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1. Introduction

In the last decades, there has been a great interest in searching for fixed point the-

orems in ordered metric spaces involving a contractivity condition which holds for all

points that are related by the partial order (see e.g. [1]-[44]). One of the most interest-

ing papers in this trend was reported by Bhaskar and Lakshmikantham [25] in 2006.

In this pioneer paper, in order to solve some certain type of periodic boundary value

problems, the authors proved the existence and uniqueness of a coupled fixed point of

a certain class of operators in partially ordered metric spaces by introducing the mixed

monotone property. Following this result, a number of papers have been published

dealing with the notions of coupled fixed/coincidence point and their applications (see

e.g. [1, 2, 4, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 32, 33, 34, 35, 36, 41, 42, 43, 44]).

In 2011, Berinde and Borcut [12] introduced the concept of tripled fixed point and

proved some related theorems (see also [7, 13, 14]). The last remarkable result of
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this trend was given by Roldán et al. [39] by introducing the notion of multidimen-

sional fixed point which covers the concepts of coupled, tripled, quadruple fixed point

etc. Regarding the wide potential application of multidimensional fixed point results

in various branches of Mathematics, many authors have attracted attention to this

subject and have reported some interesting results.

Very recently, Samet et al. [40] and Agarwal et al. [3] have proved that coupled

fixed point results can be obtained as easy consequences of fixed point results in

dimension one in the setup of metric spaces and G-metric spaces, respectively. In

this paper, following their techniques, we present different contractivity conditions in

order to guarantee the existence (and, in some cases, uniqueness) of multidimensional

fixed points. We show that our results extend, generalize and improve very recent

theorems in the related literature on the theory of multidimensional (coupled, tripled,

quadruple, etc.) fixed point. This paper can be considered as a continuation of the

papers [3] and [40].

2. Preliminaries

Preliminaries and notation about coincidence points can also be found in [39]. We

use abbreviation MS for metric spaces. Let n be a positive integer. Henceforth, X

will denote a non-empty set and Xn will denote the product space X ×X × n. . .×X.

Throughout this manuscript, m and k will denote non-negative integers and i, j, s ∈
{1, 2, . . . , n}. Unless otherwise stated, “for all m” will mean “for all m ≥ 0” and “for

all i” will mean “for all i ∈ {1, 2, . . . , n} ”.

Definition 2.1. ([25]) An ordered MS (X, d,4) is said to have the sequential mono-

tone property if it verifies:

(i): If {xm} is a non-decreasing sequence and {xm}
d→ x, then xm 4 x for all

m.

(ii): If {ym} is a non-increasing sequence and {ym}
d→ y, then ym < y for all m.

Henceforth, fix a partition {A,B} of Λn = {1, 2, . . . , n}, that is, A ∪ B = Λn and

A ∩ B = ∅ such that A and B are non-empty sets. We will denote:

ΩA,B = {σ : Λn → Λn : σ(A) ⊆ A and σ(B) ⊆ B} and

Ω′A,B = {σ : Λn → Λn : σ(A) ⊆ B and σ(B) ⊆ A} .

If (X,4) is a partially ordered space, x, y ∈ X and i ∈ Λn, we will use the following

notation:

x 4i y ⇔
{
x 4 y, if i ∈ A,

x < y, if i ∈ B.

Consider on the product space Xn the following partial order:

for X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) ∈ Xn,

X v Y ⇔ xi 4i yi, for all i. (2.1)
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We say that two points X and Y are comparable if X v Y or X w Y.

Proposition 2.2. If X v Y, it follows that

(xσ(1), xσ(2), . . . , xσ(n)) v (yσ(1), yσ(2), . . . , yσ(n)) if σ ∈ ΩA,B,

(xσ(1), xσ(2), . . . , xσ(n)) w (yσ(1), yσ(2), . . . , yσ(n)) if σ ∈ Ω′A,B.

Proof. Suppose that xi 4i yi for all i. Hence xσ(i) 4σ(i) yσ(i) for all i. Fix σ ∈ ΩA,B.

If i ∈ A, then σ(i) ∈ A, so xσ(i) 4σ(i) yσ(i) implies that xσ(i) 4 yσ(i), which means that

xσ(i) 4i yσ(i). If i ∈ B, then σ(i) ∈ B, so xσ(i) 4σ(i) yσ(i) implies that xσ(i) < yσ(i),

which means that xσ(i) 4i yσ(i). In any case, if σ ∈ ΩA,B, then xσ(i) 4i yσ(i) for all i.

It follows that (xσ(1), xσ(2), . . . , xσ(n)) v (yσ(1), yσ(2), . . . , yσ(n)).

Now fix σ ∈ Ω′A,B. If i ∈ A, then σ(i) ∈ B, so xσ(i) 4σ(i) yσ(i) implies that xσ(i) <
yσ(i), which means that xσ(i) <i yσ(i). If i ∈ B, then σ(i) ∈ A, so xσ(i) 4σ(i) yσ(i)

implies that xσ(i) 4 yσ(i), which means that xσ(i) <i yσ(i). �

Let F : Xn → X be a mapping.

Definition 2.3. ([39]) Let (X,4) be a partially ordered space. We say that F

has the mixed monotone property (w.r.t. {A,B}) if F is monotone non-decreasing

in arguments of A and monotone non-increasing in arguments of B, i.e., for all

x1, x2, . . . , xn, y, z ∈ X and all i,

y 4 z ⇒ F (x1, . . . , xi−1, y, xi+1, . . . , xn) 4i F (x1, . . . , xi−1, z, xi+1, . . . , xn).

Henceforth, let σ1, σ2, . . . , σn : Λn → Λn be n mappings from Λn into itself and let

Υ be the n-tuple (σ1, σ2, . . . , σn). The main aim of this paper is to study the following

class of multidimensional fixed points.

Definition 2.4. ([39]) A point (x1, x2, . . . , xn) ∈ Xn is called a Υ-fixed point of the

mapping F if

F (xσi(1), xσi(2), . . . , xσi(n)) = xi for all i. (2.2)

If one represents a mapping σ : Λn → Λn throughout its ordered image, i.e.,

σ = (σ(1), σ(2), ..., σ(n)), then

• Gnana-Bhaskar and Lakshmikantham’s coupled fixed points occur when n =

2, σ1 = τ = (1, 2) and σ2 = (2, 1);

• Berinde and Borcut’s tripled fixed points are associated to n = 3, σ1 = τ =

(1, 2, 3), σ2 = (2, 1, 2) and σ2 = (3, 2, 1);

• Karapınar’s quadruple fixed points are considered when n = 4, σ1 = τ =

(1, 2, 3, 4), σ2 = (2, 3, 4, 1), σ3 = (3, 4, 1, 2) and σ4 = (4, 1, 2, 3).

• Berzig and Samet’s multidimensional fixed points are given when A =

{1, 2, . . . ,m} and B = {m+ 1,m+ 2, . . . , n}.
For more details see [39].
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2.1. Unidimensional fixed point results. Based on the classical Banach theorem,

in which a non-negative constant less than one plays a key role, many results have

been proved replacing such constant by an appropriate mapping, depending on the

contractivity condition. Some of these kinds of families are the following.

Φ1 =
{
φ : [0,∞)→ [0,∞) : φ is continuous, non-decreasing and φ−1({0}) = {0}

}
.

Φ2 = {φ : [0,∞)→ [0,∞) : φ(t) < t and limr→t+ φ(r) < t for all t > 0} .
Φ3 = {φ : [0,∞)→ [0,∞) : φ is continuous and φ(t) < t for all t > 0} .
Φ4 = {φ : [0,∞)→ [0,∞) : limr→t φ(r) > 0 for all t > 0 and limt→0+ ϕ(t) = 0} .
Φ5 = {φ ∈ Φ1 : φ(s+ t) ≤ φ(s) + φ(t) for all s, t ∈ [0,∞)}

Remark 2.5. If ψ ∈ Φ2 and N > 0, define ψN by ψN (t) = N · ψ(t/N) for all t ≥ 0.

Then ψN ∈ Φ2.

Remark 2.6. If φ ∈ Φ3 and N > 0, define φN by φN (t) = N · φ(t/N) for all t ≥ 0.

Then φN ∈ Φ3.

Proposition 2.7. If φ ∈ Φ3, then there exists a nondecreasing mapping ϕ ∈ Φ3 such

that φ ≤ ϕ.

In [38], Ran and Reurings proved the following fixed point theorem.

Theorem 2.8 (Ran and Reurings [38]). Let (X,4) be an ordered set endowed with a

metric d and T : X → X be a given mapping. Suppose that the following conditions

hold:

(a): (X, d) is complete.

(b): T is nondecreasing (w.r.t. 4).

(c): T is continuous.

(d): There exists x0 ∈ X such that x0 4 Tx0.

(e): There exists a constant k ∈ (0, 1) such that for all x, y ∈ X with x < y,

d(Tx, Ty) ≤ kd(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X2 there exists z ∈ X such

that x 4 z and y 4 z, we obtain uniqueness of the fixed point.

Nieto and Rodŕıguez-López [37] slightly modified the hypothesis of the previous

result obtaining the following theorem.

Theorem 2.9 (Nieto and Rodŕıguez-López [37]). Let (X,4) be an ordered set en-

dowed with a metric d and T : X → X be a given mapping. Suppose that the following

conditions hold:

(a): (X, d) is complete.

(b): T is nondecreasing (w.r.t. 4).

(c): If a nondecreasing sequence {xm} in X converges to a some point x ∈ X,

then xm 4 x for all m.
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(d): There exists x0 ∈ X such that x0 4 Tx0.

(e): There exists a constant k ∈ (0, 1) such that for all x, y ∈ X with x < y,

d(Tx, Ty) ≤ kd(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X2 there exists z ∈ X such

that x 4 z and y 4 z, we obtain uniqueness of the fixed point.

3. Auxiliary results

In this section we show some properties that we will use in the proofs of our main

results.

Lemma 3.1. Let (X, d) be a MS and define Dn,∆n : Xn × Xn → [0,∞), for all

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn) ∈ Xn, by

Dn(A,B) = max
1≤i≤n

d(ai, bi) and ∆n(A,B) =
n∑
i=1

d(ai, bi).

Then Dn and ∆n are complete metrics on Xn.

Actually, both metrics are equivalent since Dn ≤ ∆n ≤ nDn.

Theorem 3.2. Let (X, d,4) be a partially ordered MS and let F : Xn → X be a

mapping. Let Υ = (σ1, σ2, . . . , σn) be a n-tuple of mappings from {1, 2, . . . , n} into

itself verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′A,B if i ∈ B. Define FΥ : Xn → Xn, for

all x1, x2, . . . , xn ∈ X, by

FΥ(x1, x2, . . . , xn) =(F (xσ1(1), xσ1(2), . . . , xσn(n)), F (xσ2(1), xσ2(2), . . . , xσ2(n)),

. . . , F (xσn(1), xσn(2), . . . , xσn(n))).

(1) If F has the mixed monotone property, then FΥ is monotone nondecreasing

w.r.t. the partial order v on Xn given by (2.1).

(2) If F is continuous (w.r.t. Dn or ∆n), then FΥ is also continuous (w.r.t. Dn

or ∆n).

(3) A point (x1, x2, . . . , xn) ∈ Xn is a Υ-fixed point of F if, and only if,

(x1, x2, . . . , xn) is a fixed point of FΥ.

Proof. (1) Suppose that (gx1, gx2, . . . , gxn) ≤ (gy1, gy2, . . . , gyn), that is, gxi 4i gyi
for all i. Since F has the mixed g-monotone property, it is not difficult to prove that,

for all a1, a2, . . . , an ∈ X

F (a1, a2, . . . , aj−1,
(j)
xi , aj+1, . . . , an) 4 F (a1, a2, . . . , aj−1,

(j)
yi , aj+1, . . . , an),

if i, j ∈ A or i, j ∈ B;

F (a1, a2, . . . , aj−1,
(j)
xi , aj+1, . . . , an) < F (a1, a2, . . . , aj−1,

(j)
yi , aj+1, . . . , an),

if i ∈ A, j ∈ B or i ∈ B, j ∈ A.
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Suppose that i ∈ A. Therefore σi ∈ ΩA,B, that is, σi(A) ⊆ A and σi(B) ⊆ B. Therefore

j ∈ A if and only if σi(j) ∈ A and the same holds swapping A by B. In this case,

F (xσi(1), xσi(2), xσi(3), . . . , xσi(n)) 4 (either 1, σi(1) ∈ A or 1, σi(1) ∈ B)

4 F (yσi(1), xσi(2), xσi(3), . . . , xσi(n)) 4 (either 2, σi(2) ∈ A or 2, σi(2) ∈ B)

4 F (yσi(1), yσi(2), xσi(3), . . . , xσi(n)) 4 (either 3, σi(3) ∈ A or 3, σi(3) ∈ B)

4 . . . 4

4 F (yσi(1), yσi(2), yσi(3), . . . , yσi(n)),

that is, F (xσi(1), xσi(2), xσi(3), . . . , xσi(n)) 4i F (yσi(1), yσi(2), yσi(3), . . . , yσi(n)). Now

suppose that i ∈ B. Therefore σi ∈ Ω′A,B, that is, σi(A) ⊆ B and σi(B) ⊆ A. Therefore

j ∈ A if and only if σi(j) ∈ B, and viceversa. In this case,

F (xσi(1), xσi(2), xσi(3), . . . , xσi(n)) < (either 1 ∈ A, σi(1) ∈ B or 1 ∈ B, σi(1) ∈ A)

< F (yσi(1), xσi(2), xσi(3), . . . , xσi(n)) <

(either 2 ∈ A, σi(2) ∈ B or 2 ∈ B, σi(2) ∈ A)

< F (yσi(1), yσi(2), xσi(3), . . . , xσi(n)) <

(either 3 ∈ A, σi(3) ∈ B or 3 ∈ B, σi(3) ∈ A)

< . . . < F (yσi(1), yσi(2), yσi(3), . . . , yσi(n)),

that is, F (xσi(1), xσi(2), xσi(3), . . . , xσi(n)) 4i F (yσi(1), yσi(2), yσi(3), . . . , yσi(n)) also

holds. Hence,

F (xσi(1), xσi(2), xσi(3), . . . , xσi(n)) 4i F (yσi(1), yσi(2), yσi(3), . . . , yσi(n)) for all i,

and, consequently, FΥ(x1, x2, . . . , xn) v FΥ(y1, y2, . . . , yn).

(2) It is an straightforward exercise.

(3) (x1, x2, . . . , xn) ∈ Xn is a Υ-coincidence point of F and g if, and only

if, xi = F (xσi(1), xσi(2), xσi(3), . . . , xσi(n)) for all i, that is, FΥ(x1, x2, . . . , xn) =

(x1, x2, . . . , xn). �

4. Main results

Throughout this section, let (X, d,4) be an ordered MS, let Υ = (σ1, σ2, . . . , σn)

be a n-tuple of mappings from {1, 2, . . . , n} into itself such that σi ∈ ΩA,B if i ∈ A

and σi ∈ Ω′A,B if i ∈ B, and let F : Xn → X be a mapping. Consider the following

conditions:

(I): (X, d) is complete.

(II): F has the mixed monotone property.

(III): F is continuous or (X, d,4) has the sequential monotone property.

(IV): There exist x1
0, x

2
0, . . . , x

n
0 ∈ X verifying

xi0 4i F (x
σi(1)
0 , x

σi(2)
0 , . . . , x

σi(n)
0 ) for all i.
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In some cases, we will also use an additional hypothesis.

(V): For all i, the mapping σi is a permutation of {1, 2, . . . , n}.
This last condition implies that, for all i and all X,Y ∈ Xn,

max
1≤j≤n

d(xσi(j), yσi(j)) = max
1≤j≤n

d(xj , yj) = Dn(X,Y) and

n∑
j=1

d(xσi(j), yσi(j)) =
n∑
j=1

d(xj , yj) = ∆n(X,Y). (4.1)

4.1. Roldán, Mart́ınez and Roldán’s multidimensional fixed point results.

In 2012, Roldán et al. proved the following theorem in order to show sufficient con-

ditions to ensure the existence of Φ-coincidence points (we particularize it in the case

of Υ-coincidence points taking τ as the identity mapping on {1, 2, . . . , n} and g as the

identity mapping on X).

Theorem 4.1 (Roldán et al. [39]). Under hypothesis (I)-(IV), assume that there

exists k ∈ [0, 1) verifying:

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ k max
1≤i≤n

d(xi, yi) (4.2)

for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

We shall prove the following result.

Theorem 4.2. Theorem 4.1 follows from Theorems 2.8 and 2.9.

Proof. Consider the product space Y = Xn provided with the metric Dn (as in

Lemma 3.1) and the partial order v on Y given by (2.1). Then (Y,Dn,v) is a com-

plete ordered MS. Since F has the mixed monotone property, item 1 of Theorem

3.2 shows that FΥ : Y → Y is nondecreasing w.r.t. v. By item 2 of Theorem

3.2, if F is continuous, then FΥ is also continuous. If x0 = (x1
0, x

2
0, . . . , x

n
0 ) ∈ Y ,

then condition (IV) is equivalent to x0 v FΥx0. Recall that, by Proposition 2.2,

given X = (x1, x2, . . . , xn),Y = (y1, y2, . . . , yn) ∈ Y such that X v Y, the points

(xσi(1), xσi(2), . . . , xσi(n)) and (yσi(1), yσi(2), . . . , yσi(n)) are comparable by v. There-

fore, (4.2) can be applied to these points, and it follows that

Dn(FΥX, FΥY) = max
1≤i≤n

d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

)
≤ max

1≤i≤n

[
k max

1≤j≤n
d(xσi(j), yσi(j))

]
= k max

1≤j≤n

[
max

1≤i≤n
d(xσi(j), yσi(j))

]
≤ k max

1≤j≤n

[
max

1≤i≤n
d(xi, yi)

]
= k max

1≤i≤n
d(xi, yi) = k Dn(X,Y).

Theorems 2.8 and 2.9 imply that FΥ has a fixed point, which is a Υ-fixed point of F

by item 3 of Theorem 3.2. �

Uniqueness of the fixed point also follows from Theorems 2.8 and 2.9.
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Theorem 4.3. Under the hypothesis of Theorem 4.1, assume that for all A,B ∈ Xn

there exists U ∈ Xn such that A v U and B v U . Then F has a unique Υ-fixed

point.

In order to assure the uniqueness of the fixed point, notice that the previous result

shows a sufficient condition which is only related to the partial order 4 on X (and its

extension v to Xn). It is not difficult to prove that a similar property of uniqueness

may be included in the results we will present throughout this paper. However, for

brevity, we will not write this part.

4.2. Bhaskar and Lakshmikantham’s coupled fixed point results. We present

the following multidimensional extension of the main result of Bhaskar and Laksh-

mikantham [25] using a similar argument of which we have showed in the previous

subsection.

Corollary 4.4. Under hypothesis (I)-(IV), assume that there exists k ∈ [0, 1) verify-

ing:

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ k

n

n∑
i=1

d(xi, yi)

for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. It is obvious since

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ k

n

n∑
i=1

d(xi, yi) ≤
k

n

n∑
i=1

max
1≤j≤n

d(xj , yj)

= k max
1≤j≤n

d(xj , yj). �

4.3. Berinde’s coupled fixed point results. We extend [Theorem 3, Berinde [8]]

in the following sense.

Theorem 4.5. Under hypothesis (I)-(IV), assume that there exists k ∈ [0, 1) verify-

ing:
n∑
i=1

d(F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))) ≤ k
n∑
j=1

d(xj , yj)

for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. It follows repeating the argument of Theorems 4.2 using the complete metric

∆n and taking into account that, for all X,Y ∈ Xn such that X v Y, we have that

∆n(FΥX, FΥY) =
n∑
i=1

d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

)
≤ k

n∑
j=1

d(xj , yj) = k ∆n(X,Y). �

Notice that this result implies that [Theorem 3, Berinde [8]] follows from Theorems

2.8 and 2.9.
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4.4. Berzig and Samet’s multidimensional fixed point results and Berinde

and Borcut’s tripled fixed point results. Berzig and Samet [15] extended the

main result of Berinde and Borcut [12] in the setting of multidimensional mappings.

Both results are special cases of the following theorem, which was also established

in [39, Corollary 16].

Theorem 4.6. Under hypothesis (I)-(IV), assume that there exists α1, α2, . . . , αn ∈
[0, 1) such that α1 + α2 + . . .+ αn < 1 verifying:

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤
n∑
j=1

αjd(xj , yj)

for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. Let k = α1 + α2 + . . .+ αn ∈ [0, 1). Then for all X,Y ∈ Xn such that X v Y,

we have that

Dn(FΥX, FΥY) = max
1≤i≤n

d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

)
≤ max

1≤i≤n

n∑
j=1

αjd(xσi(j), yσi(j)) ≤
n∑
j=1

(
αj max

1≤i≤n
d(xσi(j), yσi(j))

)

≤
n∑
j=1

(αj Dn(X,Y)) =

(
n∑
j=1

αj

)
Dn(X,Y) = k Dn(X,Y). �

4.5. Ćirić, Cakić, Rajović and Ume’s multidimensional fixed point results.

The following theorem is a multidimensional version of Theorem 2.2 in [19].

Theorem 4.7. Under hypothesis (I)-(IV), assume that there exists φ ∈ Φ3 verifying:

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ φ
(

max
1≤i≤n

d(xi, yi)

)
for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. By Proposition 2.7, there exists a nondecreasing mapping ϕ ∈ Φ3 such that φ ≤
ϕ. Since ϕ is non-decreasing, ϕ(max(s1, s2, . . . , sn)) = max(ϕ(s1), ϕ(s2), . . . , ϕ(sn))

for all s1, s2, . . . , sn ≥ 0. Then

Dn(FΥX, FΥY) = max
1≤i≤n

d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

)
≤ max

1≤i≤n
φ

(
max

1≤j≤n
d(xσi(j), yσi(j))

)
≤ max

1≤i≤n
ϕ

(
max

1≤j≤n
d(xσi(j), yσi(j))

)
≤ max

1≤i≤n
ϕ (Dn(X,Y)) = ϕ (Dn(X,Y)) .

Theorem 2.2 in [19] guarantees that F has a Υ-fixed point. �
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Corollary 4.8. Under hypothesis (I)-(IV), assume that there exists φ ∈ Φ3 verifying:

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ φ
(

1

n

n∑
i=1

d(xi, yi)

)
for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. It follows from the previous theorem since

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ φ
(

1

n

n∑
i=1

d(xi, yi)

)

≤ ϕ
(

1

n

n∑
i=1

d(xi, yi)

)
≤ ϕ

(
max

1≤i≤n
d(xi, yi)

)
. �

Corollary 4.9. Under hypothesis (I)-(IV), assume that there exists φ ∈ Φ3 verifying:

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ 1

n
φ

(
n∑
i=1

d(xi, yi)

)
for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. It follows from Remark 2.6 and Theorem 4.7 since

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ 1

n
φ

(
n∑
i=1

d(xi, yi)

)
≤ 1

n
ϕ

(
n∑
i=1

d(xi, yi)

)

≤ 1

n
ϕ

(
n max

1≤i≤n
d(xi, yi)

)
= ϕn

(
max

1≤i≤n
d(xi, yi)

)
. �

4.6. Lakshmikantham and Ciric’s coupled fixed point results. We shall prove

the following result as a generalization of the main result of Lakshmikantham and

Ćirić [34].

Theorem 4.10. Under hypothesis (I)-(V), assume that there exists ψ ∈ Φ2 verifying:

d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)) ≤ ψ

(
1

n

n∑
j=1

d(xj , yj)

)
for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. By Remark 2.5, the mapping ψn, given by ψn(t) = nψ(t/n) for all t ≥ 0, is in

Φ2. Therefore, applying (4.1), for all X,Y ∈ Xn such that X v Y we have that

∆n(FΥX, FΥY) =
n∑
i=1

d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

)
≤

n∑
j=1

ψ

(
1

n

n∑
j=1

d(xσi(j), yσi(j))

)
= n ψ

(
1

n
∆n(X,Y)

)
=ψ1 (∆n(X,Y)) . �
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4.7. Harjani, López and Sadarangani’s coupled fixed point results. We shall

prove the following result which is an extention of the main result of Harjani et al.[26].

Theorem 4.11. Under hypothesis (I)-(V), assume that there exist ψ,ϕ ∈ Φ1 verify-

ing:

ψ(d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn))) ≤ ψ
(

max
1≤i≤n

d(xi, yi)

)
− ϕ

(
max

1≤i≤n
d(xi, yi)

)
for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. Applying (4.1), for all X,Y ∈ Xn such that X v Y we have that

Dn(FΥX, FΥY) = max
1≤i≤n

d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

)
≤ max

1≤i≤n

[
(ψ − ϕ)

(
max

1≤j≤n
d(xσi(j), yσi(j))

)]
= max

1≤i≤n
[(ψ − ϕ) (Dn(X,Y))]

= ψ (Dn(X,Y))− ϕ (Dn(X,Y)).

Thesis follows from [Theorem 2.1, Harjani and Sadarangani [27]]. �

4.8. Karapınar’s quadruple fixed point results. We prove the following theorem

as an extension of the main result of Karapınar-Luong [28].

Theorem 4.12. Under hypothesis (I)-(V), assume that there exist φ ∈ Φ4 and ψ ∈ Φ5

verifying:

ψ(d(F (x1, x2, . . . , xn), F (y1, y2, . . . , yn))) ≤ 1

n
ψ

(
n∑
j=1

d(xj , yj)

)
− ϕ

(
n∑
j=1

d(xj , yj)

)
for which xi 4i yi for all i. Then F has, at least, one Υ-fixed point.

Proof. Applying (4.1) and the contractivity condition, for all X,Y ∈ Xn such that

X v Y we have that

ψ(∆n(FΥX, FΥY))

= ψ

(
n∑
i=1

d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

))
≤

n∑
i=1

ψ(d
(
F (xσi(1), xσi(2), . . . , xσi(n)), F (yσi(1), yσi(2), . . . , yσi(n))

)
)

≤
n∑
i=1

(
1

n
ψ − ϕ

)(
n∑
j=1

d(xσi(j), yσi(j))

)
=

n∑
i=1

(
1

n
ψ − ϕ

)
(∆n(X,Y))

= (ψ − nϕ) (∆n(X,Y)) = ψ(∆n(X,Y))− nϕ (∆n(X,Y)).

Since nϕ ∈ Φ4, the result immediately follows from [Theorem 2.1, Harjani and

Sadarangani [27]]. �
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Finally, we remark that the techniques used in this paper might be applied in

order to prove other coupled, tripled, quadrupled, n-tupled fixed point theorems in

the setup of various abstract spaces, e.g., partial metric spaces, cone metric spaces,

fuzzy metric spaces, b-metric spaces, etc.
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