = ‖Tβnxn − Tβnu‖2

≤ ‖xn − u‖2 − βn(λ−K2βn)‖Txn − xn‖2.

Then we have

βn(λ−K2βn)‖Txn − xn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2,

and so,
∞∑
n=1

βn(λ−K2βn)‖Txn − xn‖2 ≤ ‖x1 − u‖2 < +∞.

From the condition (1.5), it follows that

lim
n→∞

‖Txn − xn‖ = 0.

This completes the proof. �

3. Main results

Let C be a nonempty subset of a Banach space E. A mapping T : C → C is said
to satisfy Condition I if there is a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that

‖x− Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C,

where d(x, F (T )) = inf{‖x − y‖; y ∈ F (T )}. This concept was introduced by Senter
and Dotson in [7]; and several examples of such mappings were given.

Next we will show our main results.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth Banach space E with the best smooth constant K and let T : C → C be a
λ-strict pseudo-contraction with F (T ) 6= ∅ and satisfying Condition I. Suppose that
the sequence {xn} is defined by the Mann iteration (1.4),

xn+1 = βnTxn + (1− βn)xn,

where the sequence {βn} in [0, µ], µ = min{1, λ
K2 } such that

lim inf
n→∞

βn(λ−K2βn) > 0.

Then the sequence {xn} converges strongly to a fixed point z of T .
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Proof. It follows from Lemma 2.2 that the sequence {xn} is bounded and

lim
n→∞

‖xn − Txn‖ = 0. (3.1)

Then Condition I implies lim
n→∞

f(d(xn, F (T ))) = 0, and hence

lim
n→∞

d(xn, F (T )) = 0. (3.2)

Next we show that the sequence {xn} is a Cauchy sequence of E. In fact, for any
n,m ∈ N with m > n, then ‖xm − u‖ ≤ ‖xn − u‖ for each u ∈ F (T ) by Lemma 2.2
(ii), and so

‖xn − xm‖ ≤ ‖xn − u‖+ ‖u− xm‖ ≤ 2‖xn − u‖. (3.3)

Since u is arbitrary, then we may take the infimum for u in (3.3),

‖xn − xm‖ ≤ 2 inf{‖xn − u‖;u ∈ F (T )} = 2d(xn, F (T )).

From (3.2), it follows that as lim
n→∞

‖xn−xm‖ = 0, which means that {xn} is a Cauchy

sequence. So there exists z ∈ E such that

lim
n→∞

‖xn − z‖ = 0.

Since

‖z − Tz‖ ≤‖z − xn‖+ ‖xn − Txn‖+ ‖Txn − Tz‖

≤‖z − xn‖+ ‖xn − Txn‖+
1 + λ

λ
‖xn − z‖,

then from (3.1), it follows that ‖Tz − z‖ = 0, i.e., z ∈ F (T ). �

A mapping T : C → E is said to be demicompact (Petryshyn [6]) provided whenever
a sequence {xn} ⊂ K is bounded and the sequence {xn − Txn} strongly converges,
then there is a subsequence {xnk

} which strongly converges.

Theorem 3.2. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth Banach space E with the best smooth constant K and let T : C → C be a
λ-strict pseudo-contraction with F (T ) 6= ∅. Suppose that T is demicompact and the
sequence {xn} is defined by the Mann iteration (1.4),

xn+1 = βnTxn + (1− βn)xn,

where the sequence {βn} in [0, µ], µ = min{1, λ
K2 } such that

lim inf
n→∞

βn(λ−K2βn) > 0.

Then the sequence {xn} converges strongly to a fixed point z of T .

Proof. It follows from Lemma 2.2 that the sequence {xn} is bounded and

lim
n→∞

‖xn − Txn‖ = 0. (3.4)

Then the demicompactness of T implies there is a subsequence {xnk
} ⊂ {xn} and

z ∈ E such that

lim
k→∞

‖xnk
− z‖ = 0. (3.5)
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By (3.4), we also have lim
k→∞

‖Txnk
−z‖ = 0. Since ‖Txnk

−Tz‖ ≤ 1+λ
λ ‖xnk

−z‖, then

lim
k→∞

‖Txnk
− Tz‖ = 0. So z = Tz, i.e., z ∈ F (T ).

From Lemma 2.2 (iii), it follows that the limit lim
n→∞

‖xn − z‖ exists, and then

lim
n→∞

‖xn − z‖ = lim
k→∞

‖xnk
− z‖ = 0.

The proof is completed. �

Using the same proof techniques as in Theorem 3.1 and 3.2, we easily obtain
the following result. Since the only difference is that αn(λ − K2αn) is replaced by
αn(qλ−Kqα

q−1
n ) in its proof, we decide to omit the theorem proof.

Theorem 3.3. Let K be a nonempty closed and convex subset of a real q-uniformly
smooth Banach space E with the best smooth constant Kq (q > 1) and let T : K → K
be a λ-strict pseudo-contraction with F (T ) 6= ∅. Suppose that T either is demi-
compact or satisfies Condition I. Assume that the sequence {xn} is defined by the
Mann iteration (1.4), xn+1 = βnTxn + (1− βn)xn, where the sequence {βn} in [0, µ],

µ = min{1, { qλKq
}

1
q−1 } such that lim inf

n→∞
βn(qλ−Kqβ

q−1
n ) > 0. Then the sequence {xn}

converges strongly to a fixed point z of T .
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