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1. Introduction and preliminaries

A fundamental principle both in mathematics and computer science is iteration.

Particularly, fixed point iteration and monotone iterative techniques are the core

methods when solving a large class of abstract and applied mathematical problems

and play an important part in many algorithms.

Monotone iterative methods (in connection with the method of lower and upper

solutions) go back at least to E. Picard [17, 18, 19] in the 1890s, in the study of the

Dirichlet problem for nonlinear second order (ordinary and partial) differential equa-

tions. Since then, these methods have been further developed in more abstract settings

and have been used to solve a wide variety of nonlinear problems arising from various

fields of science. In this direction, the class of operators to which these methods were

applied has been enlarged to include operators with more general monotonicity-type

properties, like the mixed-monotone property.

In this context, most of the abstract fixed point results for the class of mixed

monotone operators that make use of monotone iterative techniques were formulated

in the framework of ordered topological spaces (particularly, ordered Banach spaces)
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(e.g., [15, 16, 13, 5, 4, 3]), partially ordered metric spaces (e.g., [2, 11, 22, 6, 12, 20])

and partially ordered cone metric spaces (e.g., [21, 8, 24, 23, 14]). This seems perfectly

justified by the need of some convergence structure that is compatible in some way

with the partial order, such that one can consistently describe the result of the iterative

process.

Following this long line of research, both pure and applied, the aim of this paper

is to show that it is still possible to obtain constructive fixed point results by mono-

tone iteration without assuming any convergence structure, in the setting of partially

ordered sets and with no additional assumptions on the partial order. In particular,

we are interested in obtaining criteria for the existence, uniqueness and attractiveness

(in some predefined sense) of the fixed points, exclusively by means of explicit iter-

ative techniques, both in the presence and in the absence of a coupled lower-upper

fixed point. Also, we choose to study the class of mixed monotone operators since

it contains both the classes of nondecreasing and nonincreasing operators, respec-

tively, in one unified approach, while being large enough to describe a great number

of nonlinear problems where usual monotonicity is not present.

Recall that if (X,≤) is a partially ordered set and A : X × X → X, then A is

said to be mixed monotone (or is said to have the mixed monotone property) if A is

nondecreasing in the first argument and nonincreasing in the second argument, i.e.,

x1, x2, y1, y2 ∈ X, x1 ≤ x2, y1 ≥ y2 ⇒ A(x1, y1) ≤ A(x2, y2).

A pair (x, y) ∈ X ×X is called a coupled fixed point of A if

A(x, y) = x, A(y, x) = y,

and it is called a coupled lower-upper fixed point of A if

x ≤ y, x ≤ A(x, y), y ≥ A(y, x).

Also, x ∈ X is called a fixed point of A if A(x, x) = x, i.e., (x, x) is a coupled fixed

point of A. For more details, we refer to [5, 2].

Remark 1.1. While the term “mixed monotone” is due to Lakshmikantam and Guo

[5], the concept of mixed monotone operator and the corresponding iterative method

go back at least to Kurpel′ [9] in the study of two-sided operator inequalities and their

applications to approximating the solutions of integral, differential, integro-differential

and finite (algebraic and transcendental) equations. We point in this direction to the

monograph of Kurpel′ and Šuvar [10]. Later on, Opŏıtsev [15, 16] established the

first (to the best of our knowledge) fixed point and coupled fixed point results for

this type of operators, in the framework of ordered Banach spaces. In the past three

decades, the results of Opŏıtsev have been rediscovered in various forms and have been

extended by many authors (we refer to [3] for an overview of the results published on

this topic since the 1980s). Regrettably, none of them seems to have been aware of

the results of Opŏıtsev, although English translations of his works have been available

right after their initial publication in Russian.
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In what follows, we will make use of the following notions and notations.

Let (X,≤) be a partially ordered set. If x, y ∈ X are such that x ≤ y, then [x, y]

denotes the set of all elements z ∈ X such that x ≤ z ≤ y. Also, if (un) is a sequence

in X, then supun and inf un denote the supremum, i.e., the least upper bound, and

the infimum, i.e., the greatest lower bound (when they exist), respectively, of the set

{un : n ∈ N}, where N represents the set of all nonnegative integers. We also write

supn≥k un and infn≥k un (for any k ∈ N) to denote the supremum and the infimum,

respectively, of the set {un : n ≥ k} .

In order to properly define the iterates of any bivariate operator, we need a

composition rule that applies to this class of mappings, hence for any operators

A,B : X ×X → X define (cf. [20]) the symmetric composition (or, the s-composition

for short) of A and B by

B ∗A : X ×X → X, (B ∗A)(x, y) = B(A(x, y), A(y, x)) (x, y ∈ X).

The s-composition is associative and the canonical projection

PX : X ×X → X, P (x, y) = x (x, y ∈ X)

is the identity element, hence one can define the functional powers (i.e., the iterates)

of any operator A : X ×X → X with respect to the s-composition by

An+1 = A ∗An = An ∗A (n = 0, 1, ...), A0 = PX .

When (X,≤) is a partially ordered set, the s-composition of mixed monotone opera-

tors has also the mixed monotone property, hence the iterates of a mixed monotone

operator are also mixed monotone. For more details on this topic, we refer to [20].

2. Main results

From this point forward in this Section, it will be assumed that (X,≤) is a partially

ordered set, A : X ×X → X is a mixed monotone operator and x0, y0 ∈ X are such

that x0 ≤ y0. Also, define the sequences (xn) and (yn) recursively by

xn+1 = A (xn, yn) , yn+1 = A (yn, xn) (n ∈ N), (2.1)

or, equivalently, by

xn = An(x0, y0), yn = An(y0, x0) (n ∈ N).

This coupled iteration together with the results contained in the following lemma rep-

resent the core of the method of monotone iterations for mixed monotone operators.

These ideas are not new and can be found spread throughout the entire literature that

studies the (coupled) fixed points for mixed monotone operators, though they are usu-

ally considered in a less general setting and are sometimes hidden inside proofs. Note

that the assumption of (x0, y0) being a coupled lower-upper fixed point of A is not

essential for obtaining most of the (coupled) fixed point results in this paper, hence

it will be considered as a separate assumption, which represents a new approach.

Lemma 2.1. The following properties take place:



582 MIRCEA-DAN RUS

(1) For all n ∈ N, xn ≤ yn and

x, y ∈ [xn, yn]⇒ A (x, y) ∈ [xn+1, yn+1] . (2.2)

(2) If (x, y) ∈ [x0, y0]× [x0, y0] is a coupled fixed point of A, then

x, y ∈
⋂
n≥0

[xn, yn] .

(3) If (x0, y0) is a coupled lower-upper fixed point of A, then (xn) is nondecreasing,

(yn) is nonincreasing and (xn, yn) is a coupled lower-upper fixed point of A,

for all n ∈ N.

Proof.

(1) The proof is by induction on n. Assume that xn ≤ yn for some n ∈ N and

consider arbitrary x, y ∈ [xn, yn]. By the mixed monotonicity of A,

xn+1 = A(xn, yn) ≤ A(x, y) ≤ A (yn, xn) = yn+1,

hence xn+1 ≤ yn+1 and A(x, y) ∈ [xn+1, yn+1], which proves (2.2). Since our

assumption is true for n = 0, the proof of 1 is complete.

(2) Since A(x, y) = x, A(y, x) = y and x, y ∈ [x0, y0], it follows that x, y ∈ [xn, yn]

for all n ∈ N as a direct consequence of (2.2), by induction on n.

(3) Assume that xn ≤ xn+1 and yn ≥ yn+1 for some n ∈ N. Note that this

is equivalent to (xn, yn) being a coupled lower-upper fixed point of A, since

xn ≤ yn by 1. Then,

xn+1 = A(xn, yn) ≤ A(xn+1, yn+1) = xn+2

yn+1 = A(yn, xn) ≥ A(yn+1, xn+1) = yn+2.

Since our assumption is true for n = 0, it follows by induction that xn ≤ xn+1

and yn ≥ yn+1 (hence (xn, yn) is a coupled lower-upper fixed point of A) for

all n ∈ N.

�

The following result is a direct consequence of Lemma 2.1 and provides a negative

answer on the existence of (coupled) fixed points.

Corollary 2.2. If
⋂
n≥0

[xn, yn] = ∅, then A has no coupled fixed points in [x0, y0] ×

[x0, y0] (hence, no fixed points in [x0, y0]).

2.1. Order-attractive points for mixed monotone operators. Before we for-

mulate and prove the main fixed point theorems, we need to introduce and study

some new notions.

Definition 2.3. A point x∗ ∈ X is said to be (x0, y0)-weakly order-attractive for

A if
⋂
n≥0

[xn, yn] = {x∗}, and we denote this by (x0, y0)
A→ x∗. Alternatively, we

may say that x∗ weakly order-attracts (x0, y0) through A, or that (x0, y0) is weakly

order-attracted by x∗ through A.
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Definition 2.4. A point x∗ ∈ X is said to be (x0, y0)-order-attractive for A if

supxn = inf yn = x∗, and we denote this by (x0, y0)
A

⇒ x∗. Alternatively, we may

say that x∗ order-attracts (x0, y0) through A, or that (x0, y0) is order-attracted by x∗

through A.

Definition 2.5. A point x∗ ∈ X is said to be weakly order-attractive for A on [x0, y0]

if x∗ ∈ [x0, y0] and (u0, v0)
A→ x∗ for all u0, v0 ∈ [x0, y0] with u0 ≤ x∗ ≤ v0, and we

denote this by [x0, y0]
A→ x∗. Alternatively, we may say that x∗ weakly order-attracts

[x0, y0] through A, or that [x0, y0] is weakly order-attracted by x∗ through A.

Definition 2.6. A point x∗ ∈ X is said to be order-attractive for A on [x0, y0] if

x∗ ∈ [x0, y0] and (u0, v0)
A
⇒ x∗ for all u0, v0 ∈ [x0, y0] with u0 ≤ x∗ ≤ v0, and we

denote this by [x0, y0]
A
⇒ x∗. Alternatively, we may say that x∗ order-attracts [x0, y0]

through A, or that [x0, y0] is order-attracted by x∗ through A.

Proposition 2.7. Let x∗ ∈ X. The following properties take place:

(1) If (x0, y0)
A→ x∗, then x∗ ∈ [x0, y0].

(2) If [x0, y0]
A→ x∗, then (x0, y0)

A→ x∗ and [u0, v0]
A→ x∗ for all u0, v0 ∈ [x0, y0]

with u0 ≤ x∗ ≤ v0.

(3) If [x0, y0]
A

⇒ x∗, then (x0, y0)
A

⇒ x∗ and [u0, v0]
A

⇒ x∗ for all u0, v0 ∈ [x0, y0]

with u0 ≤ x∗ ≤ v0.

(4) (x0, y0)
A

⇒ x∗ if and only if (x0, y0)
A→ x∗ and supxn, inf yn exist.

(5) If [x0, y0]
A

⇒ x∗, then [x0, y0]
A→ x∗.

Proof. 1, 2 and 3 are direct consequences of the definitions. Also, 5 follows from 4

and the definitions, hence we only need to prove 4.

If (x0, y0)
A

⇒ x∗, then supxn, inf yn exist and supxn = inf yn = x∗, hence xn ≤
x∗ ≤ yn for all n ∈ N. Now, let x ∈ X such that xn ≤ x ≤ yn for all n ∈ N. Then

x∗ = supxn ≤ x ≤ inf yn = x∗,

hence x∗ = x. Concluding,
⋂
n≥0

[xn, yn] = {x∗}, i.e., (x0, y0)
A→ x∗.

Conversely, if (x0, y0)
A→ x∗, then xn ≤ x∗ ≤ yn for all n ∈ N and since

supxn, inf yn exist, it follows that xn ≤ supxn ≤ x∗ ≤ inf yn ≤ yn for all n ∈ N,

hence

supxn, inf yn ∈
⋂
n≥0

[xn, yn] = {x∗},

which proves that (x0, y0)
A

⇒ x∗. �

In the following result we establish the properties of (weakly) ordered-attractive

fixed points.



584 MIRCEA-DAN RUS

Theorem 2.8. Let x∗ ∈ X. The following equivalences take place:

(1) [x0, y0]
A→ x∗ if and only if (x0, y0)

A→ x∗ and x∗ is a fixed point of A.

(2) [x0, y0]
A

⇒ x∗ if and only if (x0, y0)
A

⇒ x∗ and x∗ is a fixed point of A.

Moreover, in any of the above situations, (x∗, x∗) is the unique coupled fixed point

of A in [x0, y0]× [x0, y0] (hence, x∗ is the unique fixed point of A in [x0, y0]).

Proof. First, we prove the direct implications.

Assume that [x0, y0]
A→ x∗. Then x∗ ∈ [x0, y0], hence (x∗, x∗)

A→ x∗, which ensures

that x∗ is a fixed point of A. Also, (x0, y0)
A→ x∗ by Proposition 2.7 and the direct

implication in 1 is proved.

Similarly, if [x0, y0]
A
⇒ x∗, then (x0, y0)

A
⇒ x∗ and [x0, y0]

A→ x∗ by Proposition

2.7, hence x∗ is a fixed point of A using the direct implication in 1, and the direct

implication in 2 is also proved.

Now we prove the converse implications.

Assume that x∗ is a fixed point of A and (x0, y0)
A→ x∗. We prove that [x0, y0]

A→ x∗.

Let u0, v0 ∈ [x0, y0] such that u0 ≤ x∗ ≤ v0 and define the sequences (un), (vn) by

un+1 = A(un, vn), vn+1 = A(vn, un) (n ∈ N)

or, equivalently, by

un = An(u0, v0), vn = An(v0, u0) (n ∈ N).

Since x∗ is a fixed point of A, it follows that x∗ is a fixed point of An for all n ∈ N.

Also, An is mixed monotone for all n ∈ N, and since

x0 ≤ u0 ≤ x∗ ≤ v0 ≤ y0,

it follows that

xn ≤ un ≤ x∗ ≤ vn ≤ yn for all n ∈ N, (2.3)

which ensures that

{x∗} ⊆
⋂
n≥0

[un, vn] ⊆
⋂
n≥0

[xn, yn] = {x∗},

hence (u0, v0)
A→ x∗ and the converse implication in 1 is proved.

Now, assume that x∗ is a fixed point of A and (x0, y0)
A

⇒ x∗. We prove that

[x0, y0]
A

⇒ x∗.

Let u0, v0 ∈ [x0, y0] such that u0 ≤ x∗ ≤ v0 and let (un), (vn) as previously defined.

By using the same argument as before, we obtain (2.3), and since supxn = inf yn = x∗,

it follows that supun = inf vn = x∗, i.e., (u0, v0)
A
⇒ x∗, hence the converse implication

in 2 is proved.

Finally, we only need to prove that if x∗ is a fixed point of A and (x0, y0)
A→ x∗ (or

(x0, y0)
A

⇒ x∗), then (x∗, x∗) is the unique coupled fixed point of A in [x0, y0]×[x0, y0].
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Indeed, if (x, y) ∈ [x0, y0]× [x0, y0] is a coupled fixed point of A, then, by Lemma 2.1,

Definition 2.3 (and Proposition 2.7(4)), we have that

x, y ∈
⋂
n≥0

[xn, yn] = {x∗},

hence x = y = x∗. Clearly, (x∗, x∗) is a coupled fixed point of A in [x0, y0]× [x0, y0],

and the proof is now complete. �

Remark 2.9. In general, if (x0, y0)
A

⇒ x∗ (or (x0, y0)
A→ x∗), then x∗ is not necessarily

a fixed point of A (though, under additional assumptions, this may be sufficient – see

Theorem 2.13). The following elementary example proves this claim by means of a

mixed monotone mapping with no (coupled) fixed points that has a (x0, y0)-order-

attractive point.

Example 2.10. Let A : R2 → R by defined by A(x, y) = x +
1− {x}

2
, where {x}

denotes the fractional part of the real number x. Then A is mixed monotone and

(0, 1)
A

⇒ 1, yet A has no (coupled) fixed points.

First, we prove that A is mixed monotone, which, in this case, is equivalent to A

being nondecreasing (with respect to x). Let x1, x2 ∈ R such that x1 ≤ x2 and let

n = x2 −{x2} be the integer part of x2. If x1 ∈ [n, n+ 1), then x1 = n+ {x1}, hence

{x2} − {x1} = x2 − x1 and

A(x2, y)−A(x1, y) = x2 − x1 −
{x2} − {x1}

2
=
x2 − x1

2
≥ 0.

Else, x1 < n ≤ x2 < n+ 1, hence

A(x2, y) ≥ A(n, y)

(from the previous case, by letting x1 := n) and

A(n, y)−A(x1, y) = n− x1 +
{x1}

2
> 0,

which proves that A(x2, y) ≥ A(x1, y).

Now, choose x0 = 0 and y0 = 1. It is a simple exercise to show (e.g., by induction)

that the corresponding sequences (xn) , (yn) defined by (2.1) are

xn = 1− 1

2n
, yn = 2− 1

2n
(n ∈ N),

hence

supxn = inf yn = 1,

proving that x∗ = 1 is (x0, y0)-order-attractive for A.

Finally, it can be easily noticed that A has no (coupled) fixed points, since A(x, y) =

x if and only if {x} = 1, which is impossible.
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2.2. Fixed point theorems. We conclude with the main results. In essence, we

prove in each of the following results that for a point x∗ ∈ X to be a weakly ordered-

attractive fixed point of A, it is sufficient (under additional assumptions) that x∗ is

(xk, yk)-weakly ordered-attractive for some k ∈ N. In particular, if there exists k ∈ N
such that supn≥k xn = infn≥k yn = x∗, then x∗ is an ordered-attractive fixed point of

A. In this way, we establish several simple criteria for the existence, uniqueness and

(weakly) order-attractiveness of the fixed points of mixed monotone operators.

Theorem 2.11. Let k ≥ 1 such that
k−1⋂
n=0

[xn, yn] is non-empty, and x∗ ∈
k−1⋂
n=0

[xn, yn].

If (xk, yk)
A→ x∗, then (x∗, x∗) is the unique coupled fixed point of A in [xn, yn] ×

[xn, yn], x∗ is the unique fixed point of A in [xn, yn] and [xn, yn]
A→ x∗ for all n ∈

{0, 1, . . . , k}.

Additionally, if supn≥k xn and infn≥k yn exist, then [xn, yn]
A
⇒ x∗ for all n ∈

{0, 1, . . . , k}.

Proof. For each n ∈ N, let Xn =
⋂
m≥n

[xm, ym]. It is clear that (xn, yn)
A→ x∗ if and

only if Xn = {x∗}, hence the hypothesis ensure that Xk = {x∗} and

X0 =

(
k−1⋂
n=0

[xn, yn]

)
∩Xk = {x∗}.

Since, obviously, X0 ⊆ X1 ⊆ . . . ⊆ Xk ⊆ Xk+1 ⊆ . . ., we conclude that

X0 = X1 = . . . = Xk = {x∗},

hence (xn, yn)
A→ x∗ for all n ∈ {0, 1, . . . , k}.

Since x∗ ∈ [xn, yn] for all n ∈ N, it follows by (2.2) that A(x∗, x∗) ∈ [xn+1, yn+1]

for all n ∈ N, hence A(x∗, x∗) ∈ X1 = {x∗}, proving that x∗ is a fixed point of A.

The conclusion now follows by applying Theorem 2.8(1) with (x0, y0) replaced by

(xn, yn) (n ∈ {0, 1, . . . , k}).
Additionally, assume that supn≥k xn and infn≥k yn exist, hence

sup
n≥k

xn = inf
n≥k

xn = x∗

by Proposition 2.7(4), with (x0, y0) replaced by (xk, yk). Since xm ≤ x∗ ≤ ym for

all m ∈ N (by X0 = {x∗}), it follows that x∗ = supm≥n xm = infm≥n ym for all n ∈

{0, 1, . . . , k}, i.e., (xn, yn)
A
⇒ x∗ for all n ∈ {0, 1, . . . , k} and the proof is complete by

further applying Theorem 2.8(2) with (x0, y0) replaced by (xn, yn) (n ∈ {0, 1, . . . , k}).
�

Corollary 2.12. Let x∗ ∈ [x0, y0]. If (x1, y1)
A→ x∗, then (x∗, x∗) is the unique

coupled fixed point of A in [x0, y0]× [x0, y0] ∪ [x1, y1]× [x1, y1], x∗ is the unique fixed

point of A in [x0, y0] ∪ [x1, y1] and [x0, y0]
A→ x∗, [x1, y1]

A→ x∗.
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Additionally, if supn≥1 xn and infn≥1 yn exist, then [x0, y0]
A
⇒ x∗ and [x1, y1]

A
⇒ x∗.

Proof. This follows by Theorem 2.8 with k = 1. �

By assuming that (x0, y0) is a coupled lower-upper fixed point of A, we obtain the

following results.

Theorem 2.13. Let x∗ ∈ X and assume that (x0, y0) is a coupled lower-upper fixed

point of A. If (x0, y0)
A→ x∗, then (x∗, x∗) is the unique coupled fixed point of A in

[x0, y0]× [x0, y0], x∗ is the unique fixed point of A in [x0, y0] and [x0, y0]
A→ x∗.

Additionally, if supxn and inf yn exist, then [x0, y0]
A

⇒ x∗.

Proof. We use the same notations as in the proof of Theorem 2.11. Since (x0, y0) is

a coupled lower-upper fixed point of A, it follows by Lemma 2.1 that

x0 ≤ x1 ≤ . . . ≤ xn ≤ xn+1 ≤ . . . ≤ yn+1 ≤ yn ≤ . . . ≤ y1 ≤ y0,

hence X0 = X1. Since (x0, y0)
A→ x∗, we conclude that X0 = X1 = {x}, hence

(x1, y1)
A→ x∗ and x∗ ∈ [x0, y0]. The conclusion now follows by Corollary 2.12.

Additionally, if supxn and inf yn exist, then (x0, y0)
A

⇒ x∗ by Proposition 2.7(4),

hence [x0, y0]
A

⇒ x∗ by Theorem 2.8(2), which concludes the proof. �

Remark 2.14. In the conditions of Theorem 2.13, x∗ ∈ [xn, yn] ⊆ [x0, y0] for all

n ∈ N, hence the conclusion of the theorem already contains that (x∗, x∗) is the

unique coupled fixed point of A in [xn, yn]× [xn, yn] and [xn, yn]
A→ x∗ for all n ≥ 1,

without explicitly stating it.

In many cases, it is possible that the starting pair of the iterative process is not a

coupled lower-upper fixed point, but we arrive to such a pair after several iterations.

This situation is studied next.

Theorem 2.15. Let x∗ ∈ [x0, y0] and assume there exists k ≥ 1 such that (xk, yk) is

a coupled lower-upper fixed point of A. If (xk, yk)
A→ x∗, then (x∗, x∗) is the unique

coupled fixed point of A in [xn, yn] × [xn, yn], x∗ is the unique fixed point of A in

[xn, yn] and [xn, yn]
A→ x∗ for all n ∈ {0, 1, . . . , k}.

Additionally, if supn≥k xn and infn≥k yn exist, then [xn, yn]
A

⇒ x∗ for all n ∈
{0, 1, . . . , k}.

Proof. By applying Theorem 2.13, with (x0, y0) replaced by (xk, yk), it follows that

x∗ is a fixed point of A and, since x∗ ∈ [x0, y0], it follows by Lemma 2.1(2) that

x∗ ∈
⋂
n≥0

[xn, yn], hence x∗ ∈
k−1⋂
n=0

[xn, yn]. The conclusion now follows by Theorem

2.11. �
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Remark 2.16. In the conditions of Theorem 2.15, x∗ ∈ [xn, yn] ⊆ [xk, yk] for all

n ≥ k, hence the conclusion of the theorem already contains that (x∗, x∗) is the unique

coupled fixed point of A in [xn, yn]× [xn, yn] and [xn, yn]
A→ x∗ for all n ≥ k + 1.

3. Application

As an application, we present a fixed point result for a class of mixed monotone

operators in the setting of ordered linear spaces. First, recall some notions and results.

3.1. Some preliminaries on ordered linear spaces. Let (X,K) be an ordered

linear space over R, i.e., X is a real linear space and K ⊆ X a cone in X (i.e., a

convex set such that λK ⊆ K for all λ ≥ 0 and K ∩ (−K) = {θ}, where θ denotes

the zero element in X). Then the relation on X defined by x ≤ y ⇔ y − x ∈ K is a

linear order on X, i.e., an order that satisfies:

(i) x, y, z ∈ X : x ≤ y ⇒ x+ z ≤ y + z.

(ii) x, y ∈ X, λ ≥ 0 : x ≤ y ⇒ λx ≤ λy.

It is said that K is Archimedean if x ≤ θ whenever there exists y ∈ X such that

nx ≤ y for all n ∈ N. It is well known that if K is Archimedean, then for every

x, y ∈ X, λ ∈ R and every nonincreasing sequence (λn) convergent to λ:

x ≤ λny for all n ∈ N⇒ x ≤ λy.

Two elements x, y in K are said to be linked (cf. [25]) if there exists λ ∈ (0, 1)

such that λx ≤ y and λy ≤ x. This is an equivalence which splits K into disjoint

components (called parts).

For further details on these topics we refer to, e.g., [7].

In order to state and prove the main result in this Section, we need to consider

some new notions.

Definition 3.1. A sequence (xn) in X is said to be:

(i) upper self-bounded if for every µ > 1 exists k ∈ N such that xn ≤ µxk for all

n ≥ k;

(ii) lower self-bounded if for every λ ∈ (0, 1) exists k ∈ N such that λxk ≤ xn for

all n ≥ k.

Example 3.2. Every nondecreasing sequence in K is lower self-bounded. Similarly,

every nonincreasing sequence in K is upper self-bounded.

Definition 3.3. K is said to be self-complete if every nondecreasing sequence in K

that is upper self-bounded has supremum.

Remark 3.4. It is not hard to prove the following equivalence: K is self-complete if

and only if every nonincreasing sequence in K that is lower self-bounded has infimum.

Since this result is not essential in our arguments, we omit its proof.
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Example 3.5. Let n ∈ N, n ≥ 1 and

Rn+ =
{
x = (x1, x2, . . . , xn) ∈ Rn : xi ≥ 0 for all i ∈ {1, 2, . . . , n}

}
be the nonnegative cone in Rn. Then Rn+ is Archimedean and self-complete.

Indeed, Rn+ is Archimedean since for every x, y ∈ Rn:

nx ≤ y for all n ∈ N⇔ xi ≤ yi

n
for all n ∈ N, i ∈ {1, 2, . . . , n}

⇒xi ≤ 0 for all i ∈ {1, 2, . . . , n} ⇔ x ≤ θ.

Also, if (xn) is a nondecreasing sequence in Rn+ that is upper self-bounded, then for

every i ∈ {1, 2, . . . , n} the sequence (xin) is nondecreasing and bounded (in R), hence

has supremum, which concludes the argument.

Example 3.6. Let Q be a compact Hausdorff topological space and C(Q) be the

linear space of all real valued continuous functions on Q, while

K = {x ∈ C(Q) : x(t) ≥ 0 for all t ∈ Q}

is the cone of all nonnegative functions in C(Q). Then K is Archimedean and self-

complete.

Indeed, K is Archimedean since for every x, y ∈ C(Q):

nx ≤ y for all n ∈ N⇔ x(t) ≤ y(t)

n
for all n ∈ N, t ∈ Q⇒ x(t) ≤ 0 for all t ∈ Q.

Next, let (xn) be a nondecreasing sequence in K that is upper self-bounded and let

k ∈ N be such that xn ≤ 2xk for all n ≥ k, hence

0 ≤ xn(t) ≤ 2xk(t) ≤ 2M for all t ∈ Q and n ∈ N, (3.1)

where M = supt xk(t). Now, let x : Q→ R be given by

x(t) = sup
n
xn(t) (t ∈ Q).

Clearly, x is correctly defined, i.e., x(t) is finite for all t ∈ Q, by (3.1). In order to

show that x = supxn (in the ordered linear space (C(Q),K)), we only need to prove

that x is continuous.

Let ε > 0 and let nε be such that

xn(t) ≤
(

1 +
ε

2M

)
xnε

(t) for all t ∈ Q and n ∈ N,

hence

xn(t) ≤ x(t) ≤
(

1 +
ε

2M

)
xn(t) for all t ∈ Q and n ≥ nε,

and by using (3.1), we finally obtain that

0 ≤ x(t)− xn(t) ≤ ε

2M
xn(t) ≤ ε for all t ∈ Q and n ≥ nε,

which proves that (xn) uniformly converges to x, hence x is continuous.
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3.2. A fixed point theorem. We conclude with a result which establishes the exis-

tence, uniqueness and order-attractiveness of fixed points for a class of mixed mono-

tone operators, in the context of ordered linear spaces endowed with an Archimedean

and self-complete cone. Our result complements and generalizes [1, Cor. 3.2], [4, Th.

1], [16, Th. 2.9], [26, Th. 2.1], [27, Th. 1].

Theorem 3.7. Let (X,K) be an ordered linear space over R such that K is

Archimedean and self-complete. Let P be a part of K and A : P × P → K a mixed

monotone operator.

Assume there exists ϕ : (0, 1)→ (0, 1] such that ϕ(λ) > λ for all λ ∈ (0, 1) and

A(λx, y) ≥ ϕ(λ)A(x, λy) for all λ ∈ (0, 1) and x, y ∈ P linearly dependent. (3.2)

If there exists u ∈ P such that A(u, u) ∈ P , then the following conclusions hold:

(1) for every x, y ∈ P , there exists (x0, y0) ∈ P × P a coupled lower-upper fixed

point of A such that x, y ∈ [x0, y0];

(2) A(P × P ) ⊆ P ;

(3) there exists x∗ ∈ P such that (x∗, x∗) is the unique coupled fixed point of A

in P × P , x∗ is the unique fixed point of A in P and [x0, y0]
A

⇒ x∗ for every

(x0, y0) ∈ P × P coupled lower-upper fixed point of A.

Proof. First, we prove that A has at most a fixed point in P . For that, assume

x∗, y∗ ∈ P be two distinct fixed points of A. Let

T =
{
λ > 0 : λx∗ ≤ y∗ ≤ λ−1x∗

}
and λ∗ = supT . Obviously, T is nonempty since x∗, y∗ are in the same part of K,

and λ∗ ∈ T ⊆ (0, 1) since K is Archimedean and x∗ 6= y∗. Then, by (3.2) and the

mixed monotonicity of A,

ϕ(λ∗)x
∗ = ϕ(λ∗)A(x∗, x∗) ≤ A(λ∗x

∗, λ−1∗ x∗) ≤ A(y∗, y∗) = y∗, (3.3)

hence ϕ(λ∗)x
∗ ≤ y∗. Due to the symmetry, one also has ϕ(λ∗)y

∗ ≤ x∗ which shows

that ϕ(λ∗) ∈ T , hence ϕ(λ∗) ≤ λ∗, which contradicts the hypothesis on ϕ. Conclud-

ing, A has at most a fixed point in P .

By following the same argument as before, we have that if (x∗, y∗) is a coupled fixed

point of A in P × P , then x∗ = y∗; the only difference from the previous argument is

that (3.3) is replaced by:

ϕ(λ∗)x
∗ = ϕ(λ∗)A(x∗, y∗) ≤ A(λ∗x

∗, λ−1∗ y∗) ≤ A(y∗, x∗) = y∗.

The next step in our proof is to claim that ϕ can be assumed to satisfy

ϕ(λ)ϕ(µ) ≤ ϕ(λµ) for all λ, µ ∈ (0, 1) (3.4)

without any loss of generality. In order to prove this, define the set

Φ(λ) = {η ∈ (0, 1] : A(λx, y) ≥ ηA(x, λy) for all x, y ∈ P linearly dependent}
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for every λ ∈ (0, 1) and consider the function φ : (0, 1)→ (0, 1] given by

φ(λ) = sup Φ(λ) (λ ∈ (0, 1)).

Since ϕ(λ) ∈ Φ(λ) for all λ ∈ (0, 1), then φ is correctly defined and φ(λ) ≥ ϕ(λ) > λ

for all λ ∈ (0, 1). Also, φ(λ) ∈ Φ(λ) since K is Archimedean, hence

A(λx, y) ≥ φ(λ)A(x, λy) for all λ ∈ (0, 1) and x, y ∈ P linearly dependent.

Moreover, for all λ, µ ∈ (0, 1) and x, y ∈ P linearly dependent,

A(λµx, y) ≥ φ(λ)A(µx, λy) ≥ φ(λ)φ(µ)A(x, λµy)

which shows that φ(λ)φ(µ) ∈ Φ(λµ), hence φ(λ)φ(µ) ≤ φ(λµ). It is clear now that

by replacing ϕ with φ, we obtain the desired property (3.4).

Next, since u and A(u, u) are in the same part of K, there exists λ0 ∈ (0, 1) such

that

λ0u ≤ A(u, u) ≤ λ−10 u. (3.5)

Also, limn→∞

(
ϕ(λ0)
λ0

)n
= ∞ since ϕ(λ0)

λ0
> 1, hence there exists k0 ∈ N such that(

ϕ(λ0)
λ0

)n
≥ λ−10 for all n ≥ k0, i.e.,

λn0 ≤ (ϕ(λ0))
n
λ0 for all n ≥ k0. (3.6)

Now, consider arbitrary x, y ∈ P . Since x, y are in the same part of the cone with u,

there exists n0 ≥ k0 large enough such that λn0
0 u ≤ x ≤ λ−n0

0 u and λn0
0 u ≤ y ≤ λ−n0

0 u.

Let x0 = λn0
0 u and y0 = λ−n0

0 u. Clearly, x0, y0 ∈ P , x0 ≤ y0 and x, y ∈ [x0, y0]. By

successively applying (3.2)–(3.6) several times and using the mixed monotonicity of

A, we have that

x0 = λn0
0 u ≤ (ϕ(λ0))

n0 λ0u ≤ ϕ(λn0
0 )A(u, u) ≤ A(λn0

0 u, λ−n0
0 u) = A(x0, y0)

≤ A(x, y) ≤ A(y0, x0) = A(λ−n0
0 u, λn0

0 u) ≤ (ϕ(λn0
0 ))

−1
A(u, u)

≤ (λ0 (ϕ(λ0))
n0)
−1
u ≤ λ−n0

0 u = y0,

which shows that (x0, y0) is a coupled lower-upper fixed point of A and

A(x, y) ∈ [x0, y0] ⊆ P,

hence A(P × P ) ⊆ P .

Now, let (x0, y0) be any coupled lower-upper fixed point of A. In order to conclude

the proof, it is enough to show that there exists x∗ ∈ [x0, y0] such that (x0, y0)
A

⇒
x∗, and the conclusion will follow from Theorem 2.13. In order to achieve this, let

(xn), (yn) be defined as in (2.1), hence by Lemma 2.1,

x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . ≤ ym ≤ . . . ≤ y1 ≤ y0 (3.7)

We break the proof in several steps.
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First, it is clear that if xk = yk for some k, then supxn = inf yn = xk and the

proof is complete, hence one can assume that xn 6= yn for all n ∈ N.

Next, let the sequence (λn) be defined by λn+1 = ϕ(λn) for all n ∈ N, where

λ0 ∈ (0, 1) is such that x0 ≥ λ0y0 (λ0 exists, since x0, y0 are in the same part of K).

We show by induction that, for all n ∈ N,

λn is correctly defined, λn ∈ (0, 1), xn ≥ λnyn. (3.8)

Clearly, these are satisfied for n = 0. Now, assume these properties are true for n.

Then λn+1 = ϕ(λn) ∈ (0, 1] is correctly defined (since λn ∈ (0, 1)) and, by (3.2),

xn+1 = A(xn, yn) ≥ A(λnyn, yn) ≥ ϕ(λn)A(yn, λnyn) ≥ ϕ(λn)A(yn, xn) = λn+1yn+1

hence xn+1 ≥ λn+1yn+1. Since xn+1 6= yn+1, it also follows from here that λn+1 6= 1,

hence λn+1 ∈ (0, 1), which concludes the inductive proof.

Note also that λn < ϕ(λn) = λn+1 for all n ∈ N. Following from here, we conclude

that the sequence (λn) is increasing, hence convergent to some λ∗ ∈ (0, 1]; we prove

that λ∗ = 1. Assume that λ∗ 6= 1. Clearly, λn < λ∗ for all n ∈ N. Then, by (3.4),

λn+1 = ϕ(λn) = ϕ

(
λ∗ ·

λn
λ∗

)
≥ ϕ(λ∗)ϕ

(
λn
λ∗

)
> ϕ(λ∗)

λn
λ∗

for all n ∈ N

and by taking n → ∞, we obtain that λ∗ ≥ ϕ(λ∗), which is a contradiction. Con-

cluding,

lim
n→∞

λn = 1. (3.9)

We claim now that (xn) is upper self-bounded. Indeed, let µ > 1 and, by (3.9), let

k ∈ N such that λk ≥ µ−1. Then, by (3.7) and (3.8),

xn ≤ µλkxn ≤ µλkyk ≤ µxk for all n ∈ N,

which proves our claim.

Next, we use that K is self-complete, hence there exists x∗ = supxn.

Finally, we show that x∗ = inf yn. Indeed, x∗ ≤ yn for all n ∈ N (by (3.7)). Also,

if x ∈ X such that x ≤ yn for all n ∈ N, then

x ≤ yn ≤
xn
λn
≤ x∗

λn
for all n ∈ N

hence x ≤ x∗, by (3.9) and using that K is Archimedean. Concluding, (x0, y0)
A
⇒ x∗

and the proof is now complete. �
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