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1. Introduction

Ran and Reurings [8] proved the following Banach type principle in ordered metric
spaces.

Theorem 1.1. Let X be a partially ordered set (poset) such that every pair x, y ∈ X
has a lower and an upper bound and let d be a complete metric on X. Let F be a
continuous and increasing selfmap on X. Suppose further that:

(1) there exists k ∈ [0, 1) such that d(Fx, Fy) ≤ kd(x, y) for each x, y ∈ X with
x � y;

(2) there exists b ∈ X such that b � Fb.
Then F has a (unique) fixed point.

The problem of existence of a fixed point for contractive type selfmaps on posets
has been investigated by several authors. In [6] a stronger variant of Theorem 1.1 was
given by removing the continuity of the selfmap F .

Theorem 1.2. ([6]; Theorem 2.3) Let (X,�) be a poset and d be a complete metric on
X. Let F be an increasing selfmap on X. Suppose that the following three assertions
hold:
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(1) there exists k ∈ [0, 1) such that d(Fx, Fy) ≤ kd(x, y) for each x, y ∈ X with
x � y;

(2) there exists b ∈ X such that b � Fb;
(3) if an increasing net (xα)α∈I converges to x in X, then xα � x for all α.

Then F has a (unique) fixed point.

In this paper we aim to give an order theoretic proof of Theorem 1.2. We will
also show that a slightly different version of Theorem 1.2 can be derived from the
Knaster-Tarski theorem. Finally, in the last section, we will use the idea given in
[8] for matrix equations to apply the result to trace class operator equations. This
application is, in fact, a generalization of matrix equations to trace class operator
equations.

2. Order theoretic approach

In this section we first reprove Theorem 1.2 via an order theoretic approach and
then give another version of it through the Knaster-Tarski theorem. In the following
by the symbol R+

0 we mean the set of all nonnegative real numbers.
Proof of Theorem 1.2. Define a partial order v in X × R+

0 by

(x, α) v (y, β)⇔ x � y and d(x, y) ≤ α− β, (2.1)

where x, y ∈ X and α, β ∈ R+
0 . Let Λ be the family of all chains M of X × R+

0 such
that

∃ (u, γ) ∈M ,∀n ∈ N : (Fnu, knγ) ∈M. (2.2)

Now Λ is nonempty. In fact, we may choose α > 0 such that d(b, Fnb) ≤ α− knα, for
each n ≥ 1 (note d(b, Fnb) ≤ (1+k+...+kn−1)d(b, Fb)). Then, because of assumptions
(1) and (2) the set consisting of all (Fnb, knα), n ≥ 0 belongs to Λ ((b, α) satisfies
(2.2) and for m > n ≥ 0 we have Fnb � Fmb and d(Fnb, Fmb) ≤ knα − kmα which
fulfils (2.1)). By Zorn’s lemma the family Λ has a maximal element P with respect
to the partial order ⊆ in Λ. Note (P,v) is a chain. Now using an argument similar
to that of Lemma 1 in [5] we show that P has a maximum element. If p ∈ P, then
there exist xp ∈ X and αp ∈ R+

0 such that p = (xp, αp). Look at the net {Γp}p∈P ,
where Γp = (xp, αp). Note

p1 v p2 means (xp1 , αp1) v (xp2 , αp2). (2.3)

This along with (2.1) implies that {αp}p∈P is decreasing and therefore is convergent,
say αp → t. From (2.3) it implies that the net {xp}p∈P is Cauchy. Thus there exists
an element a ∈ X to which {xp}p∈P is convergent. By assumption (3) we get xp � a,
for each p ∈ P. Again, from (2.3) it follows that

d(xp, xq) ≤ αp − αq, (p, q ∈ P).

Taking the limit with q we get d(xp, a) ≤ αp−t. Therefore (xp, αp) v (a, t), for each p.
This implies that (a, t) is the maximum of P, since P is maximal and P∪{(a, t)} ∈ Λ,
therefore P∪{(a, t)} = P. Now, let (w, β) be an element of P such that (Fnw, knβ) ∈
P, for each n ∈ N. Then, (Fnw, knβ) v (a, t), so 0 ≤ d(Fnw, a) ≤ knβ − t, for each
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n ∈ N. This implies that t = 0, d(Fnw, a)→ 0, and therefore d(Fn+1w,Fa)→ 0, as
n→∞. Hence, Fa = a.

The next theorem is due to Knaster-Tarski which can be found in many standard
texts (see e.g. [3]).

Theorem 2.1. Let (P,�) be a poset and F : P → P be increasing. Then F has a
fixed point provided that

(1) there exists a ∈ P such that a � Fa;
(2) every chain in {x ∈ P : a � x} has a supremum.

Theorem 2.2. Suppose that all the assumptions of Theorem 1.2 are satisfied except
we replace Condition (3) with

3 ′. if the net (xα)α∈I is increasing, convergent to x, then supα∈I xα = x.
Then F has a fixed point.

Proof. Define the partial order v on P := X × R+
0 as in (2.1). Consider the selfmap

T on P defined by

T (x, α) = (Fx, kα).

Note T is increasing (use F is increasing and assumption (1)). Now choose β > 0
such that d(b, Fb) ≤ β− kβ and we get (b, β) v (Fb, kβ). As in the proof of Theorem
1.2, we see that every chain C = {(xp, αp)}p∈C in

Γ = {(x, α) ∈ P : (b, β) v (x, α)}

has an upper bound (a, t) ∈ P . That is, (xp, αp) v (a, t), for each p ∈ C. In particular,
(a, t) is the supremum of C. To see this let (y, β) be another upper bound of C. Then,
xp � y and d(xp, y) ≤ αp−β, for each p. Now 3 ′ implies that (a, t) v (y, β). Finally,
the desired result is an immediate consequence of the Knaster-Tarski theorem.

It should be mentioned that the partial order given in (2.1) was first introduced in
[2]. Also, the selfmap T given in the proof of Theorem 2.2 was considered in [1].

3. Application to trace class operator equations

In [8] an application of Theorem 1.1 is given for finding the solutions of linear
matrix equations. Using ideas and similar computations presented in the proof of
Theorem 3.1 in [8], we generalize it to trace class operator equations.

Let T1, · · · , Tn be bounded linear operators and P be a positive trace class operator
acting on a separable Hilbert space H (denoted by P � 0). We wish to find the
solutions of equations

X = P +

n∑
i=1

T ∗i XTi (3.1)

and

X = P −
n∑
i=1

T ∗i XTi. (3.2)
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If Lh denotes the algebra of all Hermitian operators on H, then the fixed points of
the mappings ϕ,ψ : Lh → Lh defined by

ϕ(X) = P +

n∑
i=1

T ∗i XTi

and

ψ(X) = P −
n∑
i=1

T ∗i XTi

are the solutions of (3.1) and (3.2), respectively. For a compact linear operator T
acting on a separable Hilbert space H, let

λ1(T ∗T ) ≥ λ2(T ∗T ) ≥ λ3(T ∗T ) ≥ · · · (3.3)

be the sequence of nonzero eigenvalues of the Hermitian compact operator T ∗T , where
multiplicity is taken into account. The number of eigenvalues of T ∗T is finite if and
only if T has finite rank and the sequence (3.3) can still be considered infinite if the
sequence is extended by zero elements.

For i = 1, 2, 3, · · · the i-th singular value of T is defined as the number si :=√
λi(T ∗T ). It should be mentioned that a compact operator T and its Hilbert-adjoint

T ∗ have the same singular values (see [4], pp. 98, Corollary 1.2). The trace class
operator space S1 is defined as

{T : H → H : T compact,

∞∑
i=1

si(T ) <∞}

which is a Banach space under the trace class norm

‖T‖1 =

∞∑
i=1

si(T ).

Let F be a strictly positive bounded linear operator on H, that is F is positive (F is
Hermitian and its spectral values are contained in the nonnegative real numbers) and
that 0 is not a spectral value of F , denoted by F � 0. Then the set of all Hermitian
operators in S1 equipped with the norm

‖T‖1,F = ‖F 1
2TF

1
2 ‖1, (3.4)

constitutes a Banach space. To see this, suppose Tn → T in ‖ · ‖1,F , where each Tn
is Hermitian. Note

‖Tn − T ∗‖1,F =‖F 1
2 (Tn − T )∗F

1
2 ‖1

=
∑∞
i=1 si(F

1
2 (Tn − T )∗F

1
2 )

=
∑∞
i=1 si(F

1
2 (Tn − T )F

1
2 )

=‖F 1
2 (Tn − T )F

1
2 ‖1

=‖Tn − T‖1,F → 0.
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This implies that T = T ∗. Since the trace class operator space equipped with the
norm ‖ · ‖1,F is a Banach space too, so the set of all Hermitian operators in S1

equipped with the norm (3.4) is a Banach space.
If T is any bounded linear operator and F is positive trace class operator that acts

on a separable Hilbert space H, then

|tr(TF )| ≤ ‖T‖ · tr(F ),

where tr(F ) =
∑
i λi(F ) and λi is the i-th eigenvalue of F , since,

|tr(TF )|≤‖TF‖1 ([4], pp. 101, Corollary 2.4)

≤‖T‖ · ‖F‖1 ([4], pp. 106, Proposition 4.2)

=‖T‖ ·
∑
i si(F )

=‖T‖ ·
∑
i

√
λi(F 2)

=‖T‖ ·
∑
i

√
(λi(F ))

2

=‖T‖ · tr(F ).

In what follows let S+
1 be the set of all strictly positive trace class operators.

Theorem 3.1. Let P ∈ S+
1 and ψ(R) ∈ S+

1 for some R ∈ S+
1 . Then ϕ and ψ have

a unique fixed point in Lh.

Proof. Let F,G ∈ Lh and F � G. Since T ∗i (G−F )Ti � 0 for each i and the set of all
positive operators is a cone, then ϕ(F ) � ϕ(G) and we have

‖ϕ(G)− ϕ(F )‖1,R=‖R 1
2 (ϕ(G)− ϕ(F ))R

1
2 ‖1

= tr(R
1
2 (ϕ(G)− ϕ(F ))R

1
2 )

= tr(
∑n
i=1R

1
2T ∗i (G− F )Ti)R

1
2 )

=
∑n
i=1 tr(R

1
2T ∗i (G− F )Ti)R

1
2 )

=
∑n
i=1 tr(TiPT

∗
i (G− F ))

=
∑n
i=1 tr(TiPT

∗
i R
− 1

2R
1
2 (G− F )R

1
2R−

1
2 )

=
∑n
i=1 tr(R

− 1
2TiPT

∗
i R
− 1

2R
1
2 (G− F )R

1
2 )

= tr(
∑n
i=1R

− 1
2TiPT

∗
i R
− 1

2R
1
2 (G− F )R

1
2 )

= tr((
∑n
i=1R

− 1
2TiPT

∗
i R
− 1

2 )(R
1
2 (G− F )R

1
2 ))

= |tr((
∑n
i=1R

− 1
2TiPT

∗
i R
− 1

2 )(R
1
2 (G− F )R

1
2 ))|

≤‖
∑n
i=1R

− 1
2TiPT

∗
i R
− 1

2 ‖ · tr(R 1
2 (G− F )R

1
2 )

=‖
∑n
i=1R

− 1
2TiPT

∗
i R
− 1

2 ‖ · ‖G− F‖1,R.

Putting k = ‖
∑n
i=1R

− 1
2TiPT

∗
i R
− 1

2 ‖, we get

‖ϕ(G)− ϕ(F )‖1,R ≤ k · ‖G− F‖1,R.
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The assumption that ψ(R) � 0 implies that

0 �
n∑
i=1

R−
1
2TiPT

∗
i R
− 1

2 ≺ I.

Since

I −
n∑
i=1

R−
1
2TiPT

∗
i R
− 1

2

is invertible and k is a spectral value of
n∑
i=1

R−
1
2TiPT

∗
i R
− 1

2 ,

it must be strictly less than 1. Now applying Theorem 1.2 or Theorem 2.2 a fixed
point is obtained for ϕ which is certainly Hermitian. The same argument works for
ψ to have a fixed point.
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