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Abstract. We study the existence and asymptotic stability of solutions for a class of Cauchy prob-

lems involving retarded semilinear fractional differential equations subject to nonlocal conditions.

The results are proved by means of fractional calculus and fixed point theory for condensing maps.

They in particular extend and improve many recent existence results for fractional differential equa-

tions. An example is also given to illustrate the results.
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1. Introduction

The subject of fractional differential equations has received much attention in re-

cent years due to its important applications in modeling phenomena of science and

engineering. The employment of differential equations with fractional order allows to

deal with many problems in numerous areas including fluid flows, rheology, electrical

networks, viscoelasticity, electrochemistry, etc. For more details, we refer the reader

to the monographs of Miller & Ross [22], Podlubny [25], and Kilbas et. al. [18]. In the

last few years, the theory of fractional differential equations in Banach spaces has been

studied extensively by several authors [3, 4, 8, 9, 14, 23, 28, 30, 31]. Notice that local

and global existence results for the Cauchy problem for a similar semilinear fractional

(with respect to the Riemann-Liouville derivative) functional differential equation in

a Banach space were obtained by V. Obukhovskii and J.-C. Yao [24]. However, most

of existing results are devoted to the existence and uniqueness of solutions.
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One of the most important and interesting problems in the theory of differential

equations is to study the stability of solutions. While the stability theory for differ-

ential equations of integer order with/without delays has a long history of develop-

ment and achieves many important principal results (see, e.g. [10, 11] and references

therein), stability results for fractional differential equations seem to be less known,

especially in infinite-dimensional spaces.

In this paper, by using the fixed point theory for condensing maps, we study the

existence and asymptotic stability of solutions to the following problem

CDα
0 u(t) = Au(t) + f(t, u(t), ut), t > 0, (1.1)

u(s) + g(u)(s) = ϕ(s), s ∈ [−h, 0], (1.2)

where the state function u takes values in a Banach space X, ut stands for the history

of the state function up to the time t, CDα
0 , α ∈ (0, 1], is the fractional derivative

in the Caputo sense, A is a closed linear operator which generates a C0-semigroup

in X, f and g are the functions which will be specified in Section 3. The problem

(1.1)-(1.2) is quite general and contains many important classes of Cauchy problems

for differential equations.

The nonlocal problem for first order differential equations was first studied by

Byszewski in [7]. This topic has been then studied extensively due to the fact that the

nonlocal condition give a better description for Cauchy problems than the classical

initial condition. Without being exhaustive with the references, let us quote some

remarkable solvability results in [13, 15, 17, 19, 20, 21, 23, 30]. However, up to our

knowledge, no attempt has been made to consider the stability of nonlocal problems

for fractional differential equations. This is the main motivation of the present paper.

It is known that there are numerous technical difficulties in dealing with fractional

differential equations with nonlocal conditions due to the nonlinearity of the initial

conditions and the fractional derivatives involved. To overcome these difficulties,

in this paper we exploit the fixed point method to prove the existence and asymp-

totic stability of the solutions. The idea of using the fixed point method to study

the stability problem was initiated by Burton and Furumochi for ordinary/functional

differential equations [5, 6] and developed later for functional partial differential equa-

tions (see e.g. [2, 14]). The main idea of this method is to construct a stable subset, in

which the solution operator has a unique fixed point. To improve the existence con-

ditions, we use the fixed point theorem for condensing maps. This is a quite general

fixed point theorem, and in particular it covers the contraction mapping principle and

the Krasnoselskii theorem. Thus, in particular, our existence results extend/improve

many recent ones for fractional differential equations in [9, 23, 29, 30]. One technical

difficulty we have to overcome here is to contruct some suitable measures of non-

compactness and to establish the MNC-estimate for showing the condensivity of the

solution semigroup generated by. Another new feature of our work is that we are able

to establish stability results for problem (1.1)-(1.2) by means of fixed point theory.

To do this we use the stability of the resolvent operators, which in particular is shown

to hold when the operator A is exponentially stable. The approach used in the paper
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may be applied to investigate other differential equations, for example, the existence

and stability of solutions to neutral/impulsive fractional differential equations.

The rest of the paper is organized as follows. In Section 2, for convenience of

the reader, we recall some notions and results related to the resolvent operators for

fractional differential equations and the fixed point theory for condensing maps. In

Section 3, we prove existence results for problem (1.1)-(1.2) in the general case and

in some special cases (of course with weaker conditions). Section 4 establishes the

stability results for the problem. In the last section, we give an example to inlus-

trateillustrate the abstract results obtained in the paper.

2. Preliminaries

2.1. Fractional calculus. Let L1(0, T ;X) be the space of integrable functions on

[0, T ], in the Bochner sense.

Definition 2.1. The fractional integral of order α > 0 of a function f ∈ L1(0, T ;X)

is defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the Gamma function.

Definition 2.2. For a function f ∈ CN ([0, T ];X), the Caputo fractional derivative

of order α ∈ (N − 1, N ] is defined by

CDα
0 f(t) =

1

Γ(N − α)

∫ t

0

(t− s)N−α−1f (N)(s)ds.

It should be noted that there are some notions of fractional derivatives, in which the

Riemann-Liouville and Caputo definitions have been used widely. Many application

problems, expressed by differential equations of fractional order, require initial con-

ditions related to u(0), u′(0), etc., and the Caputo fractional derivative satisfies these

demands. For u ∈ CN ([0, T ];X), we have the following formulas

CDα
0 I

α
0 u(t) = u(t),

Iα0
CDα

0 u(t) = u(t)−
N−1∑
k=0

u(k)(0)

k!
tk.

Consider the linear problem

CDα
0 u(t) = Au(t) + f(t), t > 0, (2.1)

u(0) = u0, (2.2)

where α ∈ (0, 1], f ∈ L1
loc(R+;X). By using the Laplace transform, the solution of

(2.1)-(2.2) has the following presentation

u(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, (2.3)
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where Sα and Pα are so-called the resolvent operators for (2.1)-(2.2). Specifically,

L(Sα)(λ) = λα−1(λαI −A)−1,

L((·)α−1Pα)(λ) = (λαI −A)−1,

here L denotes the Laplace transform for vector-valued functions. By the subordi-

nation principle (see [3]), Sα and Pα, α ∈ (0, 1], exist if A generates a C0-semigroup

{T (t)}t≥0. The explicit formulation of Sα and Pα was given in [31]:

Sα(t)x =

∫ ∞
0

φα(θ)T (tαθ)xdθ,

Pα(t)x = α

∫ ∞
0

θφα(θ)T (tαθ)xdθ,

where φα is a probability density function defined on (0,∞), that is, φα(θ) ≥ 0 and∫∞
0
φα(θ)dθ = 1. Moreover, φα has the expression

φα(θ) =
1

α
θ−1− 1

αψα(θ−
1
α ),

ψα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−αn−1 Γ(nα+ 1)

n!
sin(nπα).

We now recall some basic results, which will be used in the sequel.

Lemma 2.3. Let A generate a C0-semigroup {T (t)}t≥0 in X.

i) If T (t) is compact for t > 0, then Sα(t) and Pα(t) are compact for t > 0;

ii) If T (t) is norm continuous for t > 0, then Sα(t) and Pα(t) are norm contin-

uous for t > 0.

The proof of the first statement can be found in [31], while the second claim was

proved in [28].

Let Φ(t, s) be a family of bounded linear operators on X for t, s ∈ [0, T ], s ≤ t.

The following result was proved in [26, Lemma 1].

Lemma 2.4. Assume that Φ satisfies the following conditions:

(Φ1) there exists a function ρ ∈ Lq(J), q ≥ 1 such that ‖Φ(t, s)‖ ≤ ρ(t− s) for all

t, s ∈ [0, T ], s ≤ t;
(Φ2) ‖Φ(t, s)−Φ(r, s)‖ ≤ ε for 0 ≤ s ≤ r − ε, r < t = r + h ≤ T with ε = ε(h)→ 0

as h→ 0.

Then the operator S : Lq
′
(0, T ;X)→ C([0, T ];X) defined by

(Sg)(t) :=

∫ t

0

Φ(t, s)g(s)ds

sends any bounded set to an equicontinuous one, where q′ is the conjugate of q (q′ =

+∞ if q = 1). Denote
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Qα : L1([0, T ];X)→ C([0, T ];X),

Qα(f)(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds. (2.4)

Now using the last two lemmas, we have the following result.

Proposition 2.5. Let A generate a C0-semigroup {T (t)}t≥0 in X. Then for each

bounded set Ω ⊂ L1(0, T ;X), Qα(Ω) is an equicontinuous set in C([0, T ];X) provided

that the semigroup {T (t)}t≥0 is norm continuous for t > 0.

Proof. Since T (t) is norm continuous for t > 0, so is Pα(t) thanks to Lemma 2.3.

Then it deduces that Φ(t, s) = (t − s)α−1Pα(t − s) satisfies (Φ1) − (Φ2) in Lemma

2.4. Thus we have the conclusion as desired.

2.2. Fixed point theory for condensing operators. Let E be a Banach space.

Denote by B(E) the collection of nonempty bounded subsets of E . We will use the

following definition of measure of noncompactness.

Definition 2.6. A function β : B(E) → R+ is called a measure of noncompactness

(MNC) in E if

β(co Ω) = β(Ω) for every Ω ∈ B(E),

where co Ω is the closure of the convex hull of Ω. An MNC β is called

i) monotone if Ω0,Ω1 ∈ B(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);

ii) nonsingular if β({a} ∪ Ω) = β(Ω) for any a ∈ E ,Ω ∈ B(E);

iii) invariant with respect to union with compact set if β(K∪Ω) = β(Ω) for every

relatively compact set K ⊂ E and Ω ∈ B(E);

iv) algebraically semi-additive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any Ω0,Ω1 ∈
B(E);

v) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC χ(·), which is defined as

follows

χ(Ω) = inf{ε : Ω has a finite ε-net}.
It should be mentioned that the Hausdorff MNC has also the following additional

properties:

• semi-homogeneity: χ(tΩ) ≤ |t|χ(Ω) for any Ω ∈ B(E) and t ∈ R;

• in a separable Banach space E , χ(Ω) = lim
m→∞

sup
x∈Ω

d(x, Em), where {Em} is

a sequence of finite dimensional subspaces of E such that Em ⊂ Em+1,m =

1, 2, ... and

∞⋃
m=1

Em = E .

Based on the Hausdorff MNC χ in E , one can define the sequential MNC χ0 as follows:

χ0(Ω) = sup{χ(D) : D ∈ ∆(Ω)}, (2.5)

where ∆(Ω) is the collection of all at-most-countable subsets of Ω (see [1]). We know

that
1

2
χ(Ω) ≤ χ0(Ω) ≤ χ(Ω), (2.6)
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for all bounded set Ω ⊂ E . Then the following property is evident.

Proposition 2.7. Let χ be the Hausdorff MNC in E and Ω ⊂ E be a bounded set.

Then for every ε > 0, there exists a sequence {xn} ⊂ Ω such that

χ(Ω) ≤ 2χ({xn}) + ε.

We need the following assertion, whose proof can be found in [16].

Proposition 2.8. If {wn} ⊂ L1(0, T ; E) such that

||wn(t)||E ≤ ν(t), for a.e. t ∈ [0, T ],

for some ν ∈ L1(0, T ), then we have

χ({
∫ t

0

wn(s)ds}) ≤ 2

∫ t

0

χ({wn(s)})ds

for t ∈ [0, T ].

Let J be a compact interval of R and χC be the Hausdorff MNC in C(J ; E). We

recall the following facts (see [1]), which will be used later: for each bounded set

D ⊂ C(J ; E), one has

• χ(D(t)) ≤ χC(D), for all t ∈ J , where D(t) := {x(t) : x ∈ D}.
• If D is an equicontinuous set, then

χC(D) = sup
t∈J

χ(D(t)).

Let T ∈ L(E), i.e., T is a bounded linear operator from E into E . We recall the notion

of χ-norm (see, e.g. [1]) as follows:

‖T ‖χ := inf{M : χ(T Ω) ≤Mχ(Ω), Ω ⊂ E is a bounded set}. (2.7)

The χ-norm of T can be evaluated as

‖T ‖χ = χ(T S1) = χ(T B1),

where S1 and B1 are the unit sphere and the unit ball in E , respectively. It is easy

to see that

‖T ‖χ ≤ ‖T ‖L(E). (2.8)

Definition 2.9. A continuous map F : Z ⊆ E → E is said to be condensing with

respect to an MNC β (β-condensing) if for any bounded set Ω ⊂ Z, the relation

β(Ω) ≤ β(F(Ω))

implies the relative compactness of Ω.

Let β be a monotone nonsingular MNC in E . The application of the topological

degree theory for condensing maps (see, e.g., [1, 16]) yields the following fixed point

principle.

Theorem 2.10. [16, Corollary 3.3.1] Let M be a bounded convex closed subset of

E and let F : M → M be a β-condensing map. Then FixF := {x = F(x)} is a

non-empty compact set.
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3. Existence results

Given T > 0, we denote CT = C([−h, T ];X), Ch = C([−h, 0];X).

3.1. The general case. Concerning problem (1.1)-(1.2), we give the following as-

sumptions.

(A) The semigroup {T (t)}t≥0 generated by A is norm continuous for t > 0.

(F) The nonlinear function f : R+ ×X × Ch → X satisfies:

(1) f(·, v, w) is measurable for each (v, w) ∈ X × Ch, f(t, ·, ·) is continuous

for a.e. t ∈ [0, T ] and

||f(t, v, w)||X ≤ m(t)Ψf (||v||X + ||w||Ch),

for all (v, w) ∈ X × Ch, where m ∈ Lploc(R+), p > 1
α and Ψf is a real-

valued, continuous and nondecreasing function;

(2) there exists a function k : R2
+ → R+ such that k(t, ·) ∈ Lp(0, t), t > 0,

and for all bounded subsets V ⊂ X,W ⊂ Ch,

χ(Pα(t− s)f(s, V,W )) ≤ k(t, s)[χ(V ) + ϑ(W )],

for a.e. t, s ∈ [0, T ], s ≤ t, where χ and ϑ are the Hausdorff MNC in X

and Ch, respectively.

(G) The nonlocal function g : CT → Ch obeys the following conditions:

(1) g is continuous and

||g(u)||Ch ≤ Ψg(||u||CT ),

for all u ∈ CT , where Ψg is a continuous and nondecreasing function on

R+;

(2) there exists η ≥ 0 such that for any bounded set D ⊂ CT ,

ϑ(g(D)) ≤ ηχC(D),

here χC stands for the Hausdorff MNC in CT .

Remark 3.1. Let us give some comments on assumptions (F)(2) and (G)(2).

(1) If f(t, ·, ·) satisfies the Lipschitz condition, i.e.,

||f(t, v1, w1)− f(t, v2, w2)||X ≤ kf (t)(||v1 − v2||X + ||w1 − w2||Ch),

for some kf ∈ Lploc(R+), then (F)(2) holds for k(t, s) = ||Pα(t−s)||kf (s). On

the other hand, if Pα(t), t > 0, is compact or f(t, ·, ·) is completely continuous

(for each fixed t) then (F)(2) is obviously fulfilled with k = 0.

(2) Similarly for (G)(2), if g is Lipschitzian, that is,

||g(u)− g(v)||Ch ≤ η||u− v||CT ,

then (G)(2) takes place. This condition is also satisfied with η = 0 if g is

completely continuous.
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In accordance with formula (2.3), we have the following definition.

Definition 3.2. A function u ∈ CT is said to be an integral solution of problem

(1.1)-(1.2) on the interval [−h, T ] if and only if u(t) = ϕ(t)− g(u)(t) for t ∈ [−h, 0],

and

u(t) = Sα(t)[ϕ(0)− g(u)(0)] +

∫ t

0

(t− s)α−1Pα(t− s)f(s, u(s), us)ds

for any t ∈ [0, T ].

Let

F(u)(t) =

{
Sα(t)[ϕ(0)− g(u)(0)] +

∫ t
0
(t− s)α−1Pα(t− s)f(s, u(s), us)ds, t > 0,

ϕ(t)− g(u)(t), t ∈ [−h, 0].

(3.1)

Then u is an integral solution of (1.1)-(1.2) iff it is a fixed point of the solution operator

F . From the assumptions imposed on f and g, F is a continuous map on CT .

It should be mentioned that, since f and g may be not Lipschitzian, the existence

of solutions of (1.1)-(1.2) cannot be obtained by the Banach contraction principle. In

this paper, we deploy the fixed point theory for condensing maps by establishing the

so-called MNC-estimate (i.e. estimate via MNC) to prove the condensivity of F .

The following lemma is the key in this section.

Lemma 3.3. Let the hypotheses (A), (F) and (G) hold. Then the solution operator

F given by (3.1) satisfies

χC(F(D)) ≤
[
η sup
t∈[0,T ]

||Sα(t)||+ 8 sup
t∈[0,T ]

∫ t

0

(t− s)α−1k(t, s)ds
]
χC(D),

for all bounded set D ⊂ CT .

Proof. Let D ⊂ CT be a bounded set. Then we have

F(D) = F1(D) + F2(D),

where

F1(u)(t) =

{
Sα(t)[ϕ(0)− g(u)(0)], t > 0,

ϕ(t)− g(u)(t), t ∈ [−h, 0];

F2(u)(t) =

{ ∫ t
0
(t− s)α−1Pα(t− s)f(s, u(s), us)ds, t > 0,

0, t ∈ [−h, 0].

Then

χC(F(D)) ≤ χC(F1(D)) + χC(F2(D)).

For z1, z2 ∈ F1(D), there exist u1, u2 ∈ D such that

z1(t) = Sα(t)[ϕ(0)− g(u1)(0)], z2(t) = Sα(t)[ϕ(0)− g(u2)(0)] if t > 0,

z1(t) = ϕ(t)− g(u1)(t), z2(t) = ϕ(t)− g(u2)(t) if t ∈ [−h, 0].
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Then

||z1(t)− z2(t)||X ≤ ||Sα(t)||||g(u1)(0)− g(u2)(0)||X ≤ ||Sα(t)||||g(u1)− g(u2)||Ch

if t > 0,

||z1(t)− z2(t)||X ≤ ||g(u1)(t)− g(u2)(t)||X ≤ ||g(u1)− g(u2)||Ch if t ∈ [−h, 0].

Since ||Sα(t)|| ≥ 1, we have

||z1 − z2||CT ≤ sup
t∈[0,T ]

||Sα(t)||||g(u1)− g(u2)||Ch .

Thus

χC(F1(D)) ≤ sup
t∈[0,T ]

||Sα(t)||ϑ(g(D)).

Employing (G)(2), we have

χC(F1(D)) ≤ η sup
t∈[0,T ]

||Sα(t)||χC(D). (3.2)

For ε > 0, choosing a sequence {un} ⊂ CT such that

χC(F2(D)) ≤ 2χC(F2({un})) + ε, (3.3)

thanks to Proposition 2.7. Taking into account hypothesis (A) and Proposition 2.5,

we see that F2({un}) is an equicontinuous set in C([0, T ];X). Then

χC(F2({un})) = sup
t∈[0,T ]

χ(F2({un})(t))

≤ 2 sup
t∈[0,T ]

∫ t

0

(t− s)α−1χ
(
Pα(t− s)f(s, {un(s)}, {(un)s})

)
ds

≤ 2 sup
t∈[0,T ]

∫ t

0

(t− s)α−1k(t, s)
(
χ({un(s)}) + ϑ({(un)s})

)
ds

≤ 4χC({un}) sup
t∈[0,T ]

∫ t

0

(t− s)α−1k(t, s)ds

≤ 4χC(D) sup
t∈[0,T ]

∫ t

0

(t− s)α−1k(t, s)ds,

here we have used Proposition 2.8. In view of (3.3), one has

χC(F2(D)) ≤ 8χC(D) sup
t∈[0,T ]

∫ t

0

(t− s)α−1k(t, s)ds,

since ε > 0 can be chosen arbitrarily.

Combining the last inequality with (3.2), we arrive at

χC(F(D)) ≤
[
η sup
t∈[0,T ]

||Sα(t)||+ 8 sup
t∈[0,T ]

∫ t

0

(t− s)α−1k(t, s)ds
]
χC(D).

The proof is complete.
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Theorem 3.4. Assume that the hypotheses of Lemma 3.3 hold. Then problem (1.1)-

(1.2) has at least one integral solution in CT provided that

η sup
t∈[0,T ]

||Sα(t)||+ 8 sup
t∈[0,T ]

∫ t

0

(t− s)α−1k(t, s)ds < 1, (3.4)

lim inf
r→∞

1

r

[
Ψg(r) sup

t∈[0,T ]

||Sα(t)||+ Ψf (2r) sup
t∈[0,T ]

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)ds
]
< 1.

(3.5)

Proof. By (3.4), we obtain the χC-condensing property for F thanks to Lemma 3.3.

In order to apply Theorem 2.10, it remains to show that F(BR) ⊂ BR for some R > 0,

where BR is the closed ball in CT centered at 0 with radius R. Assume to the contrary

that there exists a sequence {un} ⊂ CT such that ||un||CT ≤ n but ||F(un)||CT > n.

From the formulation of F , one has

||F(un)(t)||X ≤ ||ϕ||Ch + Ψg(||un||BC) ≤ ||ϕ||Ch + Ψg(n) for t ∈ [−h, 0],

and, for t > 0,

||F(un)(t)||X ≤ (||ϕ||Ch + Ψ(||un||CT )) sup
t∈[0,T ]

||Sα(t)||

+

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)Ψf (||un(s)||X + ||(un)s||Ch)ds

≤ (||ϕ||Ch + Ψ(n)) sup
t∈[0,T ]

||Sα(t)||

+ Ψf (2n)

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)ds.

Therefore,

1 ≤ 1

n
||F(un)||CT ≤

1

n

[
||ϕ||Ch + Ψ(n) sup

t∈[0,T ]

||Sα(t)||
]

+
1

n

[
Ψf (2n) sup

t∈[0,T ]

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)ds
]
,

thanks to the fact that supt∈[0,T ] ||Sα(t)|| ≥ 1. Passing to the limits in the last

inequality, one gets a contradiction. The proof is just complete.

Remark 3.5. Assume that Ψf (r) = Cf (1 + rβ),Ψg(r) = Cg(1 + rγ) for some

β, γ ∈ [0, 1]. If β, γ < 1 (the sublinear case), then condition (3.5) is fulfilled evidently.

If β = γ = 1, then (3.5) is relaxed to

Cg sup
t∈[0,T ]

||Sα(t)||+ 2Cf sup
t∈[0,T ]

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)ds < 1.
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3.2. The non-retarded case. It is worth noting that, if the delay is absent (i.e.,

h = 0) and g is completely continuous, condition (3.4) is no longer necessary since

one can take a suitable MNC instead of χC . Indeed, by ωC we denote the modulus

of equicontinuity in CT , that is,

ωC(D) = lim
δ→0

sup
y∈D

max
|t1−t2|<δ

‖y(t1)− y(t2)‖, D ∈ CT . (3.6)

Then, as mentioned in [16], the MNC given by

χ∗(D) = sup
t∈[0,T ]

e−Ltχ(D(t)) + ωC(D), (3.7)

where L is a nonnegative number, satisfies all properties stated in Definition 2.6.

In the non-retarded case, problem (1.1)-(1.2) reads

CDα
0 u(t) = Au(t) + f(t, u(t)), t > 0, (3.8)

u(0) + g(u) = ϕ, (3.9)

where ϕ ∈ X given. The assumptions (F) and (G) should be changed as the follows:

(Fa) The nonlinear function f : R+ ×X → X satisfies:

(1) f(·, v) is measurable for each v ∈ X, f(t, ·) is continuous for a.e. t ∈
[0, T ] and

||f(t, v)||X ≤ m(t)Ψf (||v||X),

for all v ∈ X, where m ∈ Lploc(R+), p > 1
α , Ψf is continuous and de-

creasing;

(2) there exists a function k : R2
+ → R+ such that k(t, ·) ∈ Lp(0, t), t > 0,

and for any bounded set V ⊂ X,

χ(Pα(t− s)f(s, V )) ≤ k(t, s)χ(V ),

for a.e. t, s ∈ [0, T ], s ≤ t.
(Ga) The nonlocal function g : CT → X obeys the following conditions:

(1) g is continuous and

||g(u)||X ≤ Ψg(||u||CT ),

for all u ∈ CT . Here Ψg is a continuous and decreasing function;

(2) there exists a nonnegative number η such that

χ(g(D)) ≤ ηχC(D),

for any bounded set D ⊂ CT .

Choosing L in (3.7) such that

4 sup
t∈[0,T ]

∫ t

0

e−L(t−s)(t− s)α−1k(t, s)ds < 1,

we prove the condensivity of the solution operator with respect to MNC χ∗ in the

next proposition.

Proposition 3.6. Let (A), (Fa) and (Ga) hold. If the nonlocal function g is com-

pletely continuous, then F is χ∗-condensing.



384 CUNG THE ANH AND TRAN DINH KE

Proof. Let D be a bounded set in CT . We have

F(D)(t) = Sα(t)[ϕ− g(D)] +Qα(D)(t),

where Qα is defined in (2.4). Since g(D) is a relatively compact set in X, we have

ωC(Sα(·)[ϕ− g(D)]) = 0. (3.10)

On the other hand, Qα(D) is an equicontinuous set in CT thanks to Proposition 2.5.

Thus

ωC(Qα(D)) = 0. (3.11)

It is obvious that

χ(F(D)(t)) ≤ χ(Sα(t)g(D)) + χ(Qα(D)(t)) = χ(Qα(D)(t)), t ≥ 0. (3.12)

For a given ε > 0, one can take {un} ⊂ D such that

χ(Qα(D)(t)) ≤ 2χ(Qα({un})(t)) + ε

≤ 2χ
(
{
∫ t

0

(t− s)α−1Pα(t− s)f(s, un(s))}
)

+ ε

≤ 4

∫ t

0

(t− s)α−1k(t, s)χ({un(s)})ds+ ε

≤
(

4

∫ t

0

eLs(t− s)α−1k(t, s)ds
)

sup
t∈[0,T ]

e−Ltχ(D(t)) + ε.

Since ε > 0 is arbitrary, we get

e−Ltχ(Qα(D)(t)) ≤
(

4

∫ t

0

e−L(t−s)(t− s)α−1k(t, s)ds
)

sup
t∈[0,T ]

e−Ltχ(D(t)). (3.13)

Combining (3.10)-(3.13), we arrive at

χ∗(F(D)) ≤
(

sup
t∈[0,T ]

4

∫ t

0

e−L(t−s)(t− s)α−1k(t, s)ds
)
χ∗(D).

The proof is complete.

We also mention that, in the non-retarded case, condition (3.5) can be removed

if the nonlocal function g is uniformly bounded and the nonlinearity f has a linear

growth, namely, Ψg(r) = Cg being a constant and Ψf (r) = Cf (1 + r).

Let Mψ = {u ∈ CT : ||u(t)||p ≤ ψ(t), t ∈ [0, T ]}, where ψ is the solution of the

integral equation

ψ(t) = (||ϕ||+ Cg)
p sup
t∈[0,T ]

||Sα(t)||p + CP

∫ t

0

|m(s)|p(1 + ψ(s))ds, t ∈ [0, T ],

CP = 2pCpf sup
t∈[0,T ]

||Pα(t)||p
( p− 1

pα− 1

)p−1

T pα−1.

It is obvious that Mψ is a closed, bounded and convex subset of CT . We now prove

that Mψ is invariant under the solution operator of problem (3.8)-(3.9).
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Proposition 3.7. Assume that g is uniformly bounded and f has a linear growth,

that is, Ψg(r) = Cg,Ψf (r) = Cf (1 + r) for all r ∈ R+. Let F be the solution operator

for the non-retarded problem (3.8)-(3.9). Then F(Mψ) ⊂Mψ.

Proof. The solution operator for problem (3.8)-(3.9) is given by

F(u)(t) = Sα(t)[ϕ− g(u)] +

∫ t

0

(t− s)α−1Pα(t− s)f(s, u(s))ds.

Then we have

||F(u)(t)|| ≤ (||ϕ||+ Cg) sup
t∈[0,T ]

||Sα(t)||

+ Cf

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)(1 + ||u(s)||)ds

≤ (||ϕ||+ Cg) sup
t∈[0,T ]

||Sα(t)||

+ Cf sup
t∈[0,T ]

||Pα(t)||
∫ t

0

(t− s)α−1m(s)(1 + ||u(s)||)ds

≤ (||ϕ||+ Cg) sup
t∈[0,T ]

||Sα(t)||

+ 2Cf sup
t∈[0,T ]

||Pα(t)||
( p− 1

pα− 1

) p−1
p

T
pα−1
p

[ ∫ t

0

|m(s)|p(1 + ||u(s)||p)ds
] 1
p

,

thanks to the Hölder inequality. Thus

||F(u)(t)||p ≤ (||ϕ||+ Cg)
p sup
t∈[0,T ]

||Sα(t)||p

+ 2pCpf sup
t∈[0,T ]

||Pα(t)||p
( p− 1

pα− 1

)p−1

T pα−1

∫ t

0

|m(s)|p(1 + ||u(s)||p)ds.

The last inequality implies that ||F(u)(t)||p ≤ ψ(t), provided ||u(t)||p ≤ ψ(t) for all

t ∈ [0, T ]. The proof is complete.

The following result is a consequence of Propositions 3.6, 3.7 and Theorem 2.10.

Theorem 3.8. Assume that (A), (Fa) and (Ga) hold. Assume further that the

nonlocal function g is completely continuous and uniformly bounded, the nonlinearity

f has a linear growth. Then the solution set of problem (3.8)-(3.9) is nonempty and

compact.

4. Stability results

In order to establish stability results for problem (1.1)-(1.2), we consider this prob-

lem in the space of continuous and uniformly bounded functions on [−h,+∞):

BC = {u ∈ C([−h,+∞);X) : sup
t≥−h

||u(t)|| < +∞},

endowed with the norm

||u||BC = sup
t≥−h

||u(t)||.
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Let πT , T > 0, be the truncate function on BC, i.e., for D ⊂ BC, πT (D) is the

restriction of D on interval [−h, T ]. Then one can see that the MNC χBC in BC
defined by

χBC(D) = sup
T>0

χC(πT (D))

satisfies all specifications in Definition 2.6. Using Lemma 3.3, we get the condensing

property for the solution operator F on BC.

Lemma 4.1. Assume that (A), (F) and (G) take place for any T > 0. Then the

solution operator F acting on BC is χBC-condensing provided that

η sup
t≥0
||Sα(t)||+ 8 sup

t≥0

∫ t

0

(t− s)α−1k(t, s)ds < 1. (4.1)

In order to study the stability of solutions to problem (1.1)-(1.2), we need the

following assumption on the resolvent operators.

(R) The resolvent operators {Sα(t), Pα(t)}t≥0 are stable, i.e.,

lim
t→∞

||Sα(t)|| = 0, lim
t→∞

||Pα(t)|| = 0.

Now we show a particular case, in which (R) is satisfied.

Proposition 4.2. If the semigroup {T (t)}t≥0 generated by A is exponentially stable,

i.e., there are positive numbers a,M such that

||T (t)|| ≤Me−at,

then (R) is testified.

Proof. Let Eα,β be the Mittag-Leffler function, that is,

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, α, β > 0, z ∈ C.

By the fact that (see, e.g., [28])∫ ∞
0

φα(θ)e−zθdθ = Eα,1(−z),∫ ∞
0

αθφα(θ)e−zθdθ = Eα,α(−z),
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we have

||Sα(t)|| ≤
∫ ∞

0

φα(θ)||T (θtα)||dθ

≤M
∫ ∞

0

φα(θ)e−at
αθdθ = MEα,1(−atα),

||Pα(t)|| ≤
∫ ∞

0

αθφα(θ)||T (θtα)||dθ

≤M
∫ ∞

0

αθφα(θ)e−at
αθdθ = MEα,α(−atα).

On the other hand, we have the following asymptotic expansion for Eα,β as z → ∞
(see, e.g., [12]):

Eα,β(z) =

{
1
αz

(1−β)/α exp z1/α + εα,β(z) if | arg z| ≤ 1
2πα,

εα,β(z) if | arg(−z)| ≤ (1− 1
2α)π,

where

εα,β(z) = −
N−1∑
n=1

z−n

Γ(β − αn)
+O(|z|−N ), as z →∞.

Thus, in our case

||Sα(t)|| ≤MEα,1(−atα) = Mεα,1(−atα),

||Pα(t)|| ≤MEα,α(−atα) = Mεα,α(−atα).

Two last inequalities ensure that ||Sα(t)|| and ||Pα(t)|| tend to zero as t→ +∞. The

proposition is proved.

The following theorem is devoted to the stability result.

Theorem 4.3. Let the hypotheses (A), (F), (G), (R) and relation (4.1) hold. Then

there exists an integral solution u of problem (1.1)-(1.2) such that lim
t→+∞

u(t) = 0,

provided that Ψf (0) = 0 and

lim inf
r→∞

1

r

[
Ψg(r) sup

t≥0
||Sα(t)||+Ψf (2r) sup

t≥0

∫ t

0

(t−s)α−1||Pα(t−s)||m(s)ds
]
< 1. (4.2)

Proof. For each ϕ ∈ Ch, by the same arguments as in the proof of Theorem 3.4,

condition (4.2) ensures the existence of a number R > 0 such that F(BR) ⊂ BR.

Now we denote

MR = {u ∈ BR : u(t)→ 0 as t→ +∞}.
Since F is χBC-condensing due to relation (4.1), it remains to show that F(MR) ⊂
MR. Let u ∈MR, we prove that F(u)(t)→ 0 as t→ +∞. Let ε > 0 be given. Then

there is t1 > 0 such that

||u(t)||X < ε, for all t ≥ t1, (4.3)

||u(t+ τ)||X < ε, for all t ≥ t1 + h, τ ∈ [−h, 0]. (4.4)
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Taking into account assumption (R), there exist t2, t3 > 0 such that

||Sα(t)|| < ε, for all t ≥ t2, (4.5)∫ t1+h

0

(t1 + h− s)α−1||Pα(t− s)||m(s)ds < ε, for all t ≥ t3. (4.6)

One has, for t > t1 + h,

||F(u)(t)|| ≤ ||Sα(t)||(||ϕ(0)||X + ||g(u)(0)||X)

+

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)Ψf (||u(s)||X + sup
τ∈[−h,0]

||u(s+ τ)||X)ds

≤ ||Sα(t)||(R+ Ψg(R)) + Ψf (2R)

∫ t1+h

0

(t− s)α−1||Pα(t− s)||m(s)ds

+ Ψf (2ε)

∫ t

t1+h

(t− s)α−1||Pα(t− s)||m(s)ds,

≤ ||Sα(t)||(R+ Ψg(R)) + Ψf (2R)

∫ t1+h

0

(t1 + h− s)α−1||Pα(t− s)||m(s)ds

+ Ψf (2ε)

∫ t

t1+h

(t− s)α−1||Pα(t− s)||m(s)ds.

Now for t > max{t1 + h, t2, t3}, we have

||F(u)(t)|| ≤ [R+ Ψg(R) + Ψf (2R)]ε+ C0Ψf (2ε),

where

C0 = sup
t≥0

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)ds

which is finite due to (3.5). Since Ψf is continuous and Ψf (0) = 0, it follows that

Ψf (2ε)→ 0 as ε→ 0.

Thus F(MR) ⊂MR and Theorem 2.10 ensures the existence of an integral solution

u(·, ϕ) for (1.1)-(1.2) in MR. The proof is complete.

Corollary 4.4. Let the hypotheses of Theorem 4.3 hold. Assume that Ψg(0) =

Ψf (0) = 0. If the solution of problem (1.1)-(1.2) is unique for each given initial

datum ϕ, then the zero solution is asymptotically stable.

Proof. Since Ψg(0) = Ψf (0) = 0, u = 0 is a solution of (1.1)-(1.2) with respect to the

initial datum ϕ = 0. The conclusion follows from Theorem 4.3.

Remark 4.5. 1. The uniqueness of solution to (1.1)-(1.2) is fulfilled if (F) and (G)

are replaced by stronger ones, e.g.,

(F∗) The nonlinear function f is such that f(t, 0, 0) = 0 and

||f(t, u, ξ)− f(t, v, η)||X ≤ m(t)(||u− v||X + ||ξ − η||Ch),

where m ∈ Lploc(R+), p > 1
α .
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(G∗) The nonlocal function g satisfies g(0) = 0 and it is Lipschitzian, i.e.,

||g(u)− g(v)||Ch ≤ η||u− v||BC ,

for all u, v ∈ BC.

2. In the case when α = 1, one knows that Sα(t) = Pα(t) = T (t), thanks to the fact

that

L(S1)(λ) = L(P1)(λ) = (λI −A)−1 = L(T )(λ).

Moreover, if the nonlocal condition is removed and the delay is absent, that is g =

0, h = 0 and f = f(t, u), then condition (3.5) is reduced to

lim inf
r→∞

1

r
Ψf (r) sup

t≥0

∫ t

0

||T (t− s)||m(s)ds < 1. (4.7)

In a more specific situation, if Ψf (r) = r, m is a constant and ||T (t)|| ≤ e−at, then

(4.7) is satisfied for m < a. The latter condition is exactly the stability condition

given in the work of Travis and Webb [27].

However, in the case when 0 < α < 1, the problem is much more complicated in

the sense that, the resolvent operators Sα(t) and Pα(t) have no exponential decay like

T (t) when t→ +∞.

5. An example

Consider the following fractional partial differential equation

∂αt u(x, t) = ∂2
xu(x, t) + µ(t) ln(1 + u2(x, t))

+

∫ π

0

dy

∫ t

t−h
ξ(t, y)K(x, y, u(y, s))ds, α ∈ (0, 1], (5.1)

for x ∈ (0, π), t > 0, subject to the boundary condition

u(0, t) = u(π, t) = 0, (5.2)

and the nonlocal condition

u(x, s) +

p∑
j=1

βju(x, tj + s) = ϕ(x, s), s ∈ [−h, 0], x ∈ [0, π], (5.3)

where βj ∈ R, tj > 0, j = 1, ..., p, are given. In the above model, ∂αt stands for

the Caputo derivative of order α with respect to the time variable, ∂x denotes the

generalized derivative in variable x.

Let A = ∂2
x with the domain D(A) = H2(0, π) ∩H1

0 (0, π) and X = L2(0, π) with

the norm

||v|| =
( ∫ π

0

|v(x)|2dx
) 1

2 .

It is known that A generates a compact (and hence norm continuous) semigroup

{T (t)}t≥0 such that

||T (t)|| ≤Me−t, t ≥ 0.
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This guarantees that the corresponding resolvent operators {Sα(t), Pα(t)}t≥0 are com-

pact and stable, thanks to Lemma 2.3 and Proposition 4.2. Thus the hypotheses (A)

and (R) are verified.

Regarding the nonlinearity in equation (5.1), we assume that

(1) µ ∈ Lploc(R+), p > 1
α , is a nonnegative function, ξ is continuous and |ξ(t, y)| ≤

ν(t) for all y ∈ [0, π], t ≥ 0, where ν ∈ Lploc(R+);

(2) K is defined in [0, π]× [0, π]× R such that K is continuous, and

K(x, y, 0) = 0,

|K(x, y, z1)−K(x, y, z2)| ≤ w(x)|z1 − z2|, ∀x, y ∈ [0, π], z1, z2 ∈ R,

where w ∈ L2(0, π).

Let f2(t, ut) =
∫ π

0
dy
∫ t
t−h ξ(t, y)K(x, y, u(y, s))ds. Then

||f2(t, φ)|| ≤ ν(t)||w||
√
π

∫ 0

−h
||φ(·, s)||ds ≤ ν(t)||w||h

√
π‖φ‖Ch .

Let f1(t, z) = µ(t) ln(1 + z2). Then

f1(t, 0) = 0,

|f1(t, z1)− f(t, z2)| ≤ µ(t)|z1 − z2|, ∀t ≥ 0, z1, z2 ∈ R.

Hence, the nonlinearity

f(t, v, φ) = f1(t, v) + f2(t, φ)

satisfies (F∗) with m(t) = µ(t) + ν(t)||w||h
√
π, Ψf (r) = r.

As far as the nonlocal function is concerned, g(u)(s) =
∑N
j=1 βju(tj + s) satisfies

the Lipschitz condition with the Lipschitz constant η =
∑N
j=1 βj . Thus, (G∗) takes

place.

Since Ψg(r) = Ψf (r) = r, one sees that (3.5) is equivalent to

η sup
t≥0
||Sα(t)||+ 2 sup

t≥0

∫ t

0

(t− s)α−1||Pα(t− s)||m(s)ds < 1. (5.4)

Noting that, since Pα(t) is compact for t > 0, one can take k(t, s) = 0, then (5.4)

implies (4.1). Therefore, if (5.4) is satisfied, the zero solution of problem (5.1)-(5.3)

is asymptotically stable.
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