THE FIXED POINT PROPERTY IN c_{0} WITH THE ALPHA NORM

BERTA GAMBOA DE BUEN* AND FERNANDO NÚÑEZ-MEDINA**
* Centro de Investigación en Matemáticas (CIMAT)
Apdo. Postal 402, 36000 Guanajuato, Gto., México
E-mail: gamboa@cimat.mx
** Departamento de Matemticas Universidad de Guanajuato
Guanajuato Gto., Mxico. CP 36240
E-mail: fernandonm@ugto.mx

Abstract

We study the fixed point and the weak fixed point property in the Banach space $c_{0 \alpha}=$ $\left(c_{0},\|\cdot\|_{\alpha}\right)$, where $\left\|\left(x_{i}\right)\right\|_{\alpha}=\sup _{i}\left|x_{i}\right|+\alpha \sum_{i} \frac{\left|x_{i}\right|}{2^{i}}$. It is known that $c_{0 \alpha}$ has the weak fixed point property for every $\alpha \geq 0$. We prove that if K is a nonempty, convex, closed and bounded subset of $c_{0 \alpha}$, then K is weakly compact if and only if every nonempty, convex and closed subset of K has the FPP. Key Words and Phrases: Fixed point property, space $c_{0 \alpha}$. 2010 Mathematics Subject Classification: Primary 46B20, 47H09, 47H10.

1. Introduction

In the last years the converse of Maurey theorem [MAU]: If $K \subset c_{0}$ is nonempty, convex, closed, bounded and has the fixed point property (FPP) then K is ω-compact, has been an active research theme. Llorens-Fuster and Sims proved in 1988 in [LFS] that some nonempty, convex, closed and bounded subsets of c_{0} which are compact in a locally convex topology very similar to the weak topology of c_{0} do not have the FPP. This fact led them to the following conjecture: Let K be a nonempty, convex, closed and bounded subset of c_{0}; then K has the FPP if and only if K is ω-compact. In 2003, Dowling, Lennard and Turett answered partially this conjecture in [DLT], specifically they defined the asymptotically isometric c_{0} summing basic sequences (aisb c_{0} sequences), showed that if $K \subset c_{0}$ is a nonempty, convex, closed and bounded set which is not weakly compact, then it contains an aisb c_{0} sequence and using it, they construct a subset of K without the FPP. Later in 2004 the same authors proved in [DOL] that, as conjectured by Llorens-Fuster and Sims, the converse of Maurey's theorem is true.

In 1992 in [JIM], Jiménez-Melado A., used the space $c_{0 \alpha}$ to prove that two properties which imply the weak fixed point property are not equivalent. In [FGB], Fetter H., and Gamboa de Buen B., showed that for all $\alpha \geq 0$, the space $c_{0 \alpha}$ has the ω-FPP
and that for $\alpha \in[0,1)$, the space c_{α} has the ω-FPP, where $c_{0 \alpha}$ and c_{α} are the c_{0} and c spaces respectively with the equivalent alpha norm. The following question arises naturally. If $K \subset c_{0 \alpha}$ is nonempty, convex, closed, bounded and has the FPP, is K ω-compact? The same question can be asked in $c_{\alpha}, \alpha \in[0,1)$.

In this article, first we show that in $c_{0 \alpha}$ there exist nonempty, convex, closed and bounded subsets which are not ω-compact and without aisb c_{0} sequences with the norm $\|.\|_{\alpha}$.

Then we define the corresponding asymptotically isometric $c_{0 \alpha}$ summing basic sequences (aisb $c_{0 \alpha}$ sequences). We give an example of a nonempty, convex, closed and bounded subset of c_{0} which is not ω-compact and without aisb $c_{0 \alpha}$ sequences with the norm $\|.\|_{\infty}$, proving that the families of aisb c_{0} and aisb $c_{0 \alpha}$ sequences are different.

Next we show that if K is a nonempty, convex, closed and bounded subset of a Banach space X that contains an aisb $c_{0 \alpha}$ sequence, then we can construct $C \subset K$ nonempty, convex, closed and without the FPP.

Finally we show that if K is a nonempty, convex, closed and bouded subset of $c_{0 \alpha}$ which is not ω-compact, then there exist $\left\{x_{n}\right\} \subset K$ and $L>0$ such that $\left\{L x_{n}\right\}$ is an aisb $c_{0 \alpha}$ sequence, proving then that if K is a nonempty, convex, closed and bouded subset of $c_{0 \alpha}$, then K is weakly compact if and only if every nonempty, convex and closed subset of K has the FPP. We also prove a similar result in the space c_{α}, for $\alpha \in(0,1]$.

As we said, one of the key points of the Dowling, Lennard and Turett work in [DLT] is to construct, in a nonempty, convex and closed subset K of c_{0}, a sequence with a "similar" behavior to the c_{0} summing basis. To do that, they define the aisb c_{0} sequences. Recall that c_{00} is the set of all eventually zero sequences in \mathbb{K}.

Definition 1.1. Let $\left\{x_{n}\right\}$ be a sequence in a Banach space X. We say that $\left\{x_{n}\right\}$ is an asymptotically isometric c_{0}-summing basic sequence, aisbc c_{0} sequence for short, if there exists $\left\{\varepsilon_{n}\right\} \subset(0, \infty)$ with $\varepsilon_{n} \rightarrow 0$ such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)^{-1}\left|\sum_{j=n}^{\infty} t_{j}\right| \leq\left\|\sum_{n=1}^{\infty} t_{n} x_{n}\right\| \leq \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)\left|\sum_{j=n}^{\infty} t_{j}\right|, \tag{1.1}
\end{equation*}
$$

for all $\left\{t_{n}\right\} \in c_{00}$. If $L>0$, we say that $\left\{x_{n}\right\}$ is a L-aisbc c_{0} sequence if $\left\{L x_{n}\right\}$ is an aisbc c_{0} sequence.

Remark 1.1. In the previous definition we can replace c_{00} by l^{1}.
An aisbco sequence is a bounded basic sequence equivalent to the summing basis of c_{0}.
A subsequence of an aisbc sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is again an aisbc c_{0} sequence. Moreover, if $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\lambda_{n} \longrightarrow 0$, then we can select $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ such that the associated new sequence $\left\{\varepsilon_{n}^{\prime}\right\}$ satisfies that $\varepsilon_{n+1}^{\prime}<\varepsilon_{n}^{\prime}$ and $\varepsilon_{n}^{\prime}<\lambda_{n}, n \in \mathbb{N}$.

In [DLT] the following results were proved.
Proposition 1.1. Let K be a nonempty, convex, closed and bounded subset of c_{0}. Then K is ω-compact if and only if every nonempty, convex and closed subset of K has the FPP.

Proposition 1.2. Let K be a nonempty, convex, closed and bounded subset of c. Then K is ω-compact if and only if every nonempty, convex and closed subset of K has the FPP.

Note that proposition 1.1 does not prove Llorens-Fuster 's and Sims' conjecture. In 2004 the same authors, Dowling, Lennard and Turett, proved in [DOL] the following theorem.

Theorem 1.1. Let K be a nonempty, convex, closed and bounded subset of c_{0}. Then K is ω-compact if and only if K has the FPP.

The conjecture in the case of c remains still open.

2. The fixed point property in the $c_{0 \alpha}$ SPace

Definition 2.1. Let $\alpha \geq 0$ and l_{α}^{∞} the space of all scalar bounded sequences endowed with the α-norm given by

$$
\left\|\left(x_{n}\right)\right\|_{\alpha}=\left\|\left(x_{n}\right)\right\|_{\infty}+\alpha\left\|\left(x_{n}\right)\right\|_{s}, \quad\left(x_{n}\right) \in l^{\infty}
$$

where

$$
\left\|\left(x_{n}\right)\right\|_{s}=\sum_{n=1}^{\infty} \frac{\left|x_{n}\right|}{2^{n}}
$$

Note that $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\infty}$ are equivalent, since

$$
\|x\|_{\infty} \leq\|x\|_{\alpha} \leq(1+\alpha)\|x\|_{\infty}, x \in l^{\infty} .
$$

As we said, Fetter H., and Gamboa de Buen B., proved in [FGB] that for all $\alpha \in[0,1)$, the space $c_{\alpha}=\left(c,\|\cdot\| \|_{\alpha}\right)$ has the ω-FPP and also that $c_{0 \alpha}=\left(c_{0},\|\cdot\| \|_{\alpha}\right)$ has the ω-FPP for all $\alpha>0$.

In what follows we shall fix $\alpha>0$.
Next we will see that in $c_{0 \alpha}$ there exist nonempty, convex, closed and bounded subsets which are not ω-compact and without aisb c_{0} sequences with the norm $\|.\|_{\alpha}$.
Example 2.1. Let $\left\{\xi_{n}\right\}$ be the c_{0} summing basis. Then

$$
C=\left\{\sum_{n=1}^{\infty} \lambda_{n} \xi_{n}: \lambda_{n} \geq 0 \text { and } \sum_{n=1}^{\infty} \lambda_{n}=1\right\}
$$

does not have aisbc c_{0} sequences with the norm $\|.\|_{\alpha}$.
Proof. It is clear that C is a nonempty, convex, closed and bounded subset of $c_{0 \alpha}$ which is not ω-compact. Suppose that C contains an aisb c_{0} sequence $\left\{y_{n}\right\}$ with the norm $\|.\|_{\alpha}$, for some sequence $\left\{\varepsilon_{n}\right\}$. By remark 1.1 we can suppose that $\left\{\varepsilon_{n}\right\}$ satisfies $\varepsilon_{n+1} \leq \varepsilon_{n}<\frac{\alpha}{2}, n \in \mathbb{N}$. Since $\left\{y_{n}\right\} \in C$ we have that $y_{n}=\sum_{i=1}^{\infty} \lambda_{i}^{n} \xi_{i}$ for some sequence $\left\{\lambda_{i}^{n}\right\}$ such that $\lambda_{i}^{n} \geq 0$ and $\sum_{i=1}^{\infty} \lambda_{i}^{n}=1$. Take $m \in \mathbb{N}$ and define

$$
\left(t_{n}\right)=e_{m}
$$

where $\left\{e_{n}\right\}$ is the canonical basis of c_{0}. Then

$$
\sum_{n=1}^{\infty} t_{n} y_{n}=y_{m}
$$

and

$$
\begin{equation*}
\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{\alpha}=\left\|\sum_{i=1}^{\infty} \lambda_{i}^{m} \xi_{i}\right\|_{\alpha}=1+\alpha \sum_{k=1}^{\infty} \frac{\left|\sum_{j=k}^{\infty} \lambda_{j}^{m}\right|}{2^{k}} \geq 1+\frac{\alpha}{2} . \tag{2.1}
\end{equation*}
$$

On the other hand, since $\left\{y_{n}\right\}$ is an aisb c_{0} sequence with the norm $\|\cdot\|_{\alpha}$ we get

$$
\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{\alpha} \leq \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)\left|\sum_{j=n}^{\infty} t_{j}\right|=\left(1+\varepsilon_{1}\right)
$$

which contradicts (2.1), since $\varepsilon_{1}<\frac{\alpha}{2}$.
In view of example 2.1, in a similar way to the Dowling, Lennard and Turett definition given in [DLT] for c_{0}, we will define the asymptotically isometric summing basic sequences in the space $\left(c_{0},\|\cdot\|_{\alpha}\right)$. First we recall the definition of convexly closed sequences given in [GBN].
Definition 2.2. Let $\left\{x_{n}\right\}$ be a bounded basic sequence in a Banach space X. We say that $\left\{x_{n}\right\}$ is a convexly closed sequence if the set

$$
C=\left\{\sum_{n=1}^{\infty} t_{n} x_{n}: t_{n} \geq 0 \text { and } \sum_{n=1}^{\infty} t_{n}=1\right\}
$$

is closed, that is, if $\overline{c o n v}\left\{x_{n}\right\}=C$.
Note that subsequences of convexly closed sequences are again convexly closed and that every basic sequence equivalent to a convexly closed sequence is convexly closed.

It is easy to see that the c_{0} summing basis and the canonical basis of l^{1} are convexly closed. An aisb c_{0} sequence is also convexly closed, since it is equivalent to the c_{0} summing basis.
Definition 2.3. Let $\left\{x_{n}\right\}$ be a sequence in a Banach space X and $\alpha>0$. We say that $\left\{x_{n}\right\}$ is an asymptotically isometric $c_{0 \alpha}$-summing basic sequence, aisb $c_{0 \alpha}$ sequence for short, if $\left\{x_{n}\right\}$ is convexly closed and there exist $\left\{\varepsilon_{n}\right\} \subset(0, \infty),\left\{a_{n}\right\} \subset(0, \infty)$ and $\left\{\delta_{n}\right\} \subset(0, \sqrt{2}-1)$ such that $\varepsilon_{n} \rightarrow 0, \sum_{j=n+1}^{\infty} a_{j} \leq a_{n}, n \in \mathbb{N}, \delta_{n+1} \leq \delta_{n}, n \in \mathbb{N}$ and

$$
\begin{align*}
& \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)^{-1}\left|\sum_{j=n}^{\infty} t_{j}\right|+\alpha \sum_{n=1}^{\infty}\left(1+\delta_{n}\right)^{-1}\left|\sum_{j=n}^{\infty} t_{j}\right| 2 a_{n+1} \tag{2.2}\\
\leq & \left\|\sum_{n=1}^{\infty} t_{n} x_{n}\right\| \leq \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)\left|\sum_{j=n}^{\infty} t_{j}\right|+\alpha \sum_{n=1}^{\infty}\left(1+\delta_{n}\right)\left|\sum_{j=n}^{\infty} t_{j}\right| a_{n},
\end{align*}
$$

for all $\left\{t_{n}\right\} \in l^{1}$ with $\sum_{n=1}^{\infty} t_{n}=0$. If $L>0$, we say that $\left\{x_{n}\right\}$ is a L-aisb $c_{0 \alpha}$ sequence if $\left\{L x_{n}\right\}$ is an aisbc $c_{0 \alpha}$ sequence.

We saw in example 2.1 that there exist nonempty, convex, closed and bounded subsets of $c_{0 \alpha}$ which are not ω-compact and without aisb c_{0} sequences with the norm $\|\cdot\|_{\alpha}$. The following example shows that there exist nonempty, convex, closed and bounded subsets of c_{0} which are not ω-compact and without aisb $c_{0 \alpha}$ sequences with the norm $\|.\|_{\infty}$.

Example 2.2. Let $\left\{\xi_{n}\right\}$ be the c_{0} summing basis. Then

$$
C=\left\{\sum_{n=1}^{\infty} \lambda_{n} \xi_{n}: \lambda_{n} \geq 0 \text { and } \sum_{n=1}^{\infty} \lambda_{n}=1\right\}
$$

does not have aisbc $c_{0 \alpha}$ sequences with the norm $\|.\|_{\infty}$.
Proof. Suppose that C contains an aisb $c_{0 \alpha}$ sequence $\left\{y_{n}\right\}$ with the norm $\|.\|_{\infty}$ for some sequences $\left\{\varepsilon_{n}\right\},\left\{a_{n}\right\}$ and $\left\{\delta_{n}\right\}$. Since $\left\{y_{n}\right\} \in C$ we have that $y_{n}=\sum_{i=1}^{\infty} \lambda_{i}^{n} \xi_{i}$ for some sequence $\left\{\lambda_{i}^{n}\right\}_{i=1}^{\infty}$ such that $\lambda_{i}^{n} \geq 0$ and $\sum_{i=1}^{\infty} \lambda_{i}^{n}=1$. Take $m \in \mathbb{N}$ with $m>1$ and define

$$
\left(t_{n}\right)=-e_{1}+e_{m}
$$

where $\left\{e_{n}\right\}$ is the canonical basis of c_{0}. Then

$$
\sum_{n=1}^{\infty} t_{n} y_{n}=-y_{1}+y_{m}
$$

and

$$
\begin{gather*}
\left(\sup _{1<n \leq m} \frac{1}{1+\varepsilon_{n}}\right)+\alpha \sum_{n=2}^{m}\left(1+\delta_{n}\right)^{-1} 2 a_{n+1} \tag{2.3}\\
=\sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)^{-1}\left|\sum_{j=n}^{\infty} t_{j}\right|+\alpha \sum_{n=1}^{\infty}\left(1+\delta_{n}\right)^{-1}\left|\sum_{j=n}^{\infty} t_{j}\right| 2 a_{n+1} \leq\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{\infty} \leq 1 .
\end{gather*}
$$

Since (2.3) holds for all $m \in \mathbb{N}$, making $m \longrightarrow \infty$ in (2.3), we obtain

$$
1+\alpha \sum_{n=2}^{\infty}\left(1+\delta_{n}\right)^{-1} 2 a_{n+1} \leq 1
$$

which contradicts the fact that $\alpha \sum_{n=2}^{\infty}\left(1+\delta_{n}\right)^{-1} 2 a_{n+1}>0$.
The following proposition is an "analogous" of theorem 2 of [DLT]. In its proof, the set C and the operator T are constructed as in [DLT]. However, to prove that T is a nonexpansive mapping we have to do different estimations to those in [DLT].

Proposition 2.1. Let K be a nonempty, convex, closed and bounded subset of a Banach space X. Fix $\left\{\varepsilon_{n}\right\} \subset(0, \infty)$ with $\varepsilon_{n}<2^{-1} 4^{-n}$, $n \geq 2$. If K contains an aisbc $c_{0 \alpha}$ sequence $\left\{x_{n}\right\}$ such that (2.2) holds with this $\left\{\varepsilon_{n}\right\}$ and some sequences $\left\{a_{k}\right\}$ and $\left\{\delta_{k}\right\}$, then there exist $C \subset K$ nonempty, convex and closed and $T: C \rightarrow C$ affine, nonexpansive and fixed point free. Moreover, T is contractive.

Proof. Let $\left\{x_{n}\right\} \subset K$ be an aisb $c_{0 \alpha}$ sequence with $\left\{\varepsilon_{n}\right\} \subset(0, \infty)$ such that $\varepsilon_{n}<$ $2^{-1} 4^{-n}, \quad n \geq 2$ and $\left\{a_{k}\right\} \subset(0, \infty)$ and $\left\{\delta_{k}\right\} \subset(0, \sqrt{2}-1)$ as in definition 2.3. Set

$$
C=\overline{c o n v}\left\{x_{n}\right\}=\left\{\sum_{n=1}^{\infty} t_{n} x_{n}: t_{n} \geq 0, n \in \mathbb{N} \text { and } \sum_{n=1}^{\infty} t_{n}=1\right\} \subset K
$$

Thus C is nonempty, convex, closed and bounded. Define $T x_{n}=\sum_{j=1}^{\infty} \frac{x_{n+j}}{2^{j}}$, $n \in \mathbb{N}$, and extend T linearly to C, that is, if $x=\sum_{n=1}^{\infty} t_{n} x_{n} \in C$ then define
$T\left(\sum_{n=1}^{\infty} t_{n} x_{n}\right)=\sum_{n=1}^{\infty} t_{n} T x_{n}$. It is clear that $T(C) \subset C$ and that T is an affine mapping. It is easy to see that T is fixed point free. See [DLT].

We only need to show that T is a contractive mapping. Let $x, y \in C$ with $x \neq y$. Then $x=\sum_{n=1}^{\infty} t_{n} x_{n}$ and $y=\sum_{n=1}^{\infty} s_{n} x_{n}$, with $t_{n}, s_{n} \geq 0$ and $\sum_{n=1}^{\infty} t_{n}=$ $\sum_{n=1}^{\infty} s_{n}=1$. Let $\beta_{n}=t_{n}-s_{n}, n \in \mathbb{N}$, so that $\sum_{n=1}^{\infty} \beta_{n}=0$. Therefore,

$$
\begin{aligned}
T(x)-T(y) & =\sum_{n=1}^{\infty} \beta_{n} T\left(x_{n}\right)=\sum_{n=1}^{\infty} \beta_{n}\left(\sum_{j=1}^{\infty} \frac{x_{n+j}}{2^{j}}\right) \\
& =\left(\frac{\beta_{1}}{2}\right) x_{2}+\left(\frac{\beta_{1}}{2^{2}}+\frac{\beta_{2}}{2}\right) x_{3}+\left(\frac{\beta_{1}}{2^{3}}+\frac{\beta_{2}}{2^{2}}+\frac{\beta_{3}}{2}\right) x_{4}+\ldots
\end{aligned}
$$

Define $B_{1}=0$ and $B_{n}=\frac{\beta_{1}}{2^{n-1}}+\frac{\beta_{2}}{2^{n-2}}+\ldots+\frac{\beta_{n-1}}{2}, n \geq 2$. Thus

$$
T(x)-T(y)=\sum_{n=1}^{\infty} B_{n} x_{n}
$$

Since $\left\{x_{n}\right\}$ is an aisb $c_{0 \alpha}$ we have

$$
\|T(x)-T(y)\|=\left\|\sum_{n=1}^{\infty} B_{n} x_{n}\right\| \leq \sup _{k \in \mathbb{N}}\left(1+\varepsilon_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right|+\alpha \sum_{k=1}^{\infty}\left(1+\delta_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right| a_{k} .
$$

By theorem 2 of [DLT] we obtain

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left(1+\varepsilon_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right|<\sup _{k \in \mathbb{N}}\left(1+\varepsilon_{k}\right)^{-1}\left|\sum_{j=k}^{\infty} \beta_{j}\right| . \tag{2.4}
\end{equation*}
$$

On the other hand,

$$
\sum_{j=1}^{\infty} B_{j}=\sum_{j=2}^{\infty} B_{j}=\sum_{j=1}^{\infty} \beta_{j}=0
$$

and

$$
\begin{aligned}
\sum_{j=n}^{\infty} B_{j}= & \left(\frac{\beta_{1}}{2^{n-1}}+\frac{\beta_{2}}{2^{n-2}}+\ldots+\frac{\beta_{n-1}}{2}\right)+\left(\frac{\beta_{1}}{2^{n}}+\frac{\beta_{2}}{2^{n-1}}+\ldots+\frac{\beta_{n}}{2}\right) \\
& +\left(\frac{\beta_{1}}{2^{n+1}}+\frac{\beta_{2}}{2^{n}}+\ldots+\frac{\beta_{n+1}}{2}\right)+\ldots \\
= & \frac{\beta_{1}}{2^{n-2}}+\frac{\beta_{2}}{2^{n-3}}+\ldots+\frac{\beta_{n-2}}{2}+\sum_{j=n-1}^{\infty} \beta_{j}, n \geq 3 .
\end{aligned}
$$

Since $\sum_{j=1}^{\infty} \beta_{j}=0$, note that

$$
\left|\sum_{j=3}^{\infty} B_{j}\right|=\left|\frac{\beta_{1}}{2}+\sum_{j=2}^{\infty} \beta_{j}\right|=\left|\frac{\beta_{1}}{2}-\beta_{1}\right|=\left|\frac{\beta_{1}}{2}\right|
$$

$$
\begin{aligned}
& \left|\sum_{j=4}^{\infty} B_{j}\right|=\left|\frac{\beta_{1}}{2^{2}}+\frac{\beta_{2}}{2}+\sum_{j=3}^{\infty} \beta_{j}\right|=\left|\frac{\beta_{1}}{2^{2}}+\frac{\beta_{2}}{2}-\left(\beta_{1}+\beta_{2}\right)\right| \\
& \quad \leq\left|\frac{\beta_{1}}{2}+\frac{\beta_{2}}{2}-\left(\beta_{1}+\beta_{2}\right)\right|+\frac{\left|\beta_{1}\right|}{2^{2}}=\frac{\left|\beta_{1}+\beta_{2}\right|}{2}+\frac{\left|\beta_{1}\right|}{2^{2}}
\end{aligned}
$$

In general, if $k \geq 3$ we have

$$
\left|\sum_{j=k}^{\infty} B_{j}\right| \leq \frac{\left|\beta_{1}+\beta_{2}+\ldots+\beta_{k-2}\right|}{2}+\ldots+\frac{\left|\beta_{1}+\beta_{2}\right|}{2^{k-3}}+\frac{\left|\beta_{1}\right|}{2^{k-2}}
$$

Since $\delta_{k}<\sqrt{2}-1, k \in \mathbb{N}$, then $1+\delta_{k}<\frac{2}{1+\delta_{k}}, k \in \mathbb{N}$. We also have that $\delta_{k+1} \leq$ $\delta_{k}, k \in \mathbb{N}$; therefore

$$
\begin{aligned}
\left(1+\delta_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right| a_{k} & \leq\left(1+\delta_{k}\right) a_{k}\left(\frac{\left|\beta_{1}+\beta_{2}+\ldots+\beta_{k-2}\right|}{2}+\ldots+\frac{\left|\beta_{1}\right|}{2^{k-2}}\right) \\
& \leq \sum_{j=1}^{k-2}\left(1+\delta_{k-j}\right) a_{k}\left(\frac{\left|\beta_{1}+\beta_{2}+\ldots+\beta_{k-1-j}\right|}{2^{j}}\right) \\
& <\sum_{j=1}^{k-2}\left(1+\delta_{k-j}\right)^{-1} a_{k}\left(\frac{\left|\beta_{1}+\beta_{2}+\ldots+\beta_{k-1-j}\right|}{2^{j-1}}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{k=3}^{\infty}\left(1+\delta_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right| a_{k} & <\sum_{k=3}^{\infty} \sum_{j=1}^{k-2}\left(1+\delta_{k-j}\right)^{-1} a_{k}\left(\frac{\left|\beta_{1}+\beta_{2}+\ldots+\beta_{k-1-j}\right|}{2^{j-1}}\right) \\
& =\sum_{k=2}^{\infty}\left(1+\delta_{k}\right)^{-1}\left|\sum_{j=1}^{k-1} \beta_{j}\right|\left(a_{k+1}+\frac{a_{k+2}}{2}+\frac{a_{k+3}}{2^{2}}+\ldots\right) \\
& \leq \sum_{k=2}^{\infty}\left(1+\delta_{k}\right)^{-1}\left|\sum_{j=k}^{\infty} \beta_{j}\right| 2 a_{k+1} \\
& =\sum_{k=1}^{\infty}\left(1+\delta_{k}\right)^{-1}\left|\sum_{j=k}^{\infty} \beta_{j}\right| 2 a_{k+1},
\end{aligned}
$$

since $a_{k+1} \leq a_{k}, k \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \beta_{n}=0$. We know that $\sum_{n=1}^{\infty} B_{n}=\sum_{n=2}^{\infty} B_{n}=0$, so we get

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(1+\delta_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right| a_{k}<\sum_{k=1}^{\infty}\left(1+\delta_{k}\right)^{-1}\left|\sum_{j=k}^{\infty} \beta_{j}\right| 2 a_{k+1} \tag{2.5}
\end{equation*}
$$

Finally, from (2.4) and (2.5) we obtain

$$
\begin{gathered}
\|T(x)-T(y)\|=\left\|\sum_{k=1}^{\infty} B_{k} x_{k}\right\| \\
\leq \sup _{k \in \mathbb{N}}\left(1+\varepsilon_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right|+\alpha \sum_{k=1}^{\infty}\left(1+\delta_{k}\right)\left|\sum_{j=k}^{\infty} B_{j}\right| a_{k}< \\
<\sup _{k \in \mathbb{N}}\left(1+\varepsilon_{k}\right)^{-1}\left|\sum_{j=k}^{\infty} \beta_{j}\right|+\alpha \sum_{k=1}^{\infty}\left(1+\delta_{k}\right)^{-1}\left|\sum_{j=k}^{\infty} \beta_{j}\right| 2 a_{k+1} \leq \\
\leq\left\|\sum_{k=1}^{\infty} \beta_{k} x_{k}\right\|=\|x-y\|
\end{gathered}
$$

To simplify the proof of the below proposition we make use of the decomposition $\|\cdot\|_{\alpha}=\|\cdot\|_{\infty}+\alpha\|\cdot\|_{s}$.
Proposition 2.2. Let K be a nonempty, convex, closed and bouded subset of $c_{0 \alpha}$ which is not weakly compact. Then K has an L-aisbc $c_{0 \alpha}$ sequence $\left\{z_{k}\right\}$ such that (2.2) holds for some sequence $\left\{\varepsilon_{k}^{\prime}\right\} \subset(0, \infty)$ with $\varepsilon_{k}^{\prime}<2^{-1} 4^{-k}, \quad k \geq 2$.

Proof. Suppose that K is a nonempty, convex, closed and bouded subset of $c_{0 \alpha}$ which is not weakly compact. Since K is not ω-compact in c_{0}, by theorem 4 of [DLT], there exist $\left\{y_{n}\right\} \subset K \subset c_{0}$ and $L>0$ such that $\left\{L y_{n}\right\}$ is an aisb c_{0} sequence and $y_{n} \xrightarrow{\omega^{*}} y \in l^{\infty} \backslash c_{0}$. Define $x_{n}=L y_{n}, n \in \mathbb{N}$. Since $\left\{x_{n}\right\}$ is an aisb c_{0} sequence then it is convexly closed and by remark 1.1 we can suppose that $\left\{x_{n}\right\}$ satisfies (1.1) for some sequence $\varepsilon_{n} \subset(0, \infty)$ with $\varepsilon_{n}<2^{-1} 4^{-n}, \quad n \geq 2$, that is

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)^{-1}\left|\sum_{j=n}^{\infty} t_{j}\right| \leq\left\|\sum_{n=1}^{\infty} t_{n} x_{n}\right\|_{\infty} \leq \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)\left|\sum_{j=n}^{\infty} t_{j}\right| \tag{2.6}
\end{equation*}
$$

for all $\left\{t_{n}\right\} \in l^{1}$. Suppose that $x_{n}=\left\{\alpha_{k}^{n}\right\}_{k=1}^{\infty}$ and $x=\left\{\alpha_{k}\right\}_{k=1}^{\infty}$. Since $x_{n} \xrightarrow{\omega^{*}} x \in$ $l^{\infty} \backslash c_{0}$ we have that x_{n} converges coordinatewise to x and

$$
\begin{equation*}
\sum_{m=i}^{\infty} \frac{\left|\alpha_{m}^{n}-\alpha_{m}\right|}{2^{m}}>0, n, i \in \mathbb{N} \tag{2.7}
\end{equation*}
$$

Moreover, since x_{n} converges coordinatewise to x we also have that $\left\|x_{n}-x\right\|_{s} \longrightarrow 0$.
Fix $\left\{\delta_{n}\right\} \subset(0, \sqrt{2}-1)$ such that $\delta_{n+1} \leq \delta_{n}, n \in \mathbb{N}$. Since $\left\|x_{n}-x\right\|_{s} \longrightarrow 0$, there exists $B>0$ such that $\left\|x_{n}-x\right\|_{s}<B$. Define $N_{1}=1, a_{1}=B$ and $b_{1}=1$. Since $\left\|x_{n}-x\right\|_{s} \longrightarrow 0$, there exists $M_{1} \in \mathbb{N}$ such that

$$
\sum_{m=1}^{\infty} \frac{\left|\alpha_{m}^{q}-\alpha_{m}^{r}\right|}{2^{m}}=\left\|x_{q}-x_{r}\right\|_{s}<\frac{1}{2^{N_{1}}\left(1+\delta_{2}\right)}, q, r \geq M_{1}
$$

Take $n_{1}>M_{1}$. From (2.7) we can select $N_{2} \in \mathbb{N}$ such that $N_{2}>N_{1}$,

$$
\begin{gather*}
0<\sum_{m=1}^{N_{2}} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}\right|}{2^{m}}<a_{1} \tag{2.8}\\
P_{2} \equiv \sum_{m=N_{1}+1}^{N_{2}} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}\right|}{2^{m}}>0 \tag{2.9}\\
P_{2}-\frac{1}{2^{N_{2}}}>0
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{m=N_{2}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}\right|}{2^{m}}<P_{2}\left(1-\frac{1}{1+\delta_{2}}\right) . \tag{2.10}
\end{equation*}
$$

Since $\left\|x_{n}-x\right\|_{s} \longrightarrow 0$, there exists $M_{2} \in \mathbb{N}$ such that

$$
\sum_{m=1}^{\infty} \frac{\left|\alpha_{m}^{q}-\alpha_{m}^{r}\right|}{2^{m}}=\left\|x_{q}-x_{r}\right\|_{s}<\frac{1}{2^{N_{2}}\left(1+\delta_{3}\right)}, q, r \geq M_{2}
$$

Since x_{n} converges coordinatewise to x, by (2.8), (2.9) and (2.10), there exists $n_{2}>$ $\max \left\{M_{2}, n_{1}\right\}$ such that

$$
\begin{gathered}
0<a_{2} \equiv \sum_{m=1}^{N_{2}} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}^{n_{2}}\right|}{2^{m}}<a_{1} \\
b_{2} \equiv \sum_{m=N_{1}+1}^{N_{2}} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}^{n_{2}}\right|}{2^{m}}>0 \\
b_{2}-\frac{1}{2^{N_{2}}}>0 \\
\sum_{m=N_{2}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}^{n_{2}}\right|}{2^{m}}<b_{2}\left(1-\frac{1}{1+\delta_{2}}\right)
\end{gathered}
$$

and also that

$$
0<\sum_{m=1}^{\infty} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}\right|}{2^{m}}=\left\|x_{n_{2}}-x\right\|_{s}<\frac{1}{2}\left(b_{2}-\frac{1}{2^{N_{2}}}\right) .
$$

Let $N_{3} \in \mathbb{N}$ such that $N_{3}>N_{2}$,

$$
\begin{gathered}
0<\sum_{m=1}^{N_{3}} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}\right|}{2^{m}}<\frac{1}{2}\left(b_{2}-\frac{1}{2^{N_{2}}}\right) \\
P_{3} \equiv \sum_{m=N_{2}+1}^{N_{3}} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}\right|}{2^{m}}>0 \\
P_{3}-\frac{1}{2^{N_{3}}}>0
\end{gathered}
$$

and

$$
\sum_{m=N_{3}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}\right|}{2^{m}}<P_{3}\left(1-\frac{1}{1+\delta_{3}}\right) .
$$

Since $\left\|x_{n}-x\right\|_{s} \longrightarrow 0$, there exists $M_{3} \in \mathbb{N}$ such that

$$
\sum_{m=1}^{\infty} \frac{\left|\alpha_{m}^{q}-\alpha_{m}^{r}\right|}{2^{m}}=\left\|x_{q}-x_{r}\right\|_{s}<\frac{1}{2^{N_{3}}\left(1+\delta_{4}\right)}, q, r \geq M_{3}
$$

Since x_{n} converges coordinatewise to x, there exists $n_{3}>\max \left\{M_{3}, n_{2}\right\}$ such that

$$
\begin{gathered}
0<a_{3} \equiv \sum_{m=1}^{N_{3}} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}^{n_{3}}\right|}{2^{m}}<\frac{1}{2}\left(b_{2}-\frac{1}{2^{N_{2}}}\right) \\
b_{3} \equiv \sum_{m=N_{2}+1}^{N_{3}} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}^{n_{3}}\right|}{2^{m}}>0 \\
b_{3}-\frac{1}{2^{N_{3}}}>0 \\
\sum_{m=N_{3}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}^{n_{3}}\right|}{2^{m}}<b_{3}\left(1-\frac{1}{1+\delta_{3}}\right)
\end{gathered}
$$

and also that

$$
0<\sum_{m=1}^{\infty} \frac{\left|\alpha_{m}^{n_{3}}-\alpha_{m}\right|}{2^{m}}<\frac{1}{2}\left(b_{3}-\frac{1}{2^{N_{3}}}\right) .
$$

Continuing in this way we can construct sequences $\left\{a_{k}\right\}_{k=1}^{\infty} \subset(0, B]$ and $\left\{b_{k}\right\}_{k=1}^{\infty} \subset$ $(0,1]$ such that $a_{1}=B, b_{1}=1$,

$$
\begin{gather*}
0<a_{k}=\sum_{m=1}^{N_{k}} \frac{\left|\alpha_{m}^{n_{k-1}}-\alpha_{m}^{n_{k}}\right|}{2^{m}}<\frac{1}{2}\left(b_{k-1}-\frac{1}{2^{N_{k-1}}}\right), k \geq 3, \tag{2.11}\\
b_{k}=\sum_{m=N_{k-1}+1}^{N_{k}} \frac{\left|\alpha_{m}^{n_{k-1}}-\alpha_{m}^{n_{k}}\right|}{2^{m}}>0, k \geq 2, \tag{2.12}\\
b_{k}-\frac{1}{2^{N_{k}}}>0, k \geq 2, \\
2 a_{k+1}<b_{k}-\frac{1}{2^{N_{k}}}<b_{k}<a_{k}, k \geq 2
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{m=N_{k}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{k-1}}-\alpha_{m}^{n_{k}}\right|}{2^{m}}<b_{k}\left(1-\frac{1}{1+\delta_{k}}\right), k \geq 2 \tag{2.13}
\end{equation*}
$$

Since $2 a_{k+1}<a_{k}, k \geq 2$, then $a_{k+1}<a_{k}, k \geq 2$, and by construction we have that $a_{2}<a_{1}$. Moreover, since $n_{1}>M_{1}$ and $n_{k}>\max \left\{M_{k}, n_{k-1}\right\}, k \geq 2$, by construction we also have

$$
\begin{equation*}
\sum_{m=1}^{N_{k}} \frac{\left|\alpha_{m}^{n_{k+1}}-\alpha_{m}^{n_{k}}\right|}{2^{m}}<\frac{1}{2^{N_{k}}\left(1+\delta_{k+1}\right)}, k \in \mathbb{N} \tag{2.14}
\end{equation*}
$$

Take now $\left\{t_{k}\right\} \in l^{1}$ such that $\sum_{k=1}^{\infty} t_{k}=0$. Let $N_{0}=0$. Since

$$
\sum_{k=1}^{\infty} t_{k} x_{n_{k}}=\left(\sum_{k=1}^{\infty} t_{k} \alpha_{1}^{n_{k}}, \sum_{k=1}^{\infty} t_{k} \alpha_{2}^{n_{k}}, \ldots\right)
$$

then

$$
\begin{aligned}
\left\|\sum_{k=1}^{\infty} t_{k} x_{n_{k}}\right\|_{s} & =\sum_{m=1}^{\infty} \frac{1}{2^{m}}\left|\sum_{k=1}^{\infty} t_{k} \alpha_{m}^{n_{k}}\right| \\
& =\sum_{i=0}^{\infty} \sum_{m=N_{i}+1}^{N_{i+1}} \frac{1}{2^{m}}\left|\sum_{k=1}^{\infty} t_{k} \alpha_{m}^{n_{k}}\right|
\end{aligned}
$$

Let $\alpha_{m}^{n_{0}}=\alpha_{m}$. Since $\sum_{k=1}^{\infty} t_{k}=0$, we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} t_{k} \alpha_{m}^{n_{k}} & =\sum_{k=1}^{\infty} t_{k}\left(\alpha_{m}^{n_{k}}-\alpha_{m}\right) \\
& =\sum_{k=1}^{\infty}\left(\sum_{i=k}^{\infty} t_{i}-\sum_{i=k+1}^{\infty} t_{i}\right)\left(\alpha_{m}^{n_{k}}-\alpha_{m}\right) \\
& =\sum_{i=1}^{\infty}\left(\sum_{k=i}^{\infty} t_{k}\right)\left(\alpha_{m}^{n_{i}}-\alpha_{m}^{n_{i-1}}\right)
\end{aligned}
$$

Thus,

$$
\begin{array}{r}
\sum_{m=1}^{N_{1}} \frac{1}{2^{m}}\left|\sum_{k=1}^{\infty} t_{k} \alpha_{m}^{n_{k}}\right| \\
\geq \sum_{m=1}^{N_{1}} \frac{1}{2^{m}}\left(\left|\sum_{k=1}^{\infty} t_{k}\right|\left|\alpha_{m}^{n_{1}}-\alpha_{m}\right|-\sum_{p=2}^{\infty}\left|\sum_{k=p}^{\infty} t_{k}\right|\left|\alpha_{m}^{n_{p}}-\alpha_{m}^{n_{p-1}}\right|\right) \\
\sum_{m=N_{1}+1}^{N_{2}} \frac{1}{2^{m}}\left|\sum_{k=1}^{\infty} t_{k} \alpha_{m}^{n_{k}}\right| \\
\geq \sum_{m=N_{1}+1}^{N_{2}} \frac{1}{2^{m}}\left(\left|\sum_{k=2}^{\infty} t_{k}\right|\left|\alpha_{m}^{n_{2}}-\alpha_{m}^{n_{1}}\right|-\sum_{p \neq 2}^{\infty}\left|\sum_{k=p}^{\infty} t_{k}\right|\left|\alpha_{m}^{n_{p}}-\alpha_{m}^{n_{p-1}}\right|\right) \\
\sum_{m=N_{2}+1}^{N_{3}} \frac{1}{2^{m}}\left|\sum_{k=1}^{\infty} t_{k} \alpha_{m}^{n_{k}}\right| \\
\geq \sum_{m=N_{2}+1}^{N_{3}} \frac{1}{2^{m}}\left(\left|\sum_{k=3}^{\infty} t_{k}\right|\left|\alpha_{m}^{n_{3}}-\alpha_{m}^{n_{2}}\right|-\sum_{p \neq 3}^{\infty}\left|\sum_{k=p}^{\infty} t_{k}\right|\left|\alpha_{m}^{n_{p}}-\alpha_{m}^{n_{p-1}}\right|\right), \ldots
\end{array}
$$

Therefore, from (2.14), (2.12) and (2.13) we obtain

$$
\left\|\sum_{k=1}^{\infty} t_{k} x_{n_{k}}\right\|_{s}
$$

$$
\begin{aligned}
& \geq\left|\sum_{k=1}^{\infty} t_{k}\right|\left(\sum_{m=1}^{N_{1}} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}\right|}{2^{m}}-\sum_{m=N_{1}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{1}}-\alpha_{m}\right|}{2^{m}}\right) \\
& +\left|\sum_{k=2}^{\infty} t_{k}\right|\left(-\sum_{m=1}^{N_{1}} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}^{n_{1}}\right|}{2^{m}}+\sum_{m=N_{1}+1}^{N_{2}} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}^{n_{1}}\right|}{2^{m}}-\sum_{m=N_{2}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{2}}-\alpha_{m}^{n_{1}}\right|}{2^{m}}\right) \\
& +\left|\sum_{k=3}^{\infty} t_{k}\right|\left(-\sum_{m=1}^{N_{2}} \frac{\left|\alpha_{m}^{n_{3}}-\alpha_{m}^{n_{2}}\right|}{2^{m}}+\sum_{m=N_{2}+1}^{N_{3}} \frac{\left|\alpha_{m}^{n_{3}}-\alpha_{m}^{n_{2}}\right|}{2^{m}}-\sum_{m=N_{3}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{3}}-\alpha_{m}^{n_{2}}\right|}{2^{m}}\right) \\
& +\left|\sum_{k=4}^{\infty} t_{k}\right|\left(-\sum_{m=1}^{N_{3}} \frac{\left|\alpha_{m}^{n_{4}}-\alpha_{m}^{n_{3}}\right|}{2^{m}}+\sum_{m=N_{3}+1}^{N_{4}} \frac{\left|\alpha_{m}^{n_{4}}-\alpha_{m}^{n_{3}}\right|}{2^{m}}-\sum_{m=N_{4}+1}^{\infty} \frac{\left|\alpha_{m}^{n_{4}}-\alpha_{m}^{n_{3}}\right|}{2^{m}}\right)+\ldots \\
& \geq\left|\sum_{k=2}^{\infty} t_{k}\right|\left(-\frac{1}{2^{N_{1}}\left(1+\delta_{2}\right)}+b_{2}-b_{2}\left(1-\frac{1}{1+\delta_{2}}\right)\right) \\
& +\left|\sum_{k=3}^{\infty} t_{k}\right|\left(-\frac{1}{2^{N_{2}}\left(1+\delta_{3}\right)}+b_{3}-b_{3}\left(1-\frac{1}{1+\delta_{3}}\right)\right)+ \\
& +\left|\sum_{k=4}^{\infty} t_{k}\right|\left(-\frac{1}{2^{N_{3}}\left(1+\delta_{4}\right)}+b_{4}-b_{4}\left(1-\frac{1}{1+\delta_{4}}\right)\right)+\ldots \\
& =\sum_{k=2}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right|\left(-\frac{1}{2^{N_{k}}\left(1+\delta_{k}\right)}+\frac{b_{k}}{1+\delta_{k}}\right) \\
& =\sum_{k=2}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right|\left(\frac{b_{k}-\frac{1}{2^{N_{k}}}}{1+\delta_{k}}\right) \geq \sum_{k=1}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right| \frac{2 a_{k+1}}{1+\delta_{k}},
\end{aligned}
$$

since $2 a_{k+1} \leq b_{k}-\frac{1}{2^{N_{k}}}, k \geq 2$. On the other hand, by (2.11) and (2.13) we have

$$
\begin{aligned}
\left\|\sum_{k=1}^{\infty} t_{k} x_{n_{k}}\right\|_{s} & \leq \sum_{k=2}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right|\left(a_{k}+b_{k}\left(1-\frac{1}{1+\delta_{k}}\right)\right) \\
& \leq \sum_{k=2}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right|\left(a_{k}+a_{k}\left(1-\frac{1}{1+\delta_{k}}\right)\right) \\
& =\sum_{k=1}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right| a_{k}\left(2-\frac{1}{1+\delta_{k}}\right) \\
& <\sum_{k=1}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right| a_{k}\left(1+\delta_{k}\right) .
\end{aligned}
$$

Then we obtain

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\sum_{j=k}^{\infty} t_{j}\right| \frac{2 a_{k+1}}{1+\delta_{k}} \leq\left\|\sum_{k=1}^{\infty} t_{k} x_{n_{k}}\right\|_{s} \leq \sum_{k=1}^{\infty}\left(1+\delta_{k}\right)\left|\sum_{j=k}^{\infty} t_{j}\right| a_{k} \tag{2.15}
\end{equation*}
$$

for all $\left\{t_{k}\right\} \in l^{1}$ with $\sum_{k=1}^{\infty} t_{k}=0$. Since $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{k}\right\}$, then $\left\{x_{n_{k}}\right\}$ is convexly closed with the norm $\|\cdot\|_{\infty}$ and hence with the norm $\|\cdot\|_{\alpha}$. Since $\|\cdot\|_{\alpha}=$ $\|\cdot\|_{\infty}+\alpha\|\cdot\|_{s}$, by (2.6), (2.15) and remark 1.1 we obtain

$$
\begin{gathered}
\sup _{k \in \mathbb{N}}\left(1+\varepsilon_{k}^{\prime}\right)^{-1}\left|\sum_{j=k}^{\infty} t_{j}\right|+\alpha \sum_{k=1}^{\infty}\left(1+\delta_{k}\right)^{-1}\left|\sum_{j=k}^{\infty} t_{j}\right| 2 a_{k+1} \leq \\
\leq\left\|\sum_{k=1}^{\infty} t_{k} x_{n_{k}}\right\|_{\alpha} \leq \\
\leq \sup _{k \in \mathbb{N}}\left(1+\varepsilon_{k}^{\prime}\right)\left|\sum_{j=k}^{\infty} t_{j}\right|+\alpha \sum_{k=1}^{\infty}\left(1+\delta_{k}\right)\left|\sum_{j=k}^{\infty} t_{j}\right| a_{k},
\end{gathered}
$$

for all $\left\{t_{n}\right\} \in l^{1}$ with $\sum_{k=1}^{\infty} t_{k}=0$, for a new sequence $\varepsilon_{k}^{\prime} \subset(0, \infty)$ such that $\varepsilon_{k}^{\prime}<$ $2^{-1} 4^{-k}, k \geq 2$. Finally, define $z_{k}=y_{n_{k}}, n \in \mathbb{N}$. Then $\left\{z_{k}\right\}$ is the desired sequence.

From propositions 2.2 and 2.1 we get the following result.
Theorem 2.1. Let K be a nonempty, convex, closed and bounded subset of $c_{0 \alpha}$. If K is not weakly compact, then there exist $C \subset K$ nonempty, convex and closed and $T: C \rightarrow C$ affine, nonexpansive and fixed point free. Moreover, T is contractive.

As we said, in [FGB], Fetter H., and Gamboa de Buen B., showed that for all $\alpha \geq 0$, the $c_{0 \alpha}$ space has the ω-FPP, then from this result and theorem 2.1 we obtain the following theorem.

Theorem 2.2. Let K be a nonempty, convex, closed and bouded subset of $c_{0 \alpha}$. Then K is weakly compact if and only if every nonempty, convex and closed subset of K has the FPP.

We think that the conjecture of Llorens-Fuster and Sims is also true in the $c_{0 \alpha}$ setting.

Now we turn to the c_{α} space.
Define $\pi: c \longrightarrow \mathbb{K}$ by $\pi\left(\left\{x_{k}\right\}\right)=\lim x_{k}$. Thus, $\pi \in c^{*}$. Take $a \in \mathbb{K}$ and consider the set $\pi^{-1}(\{a\})$. Define $U: \pi^{-1}(\{a\}) \longrightarrow c_{0}$ by $U\left(\left\{x_{i}\right\}\right)=\left\{x_{i}-a\right\}$. In the proof of corollary 7 given in [DLT], it was shown that U is an affine mapping and that

$$
U:\left(\pi^{-1}(\{a\}), \sigma\left(c, c^{*}\right)_{\left.\right|_{\pi^{-1}(\{a\})}}\right) \longrightarrow\left(c_{0}, \sigma\left(c_{0}, c_{0}^{*}\right)\right)
$$

is a homeomorphism. Since $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\infty}$ are equivalent, we also have that $\pi \in c_{\alpha}^{*}$ and that

$$
U:\left(\pi^{-1}(\{a\}), \sigma\left(c_{\alpha}, c_{\alpha}^{*}\right)_{\left.\right|_{\pi^{-1}(\{a\})}}\right) \longrightarrow\left(c_{0 \alpha,} \sigma\left(c_{0 \alpha}, c_{0 \alpha}^{*}\right)\right)
$$

is a homeomorphism.
Consider $K \subset c_{\alpha}$ nonempty, convex, closed and bounded which is not ω-compact.
Set

$$
Q(K)=\left\{a \in \mathbb{K}: \pi^{-1}(\{a\}) \cap K \text { is not } \omega \text {-compact in } c_{\alpha}\right\} .
$$

Since K is not ω-compact in c_{α}, by lemma 6 of [DLT] we have that $Q(K) \neq \phi$.
Theorem 2.3. Let K be a nonempty, convex, closed and bouded subset of c_{α}. Then
i) The set K is weakly compact if every nonempty, convex and closed subset of K has the FPP.
ii) For $\alpha \in[0,1)$, the set K is weakly compact if and only if every nonempty, convex and closed subset of K has the FPP.

Proof. i). Suppose that K is not weakly compact in c_{α}. Then there exists $a \in \mathbb{K}$ such that $\pi^{-1}(\{a\}) \cap K$ is not ω-compact in c_{α} and hence $U\left(\pi^{-1}(\{a\}) \cap K\right)$ is not ω compact in $c_{0 \alpha}$. By theorem 2.1, there exist $D \subset U\left(\pi^{-1}(\{a\}) \cap K\right)$ nonempty, convex and closed and $R: D \rightarrow D$ affine, nonexpansive and fixed point free. Moreover, R is contractive. Therefore $C=U^{-1}(D)$ is a nonempty, convex, closed and bounded subset of $\pi^{-1}(\{a\}) \cap K \subset K$ and the operator $T=U^{-1} R U: C \longrightarrow C$ is nonexpansive and fixed point free.
ii). This result follows by i) and that for $\alpha \in[0,1)$, the space $c_{\alpha}=\left(c,\|\cdot\| \|_{\alpha}\right)$ has the ω-FPP. See [FGB].
Remark 2.1. If in the definition of $\|\cdot\|_{s}$ we take a sequence $\left\{u_{n}\right\} \subset(0, \infty)$ such that $\sum_{n=1}^{\infty} u_{n}<\infty$ and $\sum_{n=m}^{\infty} u_{n} \leq u_{m}, m \in \mathbb{N}$ instead of the sequence $\left\{\frac{1}{2^{n}}\right\}$, then we obtain analogous results to those given in this work.

Acknowledgments. 1st Author Partially supported by SEP-Conacyt Grant 102380. 2nd Author Partially supported by Conacyt Scholarship 165342 and CIMAT Scholarship.

References

[MAU] B. Maurey, Points fixes des contractions sur un convex fermé de L^{1}, Seminaire d'Analyse fonctionnelle 80-81, Ecole Polytechnique, 1980.
[LFS] E. Llorens-Fuster, B. Sims, The fixed point property in c_{0}, Canad. Math. Bull., 41(1998), 413-422.
[DLT] P.N. Dowling, C.J. Lennard, B. Turett, Characterizations of weakly compact sets and new fixed point free maps in c_{0}, Studia. Math., 154(2003), 277-293.
[DOL] P.N. Dowling, C.J. Lennard, B. Turett, Weak compactness is equivalent to the fixed point property in c_{0}, Proc. Amer. Math. Soc., 132(2004), 1659-1666.
[JIM] A. Jiménez-Melado, Stability of weak normal structure in James quasi reflexive space, Bull. Austral. Math. Soc., 46(1992),367-372.
[FGB] H. Fetter, B. Gamboa de Buen, 3-space problem related to the fixed point property, Bull. Austral. Math. Soc., 64(2001), 51-56.
[GBN] B. Gamboa de Buen, Fernando Núñez-Medina, The fixed point property in c_{0} with an equivalent norm, Abstract Appl. Anal., vol. 2011, Article ID 574614, 19 pages, 2011. doi: $10.1155 / 2011 / 574614$

Received: September 20, 2012; Accepted: February 06, 2013

