SOLUTIONS OF A CLASS OF INTERNAL NONLOCAL CAUCHY PROBLEMS FOR THE DIFFERENTIAL EQUATION $x^{\prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)$

A.M.A. EL-SAYED* ${ }^{*}$ E.M. HAMDALLAH** ${ }^{*}$ AND KH. W. ELKADEKY***
*Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail: amasayed@hotmail.com
**Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail: emanhamdalla@hotmail.com
***Faculty of Science, Garyounis University, Benghazi, Libya
E-mail: k-welkadeky@yahoo.com

Abstract

In this work, we study the existence of solutions for the Cauchy problem of the differential equation $x^{\prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)$ with some general class of internal nonlocal and integral conditions. Key Words and Phrases: Internal nonlocal conditions, integral conditions, functional integral equation, fixed-point theorem. 2010 Mathematics Subject Classification: 47H10, 34L30.

1. Introduction

Problems with non-local conditions have been extensively studied by several authors in the last two decades. The reader is referred to [1]-[6] and [9]-[19] and references therein.
Here we are concerning with the Cauchy problem of the differential equation

$$
\begin{equation*}
x^{\prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), \text { for a.e. } t \in(0,1) \tag{1.1}
\end{equation*}
$$

with the general internal nonlocal condition

$$
\begin{equation*}
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=\alpha \sum_{j=1}^{n} b_{j} x\left(\eta_{j}\right) \tag{1.2}
\end{equation*}
$$

where $\tau_{k} \in(a, c), \eta_{j} \in(d, b), 0<a<c \leq d<b<1$ and α is parameter.
Our aim here is to study the existence of at least one absolutely continuous solution $x \in A C[0,1]$ for the problem (1.1)-(1.2) when the function f is measurable in $t \in$ $[0,1]$ for any $\left(u_{1}, u_{2}\right) \in R^{2}$ and continuous in $\left(u_{1}, u_{2}\right) \in R^{2}$ for almost all $t \in[0,1]$. Also we deduce the existence of solutions for the Cauchy problem of equation (1) with the nonlocal integral condition

$$
\begin{equation*}
\int_{a}^{c} x(s) d s=\alpha \int_{d}^{b} x(s) d s \tag{1.3}
\end{equation*}
$$

It must be noticed that the following nonlocal and integral conditions are special cases of our nonlocal and integral conditions

$$
\begin{gather*}
x(\tau)=\beta x(\eta), \tau \in(a, c) \text { and } \eta \in(d, b), \tag{1.4}\\
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=\beta x(\eta), \tau_{k} \in(a, c) \text { and } \eta \in(d, b), \tag{1.5}\\
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=0, \tau_{k} \in(a, c) \tag{1.6}\\
\int_{a}^{c} x(s) d s=\beta x(\eta), \eta \in(d, b) \tag{1.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{a}^{c} x(s) d s=0,(a, c) \tag{1.8}
\end{equation*}
$$

The following theorems will be needed.
Theorem. (Kolmogorov Compactness Criterion) (see [8])
Let $\Omega \subseteq L^{P}(0,1), 1 \leq P<\infty$. If
(i) Ω is bounded $L^{p}(0,1)$,
(ii) $x_{h} \rightarrow x$ as $h \rightarrow 0$ uniformly with respect to $x \in \Omega$, then Ω is relatively compact in $L^{P}(0,1)$, where

$$
x_{h}(t)=\frac{1}{h} \int_{t}^{t+h} x(s) d s
$$

Theorem. (Schauder) (see [14])
Let U be a convex subset of a Banach space X, and $T: U \rightarrow U$ is compact, continuous map. Then T has at least one fixed point in U.

2. Existence of solution

Consider the nonlocal problem (1)-(2). Let $\frac{d x(t)}{d t}=y(t)$, then

$$
\begin{equation*}
y(t)=f(t, x(t), y(t)) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} y(s) d s \tag{2.2}
\end{equation*}
$$

Let $t=\tau_{k}$ in (2.2), we obtain

$$
x\left(\tau_{k}\right)=x(0)+\int_{0}^{\tau_{k}} y(s) d s
$$

than

$$
\begin{equation*}
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=\sum_{k=1}^{m} a_{k} x(0)+\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s . \tag{2.3}
\end{equation*}
$$

Let $t=\eta_{j}$ in (2.2), we can obtain

$$
\begin{equation*}
\alpha \sum_{j=1}^{n} b_{j} x\left(\eta_{j}\right)=\alpha \sum_{j=1}^{n} b_{j} x(0)+\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4), we obtain

$$
\begin{equation*}
x(0)=A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right) \tag{2.5}
\end{equation*}
$$

Substitute from (2.5) into (2.2), we get

$$
\begin{equation*}
x(t)=A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\int_{0}^{t} y(s) d s \tag{2.6}
\end{equation*}
$$

where y is the solution of the functional integral equation

$$
\begin{equation*}
y(t)=f\left(t,\left\{A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\int_{0}^{t} y(s) d s\right\}, y(t)\right) \tag{2.7}
\end{equation*}
$$

Then we proved the following lemma.
Lemma 2.1. Let $\alpha \sum_{j=1}^{n} b_{j} \neq-\sum_{k=1}^{m} a_{k}$. Then the solution of the nonlocal problem (1)-(2) can be expressed by the integral equation (2.6) where y is the solution of the functional integral equation (2.7).

Consider the functional equation (2.7) with the following assumptions
(i) $f:[0,1] \times R^{2} \rightarrow R$ is measurable in $t \in[0,1]$, for any $\left(u_{1}, u_{2}\right) \in R^{2}$ and continuous in $\left(u_{1}, u_{2}\right) \in R^{2}$, for almost all $t \in[0,1]$.
(ii) There exists a function $a \in L_{1}[0,1]$ and constant $b_{i}>0 ; i=1,2$ such that

$$
\left|f\left(t, u_{1}, u_{2}\right)\right| \leq|a(t)|+\sum_{i=1}^{2} b_{i}\left|u_{i}\right| ; \forall\left(t, u_{1}, u_{2}\right) \in[0,1] \times R^{2}
$$

(iii) $\left(A b_{1}\left(\sum_{k=1}^{m} a_{k}+\alpha \sum_{j=1}^{n} b_{j}\right)+b_{1}+b_{2}\right)<1$.

Now, we have the following theorem.
Theorem 2.1. Assume that the assumptions (i) - (iii) are satisfied. Then the functional integral equation (2.7) has at least one solution $y \in L_{1}[0,1]$.
Proof. Define the operator H by

$$
\begin{equation*}
H y(t)=f\left(t,\left\{A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\int_{0}^{t} y(s) d s\right\}, y(t)\right) \tag{2.8}
\end{equation*}
$$

Let

$$
\begin{gathered}
B_{r}=\left\{y:\|y\|_{L_{1}} \leq r, r>0\right\} \\
r=\|a\|\left(1-\left(A b_{1}\left(\sum_{k=1}^{m} a_{k}+\alpha \sum_{j=1}^{n} b_{j}\right)+b_{1}+b_{2}\right)\right)^{-1} .
\end{gathered}
$$

Clearly B_{r} is nonempty, convex and closed .
Let $y \in B_{r}$, then from assumptions (i) and (iii), we obtain
$\|H y\|_{L_{1}}=\int_{0}^{1}\left|f\left(t,\left\{A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\int_{0}^{t} y(s) d s\right\}, y(t)\right)\right| d t$

$$
\begin{gathered}
\leq \int_{0}^{1}\left(|a(t)|+b_{1}\left|A \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-A \alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s+\int_{0}^{t} y(s) d s\right|+b_{2}|y(t)|\right) d t \\
\leq \int_{0}^{1}\left(|a(t)|+A b_{1} \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}}|y(s)|+A b_{1} \alpha \sum_{j=1}^{n} \int_{0}^{\eta_{j}}|y(s)| d s+b_{1} \int_{0}^{t}|y(s)| d s+b_{2}|y(t)|\right) d t \\
\leq\|a\|+A b_{1} \sum_{k=1}^{m} a_{k}\|y\|+A b_{1} \alpha \sum_{j=1}^{n} b_{j}| | y\left\|+b_{1}| | y\right\|+b_{2}| | y \| \\
\leq\|a\|+\left(A b_{1} \sum_{k=1}^{m} a_{k}+A b_{1} \alpha \sum_{j=1}^{n} b_{j}+b_{1}+b_{2}\right)\|y\| \\
\leq\|a\|+\left(A b_{1}\left(\sum_{k=1}^{m} a_{k}+\alpha \sum_{j=1}^{n} b_{j}\right)+b_{1}+b_{2}\right)\|y\| \\
\leq\|a\|+\left(A b_{1}\left(\sum_{k=1}^{m} a_{k}+\alpha \sum_{j=1}^{n} b_{j}\right)+b_{1}+b_{2}\right) r \leq r .
\end{gathered}
$$

Then $\|H y\|_{L_{1}} \leq r$, which implies that the operator H maps B_{r} into itself, i.e $H: B_{r} \rightarrow B_{r}$.
Assumption (ii) implies $f \in L_{1} \rightarrow L_{1}$ and assumption (i) implies that H is continuous. To apply Schauder fixed point theorem it remains to show that H is compact Now, let Ω be a bounded subset of B_{r}, therefore $H(\Omega)$ is bounded in $L_{1}[0,1]$, i.e condition (i) of Kolmogorov compactness criterion is satisfied, it remains to show that

$$
(H y)_{h} \rightarrow(H y), \quad \text { in } L_{1}[0,1] .
$$

Let $y \in \Omega \subset L_{1}[0,1]$, we have the following estimation

$$
\begin{gathered}
\left\|(H y)_{h}-(H y)\right\|_{L_{1}}=\int_{0}^{1}\left|(H y)_{h}(t)-(H y)(t)\right| d t \\
=\int_{0}^{1}\left|\frac{1}{h} \int_{t}^{t+h}(H y)(s) d s-(H y)(t)\right| d t \leq \int_{0}^{1}\left(\frac{1}{h} \int_{t}^{t+h}|(H y)(s)-(H y)(t)| d s\right) d t \\
\left.\leq \int_{0}^{1} \frac{1}{h} \int_{t}^{t+h} \right\rvert\, f\left(s, A \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(\tau) d \tau-\alpha A \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(\tau) d \tau+\int_{0}^{s} y(\tau) d \tau, y(s)\right) \\
\quad-f\left(t, A \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha A \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s+\int_{0}^{t} y(s) d s, y(t)\right) \mid d s d t
\end{gathered}
$$

Now $f \in L_{1} \rightarrow L_{1}$ and $y \in \Omega \subset L_{1}$ implies that $f \in L_{1}[0,1]$ and

$$
\begin{gathered}
\left.\frac{1}{h} \int_{t}^{t+h} \right\rvert\, f\left(s, A \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(\tau) d \tau\right. \\
\left.-\alpha A \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(\tau) d \tau+\int_{0}^{s} y(\tau) d \tau, y(s)\right)-f\left(t, A \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s\right.
\end{gathered}
$$

$$
\left.-\alpha A \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s+\int_{0}^{t} y(s) d s, y(t)\right) \mid d s \rightarrow 0 \text { as } h \rightarrow 0, \text { for } t \in[0,1] .
$$

Therefore $(H y)_{h} \rightarrow(H y)$, uniformly as $h \rightarrow 0$. Then by Kolmogorov compactness criterion, $H(\Omega)$ is relatively compact. Hence H has a fixed point in B_{r}, then there exists at least one solution $y \in L_{1}[0,1]$ such that $y(t)=f(t, x(t), y(t)), t \in[0,1]$.
Theorem 2.2. Let the assumptions (i) - (iii) are satisfied. Then the nonlocal problem (1)-(2) has at least one an absolutely continuous solution $x \in A C[0,1]$.

Proof. Form Theorem 2.1 and the integral equation (2.6) we deduce that there exists at least one absolutely continuous solution $x \in A C(0,1)$ of the integral equation (2.6). Therefore the integral equation (2.6) has at least one absolutely continuous solution $x \in A C(0,1)$. Now,

$$
\begin{aligned}
\lim _{t \rightarrow 0} x(t) & =A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\lim _{t \rightarrow 0} \int_{0}^{t} y(s) d s=x(0) \\
\lim _{t \rightarrow 1} x(t) & =A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\int_{0}^{1} y(s) d s=x(1)
\end{aligned}
$$

Then the integral equation (2.6) has at least one an absolutely continuous solution $x \in A C[0,1]$.

To complete the proof, we prove that the integral equation (2.6) satisfies nonlocal problem (1)-(2). Differentiating (2.6), we get

$$
\frac{d x}{d t}=y(t)=f\left(t, x(t), \frac{d x}{d t}\right)
$$

Let $t=\tau_{k}$ in (2.6), we obtain

$$
\begin{aligned}
x\left(\tau_{k}\right)= & A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\int_{0}^{\tau_{k}} y(s) d s \\
& =\left(A \sum_{k=1}^{m} a_{k}+1\right) \int_{0}^{\tau_{k}} y(s) d s-\alpha a \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=\sum_{k=1}^{m} a_{k}\left(A \sum_{k=1}^{m} a_{k}+1\right) \int_{0}^{\tau_{k}} y(s) d s-\alpha A \sum_{k=1}^{m} a_{k} \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s \tag{2.9}
\end{equation*}
$$

Also, let $t=\eta_{j}$ in (2.6), we obtain

$$
\begin{aligned}
x\left(\eta_{j}\right)= & A\left(\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s-\alpha \sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}} y(s) d s\right)+\int_{0}^{\eta_{j}} y(s) d s \\
& =A \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\left(1-\alpha A \sum_{j=1}^{n} b_{j}\right) \int_{0}^{\eta_{j}} y(s) d s
\end{aligned}
$$

and

$$
\begin{equation*}
\alpha \sum_{j=1}^{n} b_{j} x\left(\eta_{j}\right)=\alpha A \sum_{j=1}^{n} b_{j} \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\alpha \sum_{j=1}^{n} b_{j}\left(1-\alpha A \sum_{j=1}^{n} b_{j}\right) \int_{0}^{\eta_{j}} y(s) d s . \tag{2.10}
\end{equation*}
$$

Subtraction (2.10) from (2.9), we obtain

$$
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)-\alpha \sum_{j=1}^{n} b_{j} x\left(\eta_{j}\right)=0
$$

This completes the proof of the equivalent between the nonlocal problem (1)-(2) and the integral equation (2.6). This implies that there exists at least one absolutely continuous solution $x \in A C[0,1]$ of the nonlocal problem (1)-(2).

Now letting $\alpha=0$ in (2), then we can easily prove the following corollary .
Corollary 2.1. Let the assumptions (i) - (iii) are satisfied. Then the nonlocal problem

$$
\begin{gathered}
\frac{d x(t)}{d t}=f\left(t, x(t), \frac{d x(t)}{d t}\right), \text { for a.e. } t \in(0,1) \\
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=0
\end{gathered}
$$

has at least one an absolutely continuous solution $x \in A C[0,1]$.

3. Nonlocal integral condition

Let $x \in[0,1]$ be a solution of the nonlocal problem (1)-(2). Let $a_{k}=t_{k}-t_{k-1}, \tau_{k} \in$ $\left(t_{k-1}, t_{k}\right)=(a, c) \subset(0,1)$ and let $b_{j}=t_{j}-t_{j-1}, \eta_{j} \in\left(t_{j-1}, t_{j}\right)=(b, d) \subset(0,1)$, then the nonlocal condition (2) will be

$$
\sum_{k=1}^{m}\left(t_{k}-t_{k-1}\right) x\left(\tau_{k}\right)=\alpha \sum_{j=1}^{n}\left(t_{j}-t_{j-1}\right) x\left(\eta_{j}\right)
$$

From the continuity of the solution x of the nonlocal condition (2) we obtain

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{m}\left(t_{k}-t_{k-1}\right) x\left(\tau_{k}\right)=\lim _{n \rightarrow \infty} \alpha \sum_{j=1}^{n}\left(t_{j}-t_{j-1}\right) x\left(\eta_{j}\right)
$$

i.e the nonlocal condition (2) transformed to the integral condition

$$
\begin{equation*}
\int_{a}^{c} x(s) d s=\alpha \int_{b}^{d} x(s) d s \tag{3.1}
\end{equation*}
$$

and the solution of the integral equation (2.6) will be

$$
\begin{equation*}
x(t)=A\left(\int_{a}^{c} \int_{0}^{t} y(s) d s d t-\alpha \int_{d}^{b} \int_{0}^{t} y(s) d s d t\right)+\int_{0}^{t} y(s) d s \tag{3.2}
\end{equation*}
$$

Now, we have the following corollary.

Corollary 3.1. Let the assumptions (i)-(iii) of Theorem 2.1 are satisfied. Then the nonlocal problem with the integral condition

$$
\begin{aligned}
\frac{d x(t)}{d t}= & f\left(t, x(t), \frac{d x(t)}{d t}\right), \text { for a.e. } t \in(0,1) \\
& \int_{a}^{c} x(s) d s=\alpha \int_{d}^{b} x(s) d s
\end{aligned}
$$

has at least one an absolutely continuous solution $x \in A C[0,1]$.
Letting $\alpha=0$ in (2.6), the we can easily prove the following corollary .
Corollary 3.2. Let the assumptions (i) - (iii) are satisfied. Then the nonlocal problem

$$
\begin{gathered}
\frac{d x(t)}{d t}=f\left(t, x(t), \frac{d x(t)}{d t}\right), \text { for a.e. } t \in(0,1) \\
\int_{a}^{c} x(s) d s=0
\end{gathered}
$$

has at least one an absolutely continuous solution $x \in A C[0,1]$.

References

[1] M. Benchohra, E.P. Gatsori, S.K. Ntouyas, Existence results for seme-linear integrodifferential inclusions with nonlocal conditions, Rocky Mountain J. Math., 34(2004), no. 3.
[2] M. Benchohra, S. Hamani, S. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 71(2009), 23912396.
[3] A. Boucherif, First-order differential inclusions with nonlocal initial conditions, Appl. Math. Lett., 15(2002), 409-414.
[4] A. Boucherif, Nonlocal Cauchy problems for first-order multivalued differential equations, Electronic J. Diff. Eq., 2002(2002), no. 47, 1-9.
[5] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), no. 2, 205-212.
[6] A. Boucherif, Semilinear evolution inclusions with nonlocal conditions, Appl. Math. Lett., 22(2009), 1145-1149.
[7] R.F. Curtain, A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, 1977.
[8] J. Dugundji, A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1963.
[9] A.M.A. El-Sayed, Sh. A. Abd El-Salam, On the stability of a fractional order differential equation with nonlocal initial condtion, Electronic J. Diff. Eq., 29(2008), 1-8.
[10] A.M.A. El-Sayed, Kh. W. Elkadeky, Caratheodory theorem for a nonlocal problem of the differential equation $x^{\prime}=f\left(t, x^{\prime}\right)$,, Alexandria J. Math., 1(2010), 8-14.
[11] A.M.A. El-Sayed, E.M. Hamdallah, Kh. W. Elkadeky, Solutions of a class of nonlocal problems for the differential inclusion, Appl. Math. Information Sci., 5(2011), no. 3, 413-421.
[12] A.M.A. El-Sayed, E.M. Hamdallah, Kh. W. Elkadeky, Solutions of a class of deviated-advanced nonlocal problems for the differential inclusion $x^{\prime}(t) \in F(t, x(t))$, Abstract Appl. Anal., Volume 2011, Article ID 476392, 9 pages doi:10.1155/2011/476392
[13] E. Gatsori, S.K. Ntouyas, Y.G. Sficas, On a nonlocal cauchy problem for differential inclusions, Abstract Appl. Anal., 2004(2004), 425-434.
[14] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
[15] G.M. Guerekata, A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Anal., 70(2009), 1873-1876.
[16] A. Lasota, Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astoronom. Phys., 13(1955), 781786.
[17] H. Liu, D. Jiang, Two-point boundary value problem for first order implicit differential equations, Hiroshima Math. J., 30(2000), 21-27.
[18] R. Ma, Existence and uniqueness of solutions to first-order three-point boundary value problems, Appl. Math. Lett., 15(2002), 211-216.
[19] S.K. Ntouyas, Nonlocal initial and boundary value problems: A survey, In: A. Canada, P. Drábek, A. Fonda (Eds.), Handbook of Differential Equations. Ordinary Differential Equations. II. Elsevier B.V., 461-558, 2005.

Received: December 7, 2011; Accepted: March 09, 2012

