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Abstract. Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi, Ki : H → H be bounded

and monotone mappings. Assume that the generalized Hammerstein equation u +
∑m

i=1 KiFiu = 0
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1. Introduction

Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to have a
Gâteaux differentiable norm (and E is called smooth) if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S; E is said to have a uniformly Gâteaux differentiable norm
if for each y ∈ S the limit is attained uniformly for x ∈ S. Further, E is said to be
uniformly smooth if the limit exists uniformly for (x, y) ∈ S × S. The modulus of
smoothness of E is defined by

ρE(τ) := sup
{‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

E is equivalently said to be smooth if ρE(τ) > 0, ∀ τ > 0. Let q > 1, E is said to be
q-uniformly smooth (or to have a modulus of smoothness of power type q > 1 ) if there
exists c > 0 such that ρE(τ) ≤ cτ q. Hilbert spaces, Lp(or lp) spaces, 1 < p < ∞,
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and the Sobolev spaces, W p
m, 1 < p <∞, are q-uniformly smooth. Hilbert spaces are

2-uniformly smooth while

Lp(or `p) or W p
m is

{
p− uniformly smooth if 1 < p ≤ 2
2− uniformly smooth if p ≥ 2.

Let E be a real normed space and let Jq, (q > 1) denote the generalized duality

mapping from E into 2E
∗

given by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ||x||q and ||f || = ||x||q−1},

where E∗ denotes the dual space of E and 〈., .〉 denotes the generalized duality pairing.
It is well known (see, for example, Xu [33]) that Jq(x) = ||x||q−2J(x) if x 6= 0. For

q = 2, the mapping J = J2 from E to 2E
∗

is called normalized duality mapping. It is
well known that if E is uniformly smooth, then J is single-valued (see, e.g., [33, 34]).
A mapping A : D(A) ⊂ E → E is said to be accretive if ∀x, y ∈ D(A), there exists
j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0.

For some real number η > 0, A is called η-strongly accretive if ∀x, y ∈ D(A), there
exists jq(x− y) ∈ Jq(x− y) such that

〈Gx−Gy, jq(x− y)〉 ≥ η||x− y||q.

In Hilbert spaces, accretive operators are called monotone. The accretive operators
were introduced independently in 1967 by Browder [1] and Kato [2]. Interest in such
mappings stems from their firm connection with equations of evolution. For more on
accretive/monotone mappings and connections with evolution equations, the reader
may consult any of the following references Berinde [3, 4], Chidume [5], Cioranescu
[6], Reich [7].
A nonlinear integral equation of Hammerstein type (see, e.g., Hammerstein [8]) is one
of the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = h(x) (1.1)

where dy is a σ-finite measure on the measure space Ω; the real kernel k is defined on
Ω×Ω, f is a real-valued function defined on Ω×R and is, in general, nonlinear and
h is a given function on Ω. If we now define an operator K by

Kv(x) =

∫
Ω

k(x, y)v(y)dy; x ∈ Ω,

and the so-called superposition or Nemytskii operator by Fu(y) := f(y, u(y)) then,
the integral equation (1.1) can be put in the operator theoretic form as follows:

u+KFu = 0, (1.2)

where, without loss of generality, we have taken h ≡ 0.
Interest in equation (1.2) stems mainly from the fact that several problems that arise
in differential equations, for instance, elliptic boundary value problems whose linear
parts possess Green’s functions can, as a rule, be transformed into the form (1.2).
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Among these, we mention the problem of the forced oscillations of finite amplitude of
a pendulum (see, e.g., Pascali and Sburlan [9], Chapter IV).

Example 1.1. The amplitude of oscillation v(t) is a solution of the problem{
d2v
dt2 + a2 sin v(t) = z(t), t ∈ [0, 1]
v(0) = v(1) = 0,

(1.3)

where the driving force z(t) is periodical and odd. The constant a 6= 0 depends on the
length of the pendulum and on gravity. Since the Green’s function for the problem

v
′′
(t) = 0, v(0) = v(1) = 0,

is the triangular function

k(t, x) =

{
t(1− x), 0 ≤ t ≤ x,
x(1− t), x ≤ t ≤ 1,

problem (1.3) is equivalent to the nonlinear integral equation

v(t) = −
∫ 1

0

k(t, x)[z(x)− a2 sin v(x)]dx. (1.4)

If ∫ 1

0

k(t, x)z(x)dx = g(t) and v(t) + g(t) = u(t),

then (1.4) can be written as the Hammerstein equation

u(t) +

∫ 1

0

k(t, x)f(x, u(x))dx = 0,

where f(x, u(x)) = a2 sin[u(x)− g(x)].
Equations of Hammerstein type play a crucial role in the theory of optimal control
systems and in automation and network theory (see, e.g., Dolezale [24]). Several
existence and uniqueness theorems have been proved for equations of the Hammer-
stein type (see, e.g., Brezis and Browder [10, 11, 12], Browder [1], Browder and De
Figueiredo [14], Browder and Gupta [15], Chepanovich [17], De Figueiredo [23]). The
Mann iteration scheme (see, e.g., Mann [30]) has successfully been employed (see,
e.g., the recent monographs of Berinde [3] and Chidume [5]). The recurrence formu-
las used involved K−1 which is also assumed to be strongly monotone and this, apart
from limiting the class of mappings to which such iterative schemes are applicable, is
also not convenient in applications. Part of the difficulty is the fact that the compo-
sition of two monotone operators need not be monotone. For more recent results on
Hammerstein equations, see, for example, [21, 22, 27, 35] and the references contained
therein.
Recently, Chidume and Ofoedu [18] introduced a coupled explicit iterative scheme
and proved the following strong convergence theorem for approximation of solution
of a nonlinear integral equation of Hammerstein type in a 2-uniformly smooth real
Banach space. In particular, they proved the following theorem.
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Theorem 1.2. (Chidume and Ofoedu, [18]) Let E be a 2-uniformly smooth real
Banach space. Let F,K : E → E be bounded and accretive mappings. Let {un}∞n=1

and {vn}∞n=1 be sequences in E defined iteratively from arbitrary u1, v1 ∈ E by{
un+1 = un − λnαn(Fun − vn)− λnθn(un − u1),
vn+1 = vn − λnαn(Kvn + un)− λnθn(vn − v1),

(1.5)

where {λn}∞n=1, {αn}∞n=1 and {θn}∞n=1 are real sequences in (0, 1) such that λn =
o(θn), αn = o(θn) and

∑∞
i=1 λnθn = +∞. Suppose that u+KFu = 0 has a solution

in E. Then, there exist real constants ε0, ε1 > 0 and a set Ω ⊂ W = E × E such
that if αn ≤ ε0θn and λn ≤ ε1θn,∀n ≥ n0, for some n0 ∈ N and w∗ := (u∗, v∗) ∈ Ω
(where v∗ = Fu∗), the sequence {un}∞n=1 converges strongly to u∗.
A nonlinear integral equation of Urysohn type (see, e.g., Gupta [25, 26]) has the form

u(x) +

∫
Ω

A(x, y, u(y))dy = h(x), (1.6)

where Ω is the domain of a σ-finite measure in R. The inhomogeneous term h and
the unknown function u are measurable on Ω. The function A : Ω × Ω × R → R is
called the Urysohn kernel. When

A(x, y, r) = k(x, y)f(y, r),

the Urysohn equation becomes a Hammerstein one.
In this paper, we shall discuss convergence results for Urysohn equations in which the
kernels are of the form

A(x, y, r) =

m∑
i=1

ki(x, y)fi(y, r), ∀x, y ∈ Ω, r ∈ R. (1.7)

The integral equations with these kernels can be regarded as generalized equations of
Hammerstein type and integral equation (1.6) with kernel in equation (1.7) can be
put in operator theoretic form:

u+

m∑
i=1

KiFiu = 0, (1.8)

where, without loss of generality, we have taken h ≡ 0. The study of equation (1.8)
was initiated by Browder [13] and further developed by Joshi [28] and Gupta [25, 26].
More recently, Chidume and Shehu [19] generalized the results of Chidume and Ofoedu
[18] and proved the following strong convergence theorem for approximation of solu-
tion of generalized equation of Hammerstein equation in real Hilbert spaces.

Theorem 1.3. Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi, Ki : H →
H be bounded and monotone mappings. Let {un}∞n=1, {vi,n}∞n=1, i = 1, 2, . . . ,m be
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sequences in H defined iteratively by

un+1 = un − λnαn
(
un +

∑m
i=1Kivi,n

)
− λnθn(un − u1),

v1,n+1 = v1,n − λnαn(F1un − v1,n)− λnθn(v1,n − v1,1),
v2,n+1 = v2,n − λnαn(F2un − v2,n)− λnθn(v2,n − v2,1),
...
vm,n+1 = vm,n − λnαn(Fmun − vm,n)− λnθn(vm,n − vm,1),

where {λn}∞n=1, {αn}∞n=1 and {θn}∞n=1 are real sequences in (0, 1) such that λn =
o(θn), αn = o(θn) and

∑∞
i=1 λnθn = +∞. Suppose that u +

∑m
i=1KiFiu = 0 has a

solution in H. Then, there exist real constants ε0, ε1 > 0 and a set Ω ⊂W such that if
αn ≤ ε0θn and λn ≤ ε1θn,∀n ≥ n0, for some n0 ∈ N and w∗ := (u∗, x∗1, x

∗
2, . . . , x

∗
m) ∈

Ω (where x∗i = Fiu
∗, i = 1, 2, . . . ,m), the sequence {un}∞n=1 converges strongly to u∗.

We remark here that conditions imposed on the iteration parameters in Theorem 1.2
and Theorem 1.3 are too strong compared to the conditions we shall imposed on our
iteration parameters in Section 3.
It is our purpose in this paper to introduce a new explicit iteration scheme which
converges strongly to a solution of generalized equations of Hammerstein type u +∑m
i=1KiFiu = 0 in real Hilbert spaces when Ki, Fi, i = 1, 2, . . . ,m are bounded and

monotone. Our iterative scheme in this paper seems far simpler than the iterative
scheme used by Chidume and Shehu (Theorem 1.3) in real Hilbert spaces. Thus,
our results improve the results of Chidume and Shehu (Theorem 1.3) in real Hilbert
spaces. Furthermore, our results improve and generalize the results of Chidume and
Ofoedu (Theorem 1.2) in real Hilbert spaces.

2. Preliminaries

We shall make use of the following lemmas in the sequel.

Lemma 2.1. Let H be a real Hilbert space. Then

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉,
for all x, y ∈ H.

Lemma 2.2. (see, e.g., [4, 32]) Let {an}∞n=1 be a sequence of nonnegative real numbers
satisfying the following relation:

an+1 ≤ (1− αn)an + σn, n ≥ 1,

where {αn}∞n=1 ⊂ [0, 1] and {σn}∞n=1 is a sequence in R such that
∑∞
n=1 αn =∞. Sup-

pose that σn = o(αn), n ≥ 1 (i.e., lim
n→∞

σn

αn
= 0) or

∑∞
n=1 |σn| < +∞ or lim sup

n→∞

σn

αn
≤ 0.

Then, an → 0 as n→∞.

Lemma 2.3. (Shioji and Takahashi, [31]) Let (x0, x1, x2, ...) ∈ l∞ be such that µnxn ≤
0 for all Banach limits µ. If lim sup

n→∞
(xn+1 − xn) ≤ 0, then lim sup

n→∞
xn ≤ 0.

Lemma 2.4. (Lim and Xu, [29]) Suppose E is a Banach space with uniform normal
structure, K a nonempty bounded subset of E and T : C → C is a uniformly L-
Lipschitzian mapping with L < N(E)

1
2 . Suppose also there exists a nonempty bounded
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closed convex subset B of C with the following property (P ):

x ∈ B implies ωw(x) ∈ B,

(where ωw(x) is the ω-limit set of T at x, that is, the set {y ∈ E : y = weak ω −
limTnjx for some nj →∞}). Then T has a fixed point in B.

3. Main results

Theorem 3.1. Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi, Ki :
H → H be bounded and monotone mappings. Let {un}∞n=1, {vi,n}∞n=1, i = 1, 2, . . . ,m
be sequences in H defined iteratively from arbitrary u1, vi,1 ∈ H by

un+1 = un − β2
n

(
un +

∑m
i=1Kivi,n

)
− βn(un − u1),

v1,n+1 = v1,n − β2
n(F1un − v1,n)− βn(v1,n − v1,1),

v2,n+1 = v2,n − β2
n(F2un − v2,n)− βn(v2,n − v2,1),

...
vm,n+1 = vm,n − β2

n(Fmun − vm,n)− βn(vm,n − vm,1),

(3.1)

where {βn}∞n=1 is a real sequence in (0, 1) such that lim
n→∞

βn = 0. Suppose that

u+

m∑
i=1

KiFiu = 0

has a solution in H. Then, the sequences {un}∞n=1, {vi,n}∞n=1, i = 1, 2, . . . ,m are
bounded.

Proof. We exploit the method used in Chidume and Shehu [19]. Let

W := H ×H × . . .×H

be the Cartesian product with (m+ 1) factors and the norm

||w||W :=
(
||u||2 +

m∑
i=1

||xi||2
) 1

2

.

Define the sequence {wn}∞n=1 in W by wn := (un, v1,n, v2,n, . . . , vm,n). Let u∗ be
a solution of u +

∑m
i=1KiFiu = 0, x∗1 = F1u

∗, x∗2 = F2u
∗, . . . , x∗m = Fmu

∗ and
w∗ = (u∗, x∗1, x

∗
2, . . . , x

∗
m). We observe that u∗ = −

∑m
i=1Kix

∗
i . It suffices to show

that {wn}∞n=1 is bounded. For this, let n0 ∈ N, then there exists r > 0 sufficiently

large such that w1 ∈ B(w∗, r2 ), wn0 ∈ B(w∗, r). Define B := B(w∗, r). Since Fi, Ki

are bounded, then

M0 = sup
{∣∣∣∣∣∣u+

m∑
i=1

Kixi

∣∣∣∣∣∣2
H

+ 2r2 : (u, x1, x2, . . . , xm) ∈ B
}
< +∞

Mi = sup{||Fiu− xi||2H + 2r2 : (u, x1, x2, . . . , xm) ∈ B} < +∞, i = 1, 2, . . . ,m.
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Let M =
∑m
i=0Mi. We show that wn ∈ B for all n > n0. We do this by induction.

By construction, wn0
∈ B. Suppose wn ∈ B for n > n0. We prove that wn+1 ∈ B.

Observe that

||wn+1 − w∗||2 = ||un+1 − u∗||2 +

m∑
i=1

||vi,n+1 − x∗i ||2.

Then, we obtain

||un+1 − u∗||2 = ||un − u∗ − β2
n

(
un +

m∑
i=1

Kivi,n

)
− βn(un − u1)||2

= ||un − u∗||2 − 2
〈
β2
n

(
un +

m∑
i=1

Kivi,n

)
+ βn(un − u1), un − u∗

〉
+
∣∣∣∣∣∣β2

n

(
un +

m∑
i=1

Kivi,n

)
+ βn(un − u1)

∣∣∣∣∣∣2
≤ ||un − u∗||2 − 2β2

n

〈
un +

m∑
i=1

Kivi,n, un − u∗
〉

−2βn〈un − u1, un − u∗〉+ 4β2
nM0. (3.2)

But since Ki is monotone, we obtain〈
un +

m∑
i=1

Kivi,n, un − u∗
〉

=
〈
un +

m∑
i=1

Kivi,n − u∗ −
m∑
i=1

Kix
∗
i , un − u∗

〉
= ||un − u∗||2 + 〈K1v1,n −K1x

∗
1, (un − u∗) + (v1,n − x∗1)− (v1,n − x∗1)〉

+〈K2v2,n −K2x
∗
2, (un − u∗) + (v2,n − x∗2)− (v2,n − x∗2)〉

+ . . .+ 〈Kmvm,n −Kmx
∗
m, (un − u∗) + (vm,n − x∗m)− (vm,n − x∗m)〉

≥ ||un − u∗||2 + 〈K1v1,n −K1x
∗
1, (un − u∗)− (v1,n − x∗1)〉

+〈K2v2,n −K2x
∗
2, (un − u∗)− (v2,n − x∗2)〉

+ . . .+ 〈Kmvm,n −Kmx
∗
m, (un − u∗)− (vm,n − x∗m)〉

and

〈un − u1, un − u∗〉 = ||un − u∗||2 + 〈u∗ − u1, un − u∗〉.
Thus, substituting in (3.2), we obtain

||un+1 − u∗||2 ≤ (1− 2βn)||un − u∗||2 + 2β2
nA0

−2βn〈u∗ − u1, un − u∗〉+ 4β2
nM0 (3.3)

where

A0 = sup
n≥n0

|〈K1v1,n −K1x
∗
1, (un − u∗)− (v1,n − x∗1)〉

+〈K2v2,n −K2x
∗
2, (un − u∗)− (v2,n − x∗2)〉

+ . . .+ 〈Kmvm,n −Kmx
∗
m, (un − u∗)− (vm,n − x∗m)〉|.
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Also,

||v1,n+1 − x∗1||2 = ||v1,n − x∗1 − β2
n(F1un − v1,n)− βn(v1,n − v1,1)||2

= ||v1,n − x∗1||2 − 2〈β2
n(F1un − v1,n) + βn(v1,n − v1,1), v1,n − x∗1

〉
+β2

n||βn(F1un − v1,n) + (v1,n − v1,1)||2

≤ ||v1,n − x∗1||2 − 2β2
n〈F1un − v1,n, v1,n − x∗1〉

−2βn||v1,n − x∗1||2 − 2βn〈x∗1 − v1,1, v1,n − x∗1〉+ 4β2
nM1. (3.4)

Observe that

〈F1un − v1,n, v1,n − x∗1〉 = 〈F1un − F1v1,n + F1v1,n − F1x
∗
1 + F1x

∗
1 − v1,n, v1,n − x∗1〉

= 〈F1v1,n − F1x
∗
1, v1,n − x∗1〉+ 〈F1un − F1v1,n + F1x

∗
1 − v1,n, v1,n − x∗1〉

≥ 〈F1un − F1v1,n + F1x
∗
1 − v1,n, v1,n − x∗1〉.

Substituting this into (3.4), we have

||v1,n+1 − x∗1||2 ≤ (1− 2βn)||v1,n − x∗1||2 + 2β2
nA1

−2βn〈x∗1 − v1,1, v1,n − x∗1〉+ 4β2
nM1 (3.5)

where A1 = sup
n≥n0

|〈F1un − F1v1,n + F1x
∗
1 − v1,n, v1,n − x∗1〉|. Continuing, we have for

each i = 2, 3, . . . ,m that

||vi,n+1 − x∗1||2 ≤ (1− 2βn)||vi,n − x∗i ||2 + 2β2
nAi

−2βn〈x∗i − vi,1, vi,n − x∗i 〉+ 4β2
nMi (3.6)

where Ai = sup
n≥n0

|〈Fiun − Fiv1,n + Fix
∗
i − v1,n, vi,n − x∗i 〉|. Let A =

∑m
i=0Ai. Then,

from (3.3), (3.5) and (3.6), we obtain

||wn+1 − w∗||2 ≤ (1− 2βn)||wn − w∗||2 + 2β2
nA

−2βn

[
〈u∗ − u1, un − u∗〉

+

m∑
i=1

〈x∗i − vi,1, vi,n − x∗i 〉
]

+ 4β2
nM (3.7)

≤ (1− 2βn)||wn − w∗||2 + 2β2
nA+ 4β2

nM

+βn

[
||w1 − w∗||2 + ||wn − w∗||2

]
= (1− βn)||wn − w∗||2 + βn||w1 − w∗||2 + 2β2

nA+ 4β2
nM

< (1− βn)r2 + βn
r2

4
+ 2β2

nA+ 4β2
nM



ITERATIVE APPROXIMATION 435

Since lim
n→∞

βn = 0, then βn < min
{

r2

8(A+1) ,
r2

16(M+1)

}
, ∀n ≥ n0. Then, we obtain

||wn+1 − w∗||2 < (1− βn)r2 + βn
r2

4
+ 2β2

nA+ 4β2
nM

< (1− βn)r2 +
βnr

2

4
+

βnAr
2

4(A+ 1)
+

βnr
2M

4(M + 1)

≤ (1− βn)r2 +
3βnr

2

4

= r2 − βnr
2

4
< r2.

Hence, wn+1 ∈ B.
Thus, by induction, {wn}∞n=1 is bounded and so are {un}∞n=1, {vi,n}∞n=1, i =

1, 2, . . . ,m. This completes the proof.

Theorem 3.2. Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi, Ki :
H → H be bounded and monotone mappings. Let {un}∞n=1, {vi,n}∞n=1, i = 1, 2, . . . ,m
be sequences in H defined iteratively by (3.1), where {βn}∞n=1 is a real sequence in
(0, 1) such that lim

n→∞
βn = 0 and

∑∞
n=1 βn = +∞. Suppose that u+

∑m
i=1KiFiu = 0

has a solution in H. Let W := H × H × . . . × H be the Cartesian product with
(m + 1) factors. Then, there exists a set Ω ⊂ W (defined below) such that if w∗ :=
(u∗, x∗1, x

∗
2, . . . , x

∗
m) ∈ Ω (where x∗i = Fiu

∗, i = 1, 2, . . . ,m), then sequence {un}∞n=1

converges strongly to u∗.

Proof. Since, by Theorem 3.1, we have that {un}∞n=1, {vi,n}∞n=1, i = 1, 2, . . . ,m

are bounded, there exists R > 0 sufficiently large such that un ∈ BH(u∗, R), vi,n ∈
BH(x∗i , R), ∀n ≥ 1, i = 1, 2, . . . ,m. Furthermore, the sets BH(u∗, R) and BH(x∗i , R)
are bounded, closed, convex and nonempty subsets of H. For each i = 0, 1, . . . ,m,
define the maps ϕi : H → R by

ϕ0(x) := µn||un − x||2H , ϕi(y) := µn||vi,n − y||2H , i = 1, . . . ,m

(where µ is a Banach limit). Then for each i = 0, 1, . . . ,m, ϕi is continuous, convex

and coercive. Since H is reflexive, there exist x∗ ∈ BH(u∗, R) and y∗i ∈ BH(x∗i , R)(i =
1, . . . ,m) such that

ϕ0(x∗) = min{ϕ0(x) : x ∈ BH(u∗, R)}

and

ϕi(y
∗
i ) = min{ϕi(y) : y ∈ BH(x∗i , R)}.

So, the sets

Ω0 :=
{
u ∈ BH(u∗, R) : ϕ0(u) = min

x∈BH(u∗,R)
ϕ0(x)

}
and

Ωi :=
{
xi ∈ BH(x∗i , R) : ϕi(xi) = min

y∈BH(x∗i ,R)
ϕi(y)

}
are nonempty sets.



436 C.E. CHIDUME AND Y. SHEHU

Let t ∈ (0, 1), Ω := Ω0 × Ω1 × . . . × Ωm and let w∗ := (u∗, x∗1, x
∗
2, . . . , x

∗
m) ∈ Ω.

Then, by convexity of BH(u∗, R), we have that (1 − t)u∗ + tu1 ∈ BH(u∗, R). Thus,
µn||un − u∗||2 ≤ µn||un − (1− t)u∗ − tu1||2. Moreover, we have, by Lemma 2.1 that

||un − u∗ − t(u1 − u∗)||2 ≤ ||un − u∗||2 − 2t〈u1 − u∗, un − u∗ − t(u1 − u∗)〉.

This implies that µn〈u1− u∗, un− u∗− t(u1− u∗)〉 ≤ 0. Furthermore, we obtain that

lim
t→0

(
〈u1 − u∗, un − u∗〉 − 〈u1 − u∗, un − u∗ − t(u1 − u∗)〉

)
= 0.

Thus, given ε > 0, there exists δε > 0 such that for all t ∈ (0, δε) and ∀n ∈ N,

〈u1 − u∗, un − u∗〉 < ε+ 〈u1 − u∗, un − u∗ − t(u1 − u∗)〉.

Taking Banach limit on both sides of this inequality, we obtain

µn〈u1 − u∗, un − u∗〉 ≤ ε.

Since ε > 0 is arbitrary, we have

µn〈u1 − u∗, un − u∗〉 ≤ 0.

Furthermore, since {un}∞n=1, {vi,n}∞n=1, Fi, Ki, i = 1, 2, . . . ,m are all bounded, we
have from (3.1) that

||un+1 − un|| ≤ βn
[
βn(||un||+

m∑
i=1

||Kivi,n||) + ||un − u1||
]
≤ βnK0,

for some constant K0 > 0. Thus, lim
n→∞

||un+1 − un|| = 0. Again, we have

lim
n→∞

(
〈u1 − u∗, un+1 − u∗〉 − 〈u1 − u∗, un − u∗〉

)
= 0.

Thus, the sequence {〈u1−u∗, un−u∗〉} satisfies the conditions of Lemma 2.3. Hence,
we obtain that

lim sup
n→∞

〈u1 − u∗, un − u∗〉 ≤ 0.

Following the same line of arguments, we obtain

lim sup
n→∞

〈vi,1 − x∗i , vi,n − x∗i 〉 ≤ 0, i = 1, 2, . . . ,m.

Now, define

σn := max{〈u1−u∗, un−u∗〉, 0} and ξi,n := max{〈vi,1−x∗i , vi,n−x∗i 〉, 0}, (i = 1, . . . ,m)

then, lim
n→∞

σn = 0 = lim
n→∞

ξi,n, i = 1, 2, . . . ,m. Furthermore,

〈u1 − u∗, un − u∗〉 ≤ σn

〈vi,1 − x∗i , vi,n − x∗i 〉 ≤ ξi,n, i = 1, 2, . . . ,m.
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From (3.7), we have

||wn+1 − w∗||2 ≤ (1− 2βn)||wn − w∗||2 + 2β2
nA

−2βn

[
〈u∗ − u1, un − u∗〉+

m∑
i=1

〈x∗i − vi,1, vi,n − x∗i 〉
]

+ 4β2
nM

≤ (1− 2βn)||wn − w∗||2 + 2β2
nA+ 2βn

(
σn +

m∑
i=1

ξi,n

)
+ 4β2

nM

= (1− 2βn)||wn − w∗||2 + 2βnγn,

where γn = βnA+
(
σn+

∑m
i=1 ξi,n

)
+2βnM . Hence, by Lemma 2.2, we have that wn →

w∗ as n→∞. But wn = (un, v1,n, v2,n, . . . , vm,n) and w∗ = (u∗, x∗1, x
∗
2, . . . , x

∗
m). This

implies that un → u∗. This completes the proof.

Definition 3.3. Let E be a real linear space. A mapping T : D(T ) ⊂ E → E is said
to be generalized Lipschitz if there exists L > 0 such that

||Tx− Ty|| ≤ L(1 + ||x− y||) ∀x, y ∈ D(T ).

Clearly, every Lipschitz map is generalized Lipschitz. Furthermore, any map with
bounded range is a generalized Lischitz map. The following example (see, e.g., [16])
shows that the class of generalized Lipschitz maps properly includes the class of
Lipschitz maps and that of mappings with bounded range.

Example 3.4. Let E = (−∞,+∞) and T : E → E be defined by

Tx =


x− 1, x ∈ (−∞,−1),

x−
√

1− (x+ 1)2, x ∈ [−1, 0),

x+
√

1− (x− 1)2, x ∈ [0, 1],

x+ 1, x ∈ (1,+∞).

Then, T is a generalized Lipschitz map which is not Lipschitz and whose range is not
bounded.
Clearly, every generalized Lipschitz map is bounded. So, we obtain the following
corollaries.

Corollary 3.5. Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi, Ki : H →
H be generalized Lipschitz and monotone mappings. Let {un}∞n=1, {vi,n}∞n=1, i =
1, 2, . . . ,m be sequences in H defined iteratively by (3.1), where {βn}∞n=1 is a real
sequence in (0, 1) such that lim

n→∞
βn = 0 and

∑∞
n=1 βn = +∞. Suppose that

u+

m∑
i=1

KiFiu = 0

has a solution in H and w∗ := (u∗, x∗1, x
∗
2, . . . , x

∗
m) ∈ Ω (where x∗i = Fiu

∗, i =
1, 2, . . . ,m) with Ω as defined in the proof of Theorem 3.2, the sequence {un}∞n=1

converges strongly to u∗.



438 C.E. CHIDUME AND Y. SHEHU

Corollary 3.6. Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi : H → H
be generalized Lipschitz, monotone mapping and Ki : H → H bounded, monotone
mapping. Let {un}∞n=1, {vi,n}∞n=1, i = 1, 2, . . . ,m be sequences in H defined itera-
tively by (3.1), where {βn}∞n=1 is a real sequence in (0, 1) such that lim

n→∞
βn = 0 and∑∞

n=1 βn = +∞. Suppose that

u+

m∑
i=1

KiFiu = 0

has a solution in H and w∗ := (u∗, x∗1, x
∗
2, . . . , x

∗
m) ∈ Ω (where x∗i = Fiu

∗, i =
1, 2, . . . ,m) with Ω as defined in the proof of Theorem 3.2, the sequence {un}∞n=1

converges strongly to u∗.
We make the following remark concerning how the condition ”there exists a set Ω ⊂W
(defined below) such that if w∗ := (u∗, x∗1, x

∗
2, . . . , x

∗
m) ∈ Ω (where x∗i = Fiu

∗, i =
1, 2, . . . ,m) ” made in Theorem 3.2 can be checked.

Remark 3.7. Let m = 1. Let H be a real Hilbert space and F,K : H → H be
monotone mappings with D(F ) = H = D(K). Let W := H ×H and A : W →W be
a mapping defined by

Aw = (Fu− v,Kv + u), ∀w = (u, v) ∈W.

Then by the results of Chidume and Shehu [20], A is monotone. Suppose u+KFu = 0
in H and A : H ×H → H ×H is defined by Aw = (Fu− v,Kv + u), ∀w = (u, v) ∈
H×H. Observe that u∗ in H is a solution of u+KFu = 0 if and only if w∗ = (u∗, v∗)
is a solution of Aw = 0 in H ×H for v∗ = Fu∗. Let A−1(0) := {w∗ ∈ W = H ×H :
Aw∗ = 0}.
Let I−A be a nonexpansive mapping onW = H×H. Then Ω = Ω0×Ω1 is a nonempty,
closed and convex subset of W = H ×H (which is a Hilbert space) that has property
(P ). By Lemma 2.4, it follows (since every nonexpansive mapping is asymptotically

nonexpansive with kn ≡ 1 < N(W )
1
2 = 2

1
4 ,∀n ≥ 1) that Ω ∩A−1(0) 6= ∅.

Thus, if I −A is a nonexpansive mapping on W = H ×H, then Ω ∩A−1(0) 6= ∅.

Remark 3.8. It is easy to see that the iterative scheme studied in this paper seems
far simpler than the iterative scheme used by Chidume and Shehu [19] in the sense
that the conditions lim

n→∞
βn = 0 and

∑∞
n=1 βn = +∞ on our iteration parameter

are natural and not too strong compared to the conditions imposed on iteration
parameters by these authors. Prototype for our iteration parameter is, for example,
βn = 1

n+1 , n ≥ 1.

Remark 3.9. In Hilbert spaces, the results of Chidume and Shehu [19] generalize the
results of Chidume and Ofoedu [18] and our results in this paper improve the results
of Chidume and Shehu [19]. Thus, our results in this paper improve and generalize
the results of Chidume and Ofoedu [18] in real Hilbert spaces.
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