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Abstract. In this paper, we introduce two types of the Levitin-Polyak well-posedness for the

system of weak generalized vector equilibrium problems. By using the gap function of the system

of weak generalized vector equilibrium problems, we establish the equivalent relationship between
the two types of Levitin-Polyak well-posedness of the system of weak generalized vector equilibrium

problems and the corresponding well-posednesses of the minimization problems. We also present

some metric characterizations for the two types of the Levitin-Polyak well-posedness of the system
of weak generalized vector equilibrium problems. The results in this paper are new and extend some

known results in the literature.
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1. Introduction

Well-posedness plays a crucial role in the stability theory for optimization prob-
lems, which guarantees that, for an approximating solution sequence, there exists
a subsequence which converges to a solution. The study of well-posedness for scalar
minimization problems started from Tykhonov [37] and Levitin and Polyak [25]. Since
then, various notions of well-posedness for scalar minimization problems have been
defined and studied in [10, 13, 19, 23, 30, 39] and the references therein. Recent stud-
ies on various notions of well-posedness for vector optimization problems can be found
in [4, 9, 17, 18, 21, 29, 31]. It is worth noting that the recent study for various types
of well-posedness have been generalized to variational inequalities [11, 12, 22, 27, 32],
generalized variational inequalities [6, 20], generalized vector variational inequalities
[38], equilibrium problems [28], vector equilibrium problems [26], [35], generalized
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vector equilibrium problems [34], system of vector quasi-equilibrium problems [36]
and many other problems.

On the other hand, Pang [33], Cohen and Chaplais [8], Bianchi [5] and Ansari and
Yao [2] considered a system of scalar variational inequalities, which is related to the
traffic equilibrium problem, the spatial equilibrium problem, the Nash equilibrium,
and the general equilibrium programming problem. Inspired by the study of vector
variational inequalities by Giannessi [14], Ansari, Schaible and Yao [1] considered
a system of weak vector equilibrium problems and a system of vector variational
inequality problems and obtained their existence results. Hou, Yu and Chen [15]
considered a system of weak generalized vector equilibrium problems and obtained its
existence results.

In this paper, we are interested in investigating two types of the Levitin-Polyak
well-posedness for a system of weak generalized vector equilibrium problems which
contains those mathematical models in [1, 2, 4-6, 8-14, 17-23, 25-39] as special cases.
The paper is organized as follows: In section 2, we introduce the definitions of two
types of Levitin-Polyak well-posedness for the system of weak generalized vector equi-
librium problems. In section 3, the lower semi-continuous property of the gap func-
tions of the system of weak generalized vector equilibrium problems and the equivalent
relationship between two types of the Levitin-Polyak well-posednesses of the system of
weak generalized vector equilibrium problems and the corresponding well-posednesses
of the minimization problems are established. In section 4, some metric characteriza-
tions for the Levitin-Polyak well-posedness for the system of weak generalized vector
equilibrium problems are obtained. The results in this paper generalize and extend
some known results in [20, 22, 26, 28, 34, 35, 38] and the references therein.

2. Preliminaries

Throughout this paper, without other specification, let I be a countable index
set and for each i ∈ I, let (Ei, di) be a metric space, Xi be a nonempty closed
subset of Ei, Zi be a nonempty subset of a topological vector spaces Fi, let Yi be a
locally convex Hausdorff topological vector space. Let E =

∏
i∈I Ei, X =

∏
i∈I Xi,

E−i =
∏
j∈I\iEi and X−i =

∏
j∈I\iXi. For each fixed i ∈ I and x ∈ E, we write

x = (xi, x−i) = (xi)i∈I ,z = (zi, z−i) = (zi)i∈I , where xi and x−i denote the projection

of x onto Ei and E−i, respectively. Let d(x, y) = supi∈I
di(xi,yi)

1+di(xi,yi)
for all x, y ∈ E. It

is clear that (E, d) is a metric space. For each i ∈ I, let Ci : E → 2Yi be a set-valued
map such that for any x ∈ E, Ci(x) is a proper, pointed, closed and convex cone in
Yi with nonempty interior intCi(x), ei : E → Yi be a continuous vector-valued map
and satisfies that for any x ∈ E, ei(x) ∈ intCi(x), Ti : E → 2Zi be a set-valued map,
fi : E × Zi × Ei → Yi and ϕi : E × Ei → Yi be continuous vector-valued function.
We are interesting in the following system of weak generalized vector equilibrium
problems (in short, (SWGVEP)) introduced and studied by Hou, Yu and Chen [15]:
Finding x̄ ∈ X such that for each i ∈ I,

∃z̄i ∈ Ti(x̄) : fi(x̄, z̄i, yi) /∈ −intCi(x̄),∀ yi ∈ Xi.

The following problems are special cases of (SWGVEP):
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(1) If for each i ∈ I, Ti(x) = {z̄i} for all x ∈ X, define a function ϕi : E ×Ei → Yi
as ϕi(x, yi) = fi(x, z̄i, yi), ∀(x, yi) ∈ E × Ei, then (SWGVEP) reduces to the system
of weak vector equilibrium problems (in short, (SWVEP)): Finding x̄ ∈ X such that
for each i ∈ I,

ϕi(x̄, yi) /∈ −intCi(x̄),∀ yi ∈ Xi.

If for each i ∈ I, Yi ≡ Y and Ci(x) ≡ C for all x ∈ X, then (SWVEP) becomes
the system of vector equilibrium problems introduced by Ansari, Schaible and Yao
[1], which contains the system of scalar variational inequalities in [2, 5, 8, 33], the
system of vector variational inequalities, the system of vector optimization problems,
the Nash equilibrium problem with vector-valued functions in [1] as special cases.

(2) If the index set I is singleton, then (SWGVEP) and (SWVEP), respectively,
reduces to the generalized vector equilibrium problem (in short, (GVEP)) studied in
[34] and the vector equilibrium problem (in short, (GVEP)) studied in [26, 35].

We denote by Ω and Ω1, respectively, the set of solutions of (SWGVEP) and
(SWVEP). Let (P, d) be a metric space, P1 ⊂ P and x ∈ P . We denote by d(x, P1) =
inf{d(x, p) : p ∈ P1} the distance function from the point x ∈ P to the set P1.
Definition 2.1. (i) A sequence {xn} ⊂ E is called a type I Levitin-Polyak (LP
in short) approximating solution sequence of (SWGVEP) if there exists a sequence
{εn} ⊆ R+ = {r ∈ R : r ≥ 0} with εn → 0 and for each i ∈ I, there exists zni ∈ Ti(xn)
such that

di(x
n
i , Xi) ≤ εn, (2.1)

and

fi(x
n, zni , yi) + εnei(x

n) /∈ −intCi(xn),∀yi ∈ Xi. (2.2)

(ii) A sequence {xn} ⊂ E is called a type II LP approximating solution sequence
of (SWGVEP) if there exists a sequence {εn} ⊆ R+ with εn → 0 and for each i ∈ I,
there exists zni ∈ Ti(xn) such that (2.1) and (2.2) hold; and there exists i0 ∈ I, for
any zi0 ∈ Ti0(xn), ∃ωi0(n, zi0) ∈ Xi0 , such that

fi0(xn, zi0 , wi0(n, zi0))− εnei0(xn) ∈ −Ci0(xn). (2.3)

(iii) A sequence {xn} ⊂ E is called a type I LP approximating solution sequence
of (SWVEP) if there exists a sequence {εn} ⊆ R+ with εn → 0 such that for each
i ∈ I, (2.1) holds and

ϕi(x
n, yi) + εnei(x

n) /∈ −intCi(xn),∀yi ∈ Xi. (2.4)

(iv) A sequence {xn} ⊂ E is called a type II LP approximating solution sequence
of (SWVEP) if there exists a sequence {εn} ⊆ R+ with εn → 0 such that for each
i ∈ I, (2.1) and (2.4) hold; and there exist i0 ∈ I, and ωni0 ∈ Xi0 , such that

ϕi0(xn, wni0)− εnei0(xn) ∈ −Ci0(xn). (2.5)

Definition 2.2. (SWGVEP) is said to be type I (resp. type II) LP well-posed
if Ω 6= ∅ and for every type I (resp. type II) LP approximating solution sequence
{xn} for (SWGVEP), there exists a subsequence {xnj} of {xn} and x̄ ∈ Ω such that
xnj → x̄.
Definition 2.3. (SWVEP) is said to be type I (resp. type II) LP well-posed if
Ω1 6= ∅ and for every type I (resp. type II) LP approximating solution sequence
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{xn} for (SWVEP), there exists a subsequence {xnj} of {xn} and x̄ ∈ Ω1 such that
xnj → x̄.
Remark 2.1. (i) Both type I LP well-posedness and type II LP well-posedness for
(SWGVEP) imply that the solution set Ω is nonempty and compact.

(ii) It is clear that any type II LP approximating solution sequence of (SWGVEP)
is a type I LP approximating solution sequence of (SWGVEP), thus the type I LP
well-posedness of (SWGVEP) implies the type II LP well-posedness of (SWGVEP).

(iii) If the index set I is singleton, then by (i) and (ii) of Definition 2.1, Definition
2.2, respectively, we can easily obtain the definitions of type I (type II) approximating
solution sequence and the type I (type II) LP well-posedness of (GVEP) in [34]; by
(iii) and (iv) of Definition 2.1, Definition 2.3, respectively, we can easily obtain the
definitions of type I (type II) approximating solution sequence and the type I (type II)
LP well-posedness of (VEP) in [35, 26]. Thus, Definitions 2.1-2.3 generalize, extend
and unify the corresponding one in [6, 26, 28, 34, 35, 38] and the references therein.
Definition 2.5. [3, 16, 24] Let Z1, Z2 be two metric spaces. A set-valued map F
from Z1 to 2Z2 is

(i) closed, on Z3 ⊆ Z1, if for any sequence {xn} ⊆ Z3 with xn → x and yn ∈ F (xn)
with yn → y, one has y ∈ F (x);

(ii) lower semicontinuous (l.s.c. in short) at x ∈ Z1, if {xn} ⊆ Z1, xn → x, and
y ∈ F (x) imply that there exists a sequence {yn} ⊆ Z2 satisfying yn → y such that
yn ∈ F (xn) for n sufficiently large. If F is l.s.c. at each point of Z1, we say that F is
l.s.c. on Z1.

(iii) upper semicontinuous (u.s.c. in short) at x ∈ Z1, if for any neighborhood V of
F (x), there exists a neighborhood U of x such that F (z) ⊆ V ,∀z ∈ U . If F is u.s.c.
at each point of Z1, we say that F is u.s.c. on Z1.

(iv) continuous at x ∈ Z1, if it is both u.s.c. and l.s.c. at x. If F is continuous at
each point of Z1, we say that F is continuous on Z1.

From the proof of Theorem 2.1 in [7], we can obtain the following result:
Lemma 2.1. Let X and Y be two locally convex Hausdorff topological vector spaces,
C : X → 2Y a set-valued map such that, for any x ∈ X, C(x) is proper, pointed,
closed and convex cone in Y with nonempty interior intC(x). Let e : X → Y be
a continuous vector-valued map and satisfies that for any x ∈ X, e(x) ∈ intC(x).
Define a set-valued map W : X → 2Y by W (x) = Y/ − intC(x), for all x ∈ X. The
nonlinear scalarization function ξe : X × Y → R is defined as follows

ξe(x, y) =: inf{λ ∈ R : y ∈ λe(x)− C(x)}.
Then

(i) If W is u.s.c., then ξe(., .) is upper semi-continuous on X × Y ;
(ii) If C is u.s.c., then ξe(., .) is lower semi-continuous on X × Y .

3. The equivalent relations

In this section, the lower semi-continuous property of the gap functions of
(SWGVEP) and the equivalent relationship of the two types of LP well-posedness
of (SWGVEP) and the corresponding well-posednesses of minimization problems will
be presented.



LEVITIN-POLYAK WELL-POSEDNESS OF THE SYSTEM 533

Definition 3.1. A function φ : E → R ∪ {+∞} is said to be a gap function for
(SWGVEP), if

(i) φ(x) ≥ 0,∀x ∈ X;
(ii) φ(x∗) = 0 and x∗ ∈ X if and only if x∗ ∈ Ω.

Theorem 3.1. Assume that for each i ∈ I,
(i) the set-valued map Ti is compact-valued on X;
(ii) for each x ∈ X and zi ∈ Ti(x), fi(x, zi, xi) ∈ −∂Ci(x), where ∂C is the

topological boundary of C.
(iii) for any (x, yi) ∈ E×Ei, the vector-valued function zi 7→ fi(x, zi, yi) is contin-

uous.
Then the function φ : E → R ∪ {+∞} defined by

φ(x) = sup
i∈I

inf
zi∈Ti(x)

sup
yi∈Xi

{−ξei(x, fi(x, zi, yi))}. (3.1)

is a gap function of (SWGVEP).
Proof. It follows from Proposition 2.3 in [7] and (ii) that for each i ∈ I, for any x ∈ X
and zi ∈ Ti(x), ξei(x, fi(x, zi, xi)) = 0 and so sup

yi∈Xi

{−ξei(x, fi(x, zi, yi))} ≥ 0. Hence,

for any x ∈ X and i ∈ I,

inf
zi∈Ti(x)

sup
yi∈Xi

{−ξei(x, fi(x, zi, yi))} ≥ 0,

and it follows from (3.1) that

φ(x) ≥ 0,∀x ∈ X. (3.2)

If φ(x̄) = 0 and x̄ ∈ X, then for each i ∈ I,

inf
zi∈Ti(x̄)

sup
yi∈Xi

{−ξei(x̄, fi(x̄, zi, yi))} ≤ 0.

Then, for each i ∈ I, there exist 0 < εn → 0 and zni ∈ Ti(x̄) such that

sup
yi∈Xi

{−ξei(x̄, fi(x̄, zni , yi))} ≤ εn,

which implies that

ξei(x̄, fi(x̄, z
n
i , yi)) ≥ −εn,∀yi ∈ Xi.

It follows from Proposition 2.3 in [7] that for each i ∈ I, zni ∈ Ti(x̄) and

fi(x̄, z
n
i , yi) + εnei(x̄) /∈ −intCi(x̄),∀yi ∈ Xi. (3.3)

By the compactness of Ti(x̄), there exist a sequence {znj

i } of {zni } and some
z̄i ∈ Ti(x̄) such that z

nj

i → z̄i. It follows from (iii) and (3.3) that for each i ∈ I,
fi(x̄, z̄i, yi) /∈ −intCi(x̄),∀yi ∈ Xi. and thus, x̄ ∈ Ω.

Conversely, if x̄ ∈ Ω, then x̄ ∈ X such that for each i ∈ I, z̄i ∈ Ti(x̄) and
fi(x̄, z̄i, yi) /∈ −intCi(x̄),∀yi ∈ Xi. It follows from Proposition 2.3 in [7] that for each
i ∈ I, z̄i ∈ Ti(x̄) and sup

yi∈Xi

{−ξei(x̄, fi(x̄, z̄i, yi))} ≤ 0. And so for each i ∈ I,

inf
zi∈Ti(x̄)

sup
yi∈Xi

{−ξei(x̄, fi(x̄, z̄i, yi))} ≤ 0.



534 JIAN-WEN PENG AND JEN-CHIH YAO

It follows from (3.1) that

φ(x̄) ≤ 0. (3.4)

Now (3.2) and (3.4) imply that φ(x̄) = 0. This completes the proof.
Now we present an important property of the gap function for (SWGVEP) as

follows:
Lemma 3.1. Assume that for each i ∈ I,

(i) the set-valued map Ti is u.s.c and compact-valued on E;
(ii) the set-valued map Wi : E → 2Yi defined by Wi(x) = Yi \ −intCi(x) is u.s.c.;
(iii) for any yi ∈ Ei, the vector-valued function (x, zi) 7→ fi(x, zi, yi) is continuous.
Then the function φ defined by (3.1) is lower semi-continuous from E to R∪+{∞}.

Proof. First, it is obvious that φ(x) > −∞,∀x ∈ E. Otherwise, suppose that there
exists x0 ∈ E such that φ(x0) = −∞. Then, for each i ∈ I, there exist zni ∈ Ti(x0)
and {Mn} ⊂ R+ with Mn → +∞ such that

sup
yi∈Xi

{−ξei(x0, fi(x0, z
n
i , yi))} ≤ −Mn. (3.5)

Hence,

ξei(x0, fi(x0, z
n
i , yi)) ≥Mn,∀yi ∈ Xi.

By the compactness of Ti(x0), there exist a sequence {znj

i } of {zni } and some
zi ∈ Ti(x0) such that {znj

i } → zi. It follows from (ii) and Lemma 2.1 that ξei is
upper semi-continuous, and so

ξei(x0, fi(x0, zi, yi)) ≥ lim sup
j→+∞

ξei(x0, fi(x0, z
nj

i , yi)) = +∞,∀yi ∈ Xi

which is impossible, since ξei(., .) is a finite function on E × Yi.
Second, we show that φ is lower semi-continuous on E. Let t ∈ R, suppose that

{xn} ⊂ E satisfies φ(xn) ≤ t, ∀n and xn → x0. Then, for each i ∈ I and ∀n,

inf
zi∈Ti(xn)

sup
pi∈Xi

{−ξei(xn, fi(xn, zi, pi))} ≤ t (3.6)

Then, for each i ∈ I, there exist 0 < εn → 0 and zni ∈ Ti(xn) such that

sup
pi∈Xi

{−ξei(xn, fi(xn, zni , pi))} ≤ t+ εn,

which implies that

ξei(x
n, fi(x

n, zni , pi)) ≥ −t− εn,∀pi ∈ Xi.

It follows from proposition 2.3 in [7] that for each i ∈ I, there exists zni ∈ Ti(xn)
such that

fi(x
n, zni , pi) + (t+ εn)ei(x

n) /∈ −intCi(xn),∀pi ∈ Xi. (3.7)

Moreover, by the upper semi-continuity and compactness of Ti, there exist a se-
quence {znj

i } of {zni } and some zi ∈ Ti(x0) such that z
nj

i → zi. By taking the limit
in (3.7) (with n replaced by nj), we know that for each i ∈ I,

fi(x0, zi, yi) + tei(x0) /∈ −intCi(x0),∀yi ∈ Xi.

It follows from proposition 2.3 in [7] that for each i ∈ I, zi ∈ Ti(x0) and

ξei(x0, fi(x0, zi, yi)) ≥ −t,∀yi ∈ Xi. (3.8)



LEVITIN-POLYAK WELL-POSEDNESS OF THE SYSTEM 535

It follows from (3.8) that for each i ∈ I, inf
zi∈Ti(x0)

sup
yi∈Xi

{−ξei(x0, fi(x0, zi, yi))} ≤ t.

Let φ be defined by (3.1), then φ(x0) ≤ t. Thus φ is lower semi-continuous on X.
This completes the proof.

In order to relate the LP well-posedness of (SWGVEP) with that of constrained
minimization problems, we consider the LP well-posedness of the following general
constrained program:

(P )

{
minφ(x)
s.t. x ∈ X,

where φ : E → R ∪ {∞} is proper and lower semicontinuous. The optimal set and
optimal value of (P) are denoted by Ω̄ and v̄, respectively.
Definition 3.2. [19] A sequence {xn} ⊂ E is called a type I LP minimizing sequence
for (P) if

lim sup
n→+∞

φ(xn) ≤ v̄, (3.9)

and for each i ∈ I,
di(x

n
i , Xi)→ 0. (3.10)

Definition 3.3. [19] A sequence {xn} ⊂ E is called a type II LP minimizing sequence
for (P) if

lim
n→+∞

φ(xn) = v̄ (3.11)

and for each i ∈ I, (3.10) holds.
Definition 3.4. [19] (P) is said to be type I LP well-posed if Ω̄ 6= ∅, and for any type
I LP minimizing sequence {xn} for (P), there exists a subsequence {xnj} of {xn} and
x̄ ∈ Ω̄ such that xnj → x̄.
Definition 3.5. [19] (P) is said to be type II LP well-posed if Ω̄ 6= ∅, and for any
type II LP minimizing sequence {xn} for (P), there exists a subsequence {xnj} of
{xn} and x̄ ∈ Ω̄ such that xnj → x̄.

The following results reveals the relationship between the two types of LP well-
posedness of (SWGVEP) and those of (P).
Theorem 3.2. Assume that for each i ∈ I,

(i) the set-valued map Ti is compact-valued on E;
(ii) for each x ∈ X, zi ∈ Ti(x), fi(x, zi, xi) ∈ −∂Ci(x);
(iii) the set-valued map Wi : E → 2Yi defined by Wi(x) = Yi \ −intCi(x) is u.s.c;
(iv) for any (x, yi) ∈ E ×Ei, the vector-valued function zi 7→ fi(x, zi, yi) is contin-

uous.
Then, (SWGVEP) is type I LP well-posed if and only if (P) is type I LP well-posed

with φ(x) defined by (3.1).
Proof. Let φ(x) be defined by (3.1). From Theorem 3.1 x̄ ∈ X is a solution of
(SWGVEP) if and only if x̄ is an optimal solution of (P) with v̄ = φ(x̄) = 0.

We first prove the sufficency. Assume that {xn} is a type I LP approximating
solution sequence of (SWGVEP), then there exists {εn} ⊆ R+ with εn → 0 such that
(2.1) and (2.2) hold, for each i ∈ I, it follows from (2.1) that (3.10) holds. By (2.2)
and Proposition 2.3 in [7], we know that for each i ∈ I, there exists zni ∈ Ti(xn) such
that ξei(x

n, fi(xn, z
n
i , yi)) ≥ −εn,∀yi ∈ Xi. It follows from (3.1) that φ(xn) ≤ εn,

which implies that (3.9) holds with v̄ = 0. Hence, {xn} is a type I LP approximating
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solution sequence of (P). It follows from the type I LP well-posedness of (P) that
(SWGVEP) is type I LP well-posed.

Now we show the converse, let {xn} is a type I LP approximating solution sequence
of (P), then for each i ∈ I, (3.9) and (3.10) hold. It follows from (3.10) that there
exists {εn} ⊆ R+ with εn → 0 such that for each i ∈ I, (2.1) holds. Furthermore, by
(3.9), we have that

φ(xn) = sup
i∈I

inf
zi∈Ti(xn)

sup
yi∈Xi

{−ξei(xn, fi(xn, zi, yi))} ≤ εn.

Thus, for each i ∈ I, we have

inf
zi∈Ti(xn)

sup
yi∈Xi

{−ξei(xn, fi(xn, zi, yi))} ≤ εn.

By (iii) and Lemma 2.1, we know that ξei(., .) is upper semi-continuous. It follows
from the compactness of Ti(x

n) that for each i ∈ I, ∃zni ∈ Ti(xn), such that

ξei(x
n, fi(x

n, zni , yi)) ≥ −εn,∀yi ∈ Xi,

which implies that (2.2) holds. Thus, {xn} is a type I LP approximating solution
sequence of (SWGVEP). It follows from the type I LP well-posedness of (SWGVEP)
that (P) is type I LP well-posed. This completes the proof.
Theorem 3.3. Assume that all conditions in Theorem 3.2 are satisfied, then,

(a) The type II LP well-posedness of (P) with φ(x) defined by (3.1) implies the
type II LP well-posedness of (SWGVEP).

(b) Moreover, if I is a finite index set and (SWGVEP) is type II LP well-posed,
then (P) is type II LP well-posed with φ(x) defined by (3.1).
Proof. Let φ(x) be defined by (3.1). From Theorem 3.1 x̄ ∈ X is a solution of
(SWGVEP) if and only if x̄ is an optimal solution of (P) with v̄ = φ(x̄) = 0.

We first prove (a). Assume that {xn} is type II LP approximating solution sequence
of (SWGVEP), then there exists {εn} ⊆ R+ with εn → 0 such that for each i ∈ I,
zni ∈ Ti(x

n), (2.1) and (2.2) hold, and there exist i0 ∈ I, for any zi0 ∈ Ti0(xn),
∃ωi0(n, zi0) ∈ Xi0 such that (2.3) holds. From (2.1), (2.2) and the proof of Theorem
3.2, we know that (3.9) holds with v̄ = 0 and for each i ∈ I, (3.10) holds. By (2.3)
and Proposition 2.3 in [7], we get ξei0 (xn, fi0(xn, zi0 , ωi0(n, zi0))) ≤ εn. Thus,

inf
zi0∈Ti0 (xn)

sup
νi0 (n,zi0 )∈Xi0

{−ξei0 (xn, fi0(xn, zi0 , νi0(n, zi0)))} ≥ −εn.

It follows from (3.1) that φ(xn) ≥ −εn, which implies that

lim inf
n→+∞

φ(xn) ≥ 0. (3.12)

Combining (3.9) together with (3.12), we know that (3.11) holds with v̄ = 0. Hence,
{xn} is a type II LP approximating solution sequence of (P). It follows from the type
II LP well-posedness of (P) that (SWGVEP) is type II LP well-posed.

Now we prove (b). Assume that {xn} is a type II LP approximating solution
sequence of (P), then (3.11) holds and for each i ∈ I, (3.10) holds. Hence, there exist
{εn} ⊆ R+ with εn → 0 such that for each i ∈ I, (2.1) holds, and for n sufficiently
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large, the following formula holds

−ε
n

2
≤ φ(xn) ≤ εn

2
. (3.13)

By the right side of (3.13) and the proof of Theorem 3.2, we know that for each
i ∈ I, ∃zni ∈ Ti(xn), such that

fi(x
n, zni , yi) + εnei(x

n) /∈ −intCi(xn),∀yi ∈ Xi.

The left side of (3.13) can be rewritten as,

φ(xn) = sup
i∈I

inf
zi∈Ti(xn)

sup
yi∈Xi

{−ξei(xn, fi(xn, zi, yi))} ≥ −
εn

2
.

Since I is a finite index sets, there exists i0 ∈ I, such that

inf
zi0∈Ti0 (xn)

sup
yi0∈Xi0

{−ξei0 (xn, fi0(xn, zi0 , yi0))} ≥ −ε
n

2
.

Thus, for all zi0 ∈ Ti0(xn), we have

β := sup
yi0∈Xi0

{−ξei0 (xn, fi0(xn, zi0 , yi0))} ≥ −ε
n

2
.

It follows from the definition of supremum that there exists ωi0(n, vi0) ∈ Xi0 such
that

−ξei0 (xn, fi0(xn, zi0 , ωi0(n, zi0))) ≥ β − εn

2
≥ −εn.

It follows from proposition 2.3 in [7] that fi0(xn, zi0 , ωi0(n, zi0)) − εnei0(xn) ∈
−Ci0(xn). Thus, {xn} is a type II LP approximating solution sequence of (SWGVEP).
It follows from the type II LP well-posedness of (SWGVEP) that (P) is the type II
LP well-posed. This completes the proof.

If for each i ∈ I, Ti(x) = {z̄i} for all x ∈ E, ϕi(x, yi) = fi(x, z̄, yi), ∀(x, yi) ∈
E × Ei, then by Theorem 3.1 and Lemma 3.1, Theorems 3.2 and 3.3, respectively, we
can obtain the following new results:
Corollary 3.1. (a) If for any x ∈ X and for each i ∈ I, ϕi(x, xi) ∈ −∂Ci(x), then
the function φ1 : E → R ∪ {+∞} defined by

φ1(x) = sup
i∈I

sup
yi∈Xi

{−ξei(x, ϕi(x, yi))}. (3.14)

is a gap function of (SWVEP).
(b) If for each i ∈ I, the set-valued map Wi : E → 2Yi defined by Wi(x) =

Yi \−intCi(x) is u.s.c., and for any yi ∈ Ei, the vector-valued function x 7→ ϕi(x, yi)
is continuous, then the function φ1 defined by (3.14) is lower semi-continuous from E
to R ∪+{∞}.
Corollary 3.2. Assume that for each i ∈ I, the set-valued map Ti is compact-valued
on E; for each x ∈ X, ϕi(x, xi) ∈ −∂Ci(x); the set-valued map Wi : E → 2Yi defined
by Wi(x) = Yi \ −intCi(x) is u.s.c. Then,

(a) (SWVEP) is type I LP well-posed if and only if (P) is type I LP well-posed
with φ(x) replaced by φ1(x) defined by (3.14).
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(b) The type II LP well-posedness of (P) with φ replaced by φ1 defined by (3.14)
implies the type II LP well-posedness of (SWVEP).

(c) Moreover, if I is a finite index set and (SWVEP) is type II LP well-posed, then
(P) is type II LP well-posed with φ replaced by φ1 defined by (3.14).
Remark 3.1. If the index set I is singleton, then by Theorem 3.1, Lemma 3.1,
Theorems 3.2 and 3.3, respectively, we recover Propositions 2.2, 2.3 and Theorem 2.1
in [34]; by Corollary 3.2 and (a) and (b) of Corollary 3.1, respectively, we recover
Theorem 4.1, Propositions 4.1 and 4.2 in [26].

4. Metric characterizations for the LP well-posedness of (SWGVEP)

In this section, we give some metric characterizations for the two types of LP
well-posedness of (SWGVEP).
Definition 4.1. (SWGVEP) is said to be type I generalized Tykhonov well-set (resp.
type II LP well-set) if Ω 6= ∅ and for any type I LP approximating solution sequence
(resp. type II LP approximating solution sequence) {xn} for (SWGVEP), we have
d(xn,Ω)→ 0 as n→∞.

We can easily obtain the equivalent relations between the two types of generalized
Tykhonov well-posedness and the corresponding types of LP well set of (SWGVEP)
as follows:
Proposition 4.1. (SWGVEP) is type I LP well-posed (resp. type II LP well-posed)
if and only if (SWGVEP) is type I LP well-set (resp. type II LP well-set) and Ω is
compact.

Now we consider the Kuratowski measure of noncompactness for a nonempty subset
A of X (see [24]) defined by

α(A) = inf{ε > 0 : A ⊂ ∪ni=1Ai, for every Ai, diamAi < ε},
where diamAi is the diameter of Ai defined by

diamAi = sup{d(x1, x2) : x1, x2 ∈ Ai}.

Given two nonempty subsets A and B of X, the excess of A to B is defined by

e(A,B) = sup{d(a,B) : a ∈ A},

and the Hausdorff distance between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)}.

For ε > 0, two types of LP approximating solution set for (SWGVEP) are defined,
respectively, by

Θ1(ε) := {x ∈ X : ∀i ∈ I, di(xi, Xi) ≤ ε and ∃zi ∈ Ti(x), s.t.fi(x, zi, yi) + εei(x) /∈
−intCi(x), ∀yi ∈ Xi}.

Θ2(ε) := {x ∈ X : ∀i ∈ I, di(xi, Xi) ≤ ε and ∃zi ∈ Ti(x), s.t.fi(x, zi, yi) +
εei(x) /∈ −intCi(x), ∀yi ∈ Xi; and ∃i0 ∈ I, ∀zi0 ∈ Ti0(x), ∃ωi0(zi0) ∈
Xi0 , s.t.fi0(x, zi0 , ωi0(zi0))− εei0(x) ∈ −Ci0(x)}.
Theorem 4.1. (a) (SWGVEP) is a type I LP well-posed if and only if the solution
set Ω is nonempty, compact and

e(Θ1(ε),Ω)→ 0 as ε→ 0;
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(b) (SWGVEP) is a type II LP well-posed if and only if the solution set Ω is
nonempty, compact and

e(Θ2(ε),Ω)→ 0 as ε→ 0 (4.1)

Proof. We only prove (b). The proof of (a) is similar and is omitted here.
Let (SWGVEP) be type II LP well-posed. Then Ω is nonempty and compact. Now

we show that (4.1) holds. Suppose to the contrary that there exist M > 0, εn > 0
with εn → 0 and vn ∈ Θ2(εn) such that

d(vn,Ω) ≥M (4.2)

Since {vn} ⊆ Θ2(εn), we know that {vn} is a type II LP approximating solution
sequence for (SWGVEP). By the type II LP well-posedness of (SWGVEP), there
exists a subsequence {vnj} of {vn} converging to some element of Ω. This contradicts
(4.2). Hence, (4.1) holds.

Conversely, suppose that Ω is nonempty, compact and (4.1) holds. Let {xn} be
type II LP approximating solution sequence of (SWGVEP). Then, there exists a
sequence {εn} ⊆ R+ with εn → 0 such that for each i ∈ I, ∃zni ∈ Ti(x

n), (2.1)
and (2.2) hold; and there exists i0 ∈ I, for any zi0 ∈ Ti0(xn), ∃ωi0(n, zi0) ∈ Xi0 ,
such that (2.3) holds. Thus, {xn} ⊆ Θ2(εn). It follows from (4.1) that there exist a
sequence {zn} ⊆ Ω such that d(xn, zn) = d(xn,Ω) ≤ e(Θ2(εn),Ω) → 0. Since Ω is
compact, there exists a subsequence {znj} of {zn} converging to x0 ∈ Ω. And so the
corresponding subsequence {xnj} of {xn} converging to x0. Therefore, (SWGVEP)
is type II LP well-posed. This completes the proof.
Theorem 4.2. Assume that for each i ∈ I,

(i) the set-valued map Wi : E → 2Yi defined by Wi(x) = Yi \ −intCi(x) is u.s.c.;
(ii) the set-valued map Ti is u.s.c and compact-valued on E,
(iii) for any yi ∈ Ei, the vector-valued function (x, zi) 7→ fi(x, zi, yi) is continuous.
Then, (SWGVEP) is type I LP well-posed if and only if

Θ1(ε) 6= ∅,∀ε > 0 and lim
ε→0

α(Θ1(ε)) = 0. (4.3)

Proof. Assume that (4.3) holds. Then, for any ε > 0, Cl(Θ1(ε)) is nonempty closed
and increasing with ε > 0. By (4.3), lim

ε→0
α(Cl(Θ1(ε))) = lim

ε→0
α(Θ1(ε)) = 0, where

Cl(Θ1(ε)) is the closure of Θ1(ε). By the generalized Cantor theorem (P. 412 in [24]),
we know that

H(Cl(Θ1(ε)),41)→ 0, as ε→ 0. (4.4)

where 41 = ∩ε>0Cl(Θ1(ε)) is nonempty compact.
Now we show that

Ω = 41. (4.5)

We first show that

41 ⊆ Ω. (4.6)

Indeed, let x̄ ∈ ∆1. Then d(x̄,Θ1(ε)) = 0, for every ε > 0. Given εn > 0, εn → 0,
for every n there exists un ∈ Θ1(εn) such that d(x̄, un) < εn. Hence, un → x̄ and for
each i ∈ I,

di(u
n
i , Xi) ≤ εn, (4.7)
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and there exists
zni ∈ Ti(un), (4.8)

such that
fi(u

n, zni , yi) + εnei(u
n) /∈ −intCi(un), ∀yi ∈ Xi. (4.9)

(4.7) and un → x̄ imply that for each i ∈ I, there exists wni ∈ Xi such that
wni → x̄i. It follows from the closedness of Xi that for each i ∈ I, x̄i ∈ Xi.

It follows from the assumption (ii) and (4.8) that there exists a subsequence {znj

i }
of {zni } and some z̄i ∈ Ti(x̄) such that {znj

i } → z̄i.
By the continuity of fi, the closedness of Wi, and (4.9), we know that for each

i ∈ I, fi(x̄, z̄i, yi) /∈ −intCi(x̄),∀ yi ∈ Xi. That is, x̄ ∈ Ω, which implies that (4.6)
holds. It is obvious that Ω ⊆ 41. Thus, (4.5) holds.

By (4.4) and (4.5), we know that e(Θ1(ε),Ω) → 0 as ε → 0. It follows from
Theorem 4.1(a) that (SWGVEP) is type I LP well-posed.

Conversely, let (SWGVEP) be type I LP well-posed. Then Ω is nonempty and
compact. It follows that Θ1(ε) 6= ∅,∀ε > 0. Observe that for every ε > 0,

H(Θ1(ε),Ω) = max{e(Θ1(ε),Ω), e(Ω,Θ1(ε))} = e(Θ1(ε),Ω)

Hence,
α(Θ1(ε)) ≤ 2H(Θ1(ε),Ω) + α(Ω) = 2e(Θ1(ε),Ω). (4.10)

where α(Ω) = 0 since Ω is compact. By Theorem 4.1(a), we get that e(Θ1(ε),Ω)→ 0
as ε→ 0. It follows from (4.10) that (4.3) holds. This completes the proof.
Theorem 4.3. Assume that for each i ∈ I,

(i) the set-valued map Wi : E → 2Yi defined by Wi(x) = Yi \ −intCi(x) is u.s.c.;
(ii) the set-valued map Ti is u.s.c and compact-valued on E;
(iii) for any yi ∈ Ei, the vector-valued function (x, zi) 7→ fi(x, zi, yi) is continuous;
(iv) Suppose that for any x ∈ Ω, there exist i0 ∈ I, for any zi0 ∈ Ti0(x), ∃ωi0(zi0) ∈

Xi0 such that fi0(x, zi0 , ωi0(zi0)) ∈ −∂Ci0(x).
Then, (SWGVEP) is type II LP well-posed if and only if

Θ2(ε) 6= ∅,∀ε > 0, and lim
ε→0

α(Θ2(ε)) = 0 (4.11)

Proof. Let (4.11) holds. Then, for any ε > 0, Cl(Θ2(ε)) is nonempty closed and
increasing with ε > 0. By (4.11), lim

ε→0
α(Cl(Θ2(ε))) = lim

ε→0
α(Θ2(ε)) = 0, where

Cl(Θ2(ε)) is the closure of Θ2(ε).By the generalized Cantor theorem (P.412 in [24]).
We know that

H(Cl(Θ2(ε)),42)→ 0, as ε→ 0 (4.12)

where 42 = ∩ε>0Cl(Θ2(ε)) is nonempty compact.
Now we show that

42 = Ω (4.13)

Let x̄ ∈ Ω, then for each i ∈ I, x̄i ∈ Xi, z̄i ∈ Ti(x̄) and fi(x̄, z̄i, yi) /∈
−intCi(x̄),∀yi ∈ Xi. Then for ε > 0, we have di(x̄i, Xi) ≤ ε and z̄i ∈
Ti(x̄), fi(x̄, z̄i, yi)+εei(x̄) /∈ −intCi(x̄), ∀yi ∈ Xi. It follows from (iii) that there exists
i0 ∈ I, for any zi0 ∈ Ti0(x̄), ∃ωi0(zi0) ∈ Xi0 such that fi0(x̄, zi0 , ωi0(zi0)) ∈ −∂Ci0(x̄).
Hence, fi0(x̄, zi0 , ωi0(zi0))−εei0(x̄) ∈ −∂Ci0(x̄)− intCi0(x̄) ⊆ −intCi0(x̄) ⊆ −Ci0(x̄),
which implies that Ω ⊆ 42. It follows from the proof of Theorem 4.1 that
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42 ⊆ 41 ⊆ Ω, thus (4.13) holds. Combining (4.12) together with (4.13), we get
that e(Θ2(ε),Ω) → 0 as ε → 0. It follows from Theorem 4.1(b) that (SWGVEP) is
type II LP well-posed.

The converse of the proof is similar with that of the proof of Theorem 4.2 and it
is omitted here. This completes the proof.

Now we present some sufficient conditions for the two types of LP well-posedness
of (SWGVEP).
Theorem 4.4. Let E be finite dimensional. Assume that for each i ∈ I,

(i) the set-valued map Ti is u.s.c and compact-valued on E;
(ii) the set-valued map Wi : E → 2Yi defined by Wi(x) = Yi \ −intCi(x) is u.s.c;
(iii) for any yi ∈ Ei, the vector-valued function (x, zi) 7→ fi(x, zi, yi) is continuous;
(iv) Ω is nonempty and there exists ε0 > 0 such that Θ1(ε0) (resp., Θ2(ε0)) is

bounded.
Then (SWGVEP) is type I (resp., type II) LP well-posed.

Proof. We only prove the sufficiency for the type I LP well-posedness of (SWGVEP).
The proof of the sufficiency for the type II LP well-posedness for (SWGVEP) is similar
and is omitted here.

Let {xn} be any type I LP approximating solution sequence of (SWGVEP). Then
there exist εn > 0 with εn → 0 such that for each i ∈ I, zni ∈ Ti(xn), (2.1) and (2.2)
hold. Thus xn ∈ Θ1(εn). Clearly, Θ1(.) is increasing with ε > 0. Without loss of
generality, we can assume that {xn} ⊆ Θ1(ε0). Hence, {xn} is bounded. Since E is
finite dimensional, let {xnj} be any subsequence of {xn} such that xnj → x̄ ∈ X.
From (2.1) and (2.2), we can get for each i ∈ I, ∃znj

i ∈ Ti(xnj ),

di(x
nj

i , Xi) ≤ εn. (4.14)

and

fi(x
nj , z

nj

i , yi) + εnjei(x
nj ) /∈ −intCi(xnj ),∀yi ∈ Xi. (4.15)

For each i ∈ I, (4.14) and the closedness of Xi imply that x̄i ∈ Xi.

It follows from (i) that there exist a subsequence of {znj

i }, denoted by {znjk
i } and

some z̄i ∈ Ti(x̄) such that z
njk
i → z̄i. Taking the limit in (4.15) (with nj replaced by

njk), we have fi(x̄, z̄i, yi) ∈ Wi(x̄), ∀yi ∈ Xi. Hence, x̄ ∈ Ω, and (SWGVEP) is type
I Tykhonov well-posed. This completes the proof.
Proposition 4.2. Assume that for each i ∈ I,

(i) the set-valued map Ti is u.s.c and compact-valued on E;
(ii) the set-valued map Wi : E → 2Yi defined by Wi(x) = Yi \ −intCi(x) is u.s.c;
(iii) for any yi ∈ Ei, the vector-valued function (x, zi) 7→ fi(x, zi, yi) is continuous;
(iv) Ω is nonempty and there exists ε0 > 0 such that Θ1(ε0) (resp., Θ2(ε0)) is

compact.
Then (SWGVEP) is type I (resp., type II) LP well-posed.

Proof. The proof is similar to Theorem 4.4 and is omitted.
For ε > 0, two types of LP approximating solution set for (SWVEP) are defined,

respectively, by
Θ3(ε) := {x ∈ X : ∀i ∈ I, di(xi, Xi) ≤ ε and ϕi(x, yi) + εei(x) /∈ −intCi(x), ∀yi ∈

Xi}.
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Θ4(ε) := {x ∈ X : ∀i ∈ I, di(xi, Xi) ≤ ε and ϕi(x, yi) + εei(x) /∈ −intCi(x), ∀yi ∈
Xi; and ∃i0 ∈ I, ∃ωi0 ∈ Xi0 , s.t.ϕi0(x, ωi0)− εei0(x) ∈ −Ci0(x)}.

Let Z = {z̄} and for each i ∈ I, Ti(x) = {z̄i} for all x ∈ X, ϕi(x, yi) = fi(x, z̄, yi),
∀(x, yi) ∈ X ×Xi, then by Theorems 4.1-4.4 and Proposition 4.2, respectively, we
obtain the following new results:
Corollary 4.1. (a) (SWVEP) is a type I LP well-posed if and only if the solution
set Ω1 is nonempty, compact and

e(Θ3(ε),Ω1)→ 0 as ε→ 0;

(b) (SWVEP) is a type II LP well-posed if and only if the solution set Ω1 is
nonempty, compact and

e(Θ4(ε),Ω1)→ 0 as ε→ 0.

Corollary 4.2. If for each i ∈ I, the set-valued map Wi : E → 2Yi defined by
Wi(x) = Yi \ −intCi(x) is u.s.c., and for any yi ∈ Ei, the vector-valued function
x 7→ ϕi(x, yi) is continuous, then (SWVEP) is type I LP well-posed if and only if

Θ3(ε) 6= ∅,∀ε > 0 and lim
ε→0

α(Θ3(ε)) = 0. (4.3)

Corollary 4.3. Assume that for each i ∈ I, the set-valued map Wi : E → 2Yi

defined by Wi(x) = Yi\−intCi(x) is u.s.c.; for any yi ∈ Ei, the vector-valued function
x 7→ ϕi(x, yi) is continuous; and for any x ∈ Ω1, there exist i0 ∈ I, ωi0 ∈ Xi0 such
that ϕi0(x, ωi0) ∈ −∂Ci0(x), then, (SWVEP) is type II LP well-posed if and only if

Θ4(ε) 6= ∅,∀ε > 0, and lim
ε→0

α(Θ4(ε)) = 0.

Corollary 4.4. Let E be finite dimensional. Assume that for each i ∈ I, the set-
valued map Wi : E → 2Yi defined by Wi(x) = Yi \−intCi(x) is u.s.c; for any yi ∈ Ei,
the vector-valued function x 7→ ϕi(x, yi) is continuous; Ω1 is nonempty and there
exists ε0 > 0 such that Θ3(ε0) (resp., Θ4(ε0)) is bounded. Then (SWVEP) is type I
(resp., type II) LP well-posed.
Corollary 4.5. Assume that for each i ∈ I, the set-valued map Wi : E → 2Yi

defined by Wi(x) = Yi \−intCi(x) is u.s.c; for any yi ∈ Ei, the vector-valued function
x 7→ ϕi(x, yi) is continuous; Ω1 is nonempty and there exists ε0 > 0 such that Θ3(ε0)
(resp., Θ4(ε0)) is compact. Then (SWVEP) is type I (resp., type II) LP well-posed.
Remark 4.1. If the index set I is singleton, then by Theorem 4.1(a), Theorem 4.2
and 4.4, Propositions 4.1 and 4.2, respectively, we recover (a) and (b) of Theorem
3.1, Theorem 3.2, Propositions 2.1 and Corollary 3.1 in [34]; by Theorem 4.1(b) and
Theorem 4.3, respectively, we can obtain some new metric characterization of the
type II well-posedness for (GVEP); by Corollaries 3.2-3.5, respectively, we recover
Theorem 3.1-3.3 and Corollary 3.1 in [26].
Remark 4.2. If for each i ∈ I, Ai(x) ≡ Xi for all x ∈ X in [36], we can easily obtain
some results involving the Tykhonov well-posedness for (SWVEP) but not any types
of LP well-posedness for (SWVEP) .
Remark 4.3. It is easy to see that the results in this paper generalize, extend and
unify those results in [20, 22, 26, 28, 34, 35, 38] and the references therein.
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5. Concluding remarks

We introduce the new and interesting notions of type I LP well-posedness and type
II LP well-posedness for (SWGVEP) with a countable index set. We show that the
type I (resp., type II) LP well-posedness of (SWGVEP) is equivalent to the limit of
the excess of the type I (resp., type II) approximating solution set for (SWGVEP)
and the solution set of (SWGVEP) is zero. Under some suitable conditions, we also
show that the type I (resp., type II) Levitin-Polyak well-posedness of (SWGVEP) is
equivalent to one of the following conditions:

i) the type I (resp., type II) Levitin-Polyak well-posedness of a minimization prob-
lem.

ii) the type I (resp., type II) approximating solution set for (SWGVEP) is nonempty
and the limit of the Kuratowski measure of noncompactness of the type I (resp., type
II) approximating solution set for (SWGVEP) is zero.
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