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1. Introduction

Recently, many researchers show great interest in the subject of impulsive fractional
differential equations (see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).
However, Fec̆kan et al. [15] point an error in former solutions for some impulsive
fractional differential equations by construct a counterexample and establish a general
framework to seek a nature solution for such problems.

It is remarkable that Picard and weakly Picard operators methods is a powerful tool
to study the nonlinear differential equations. It can be widely used to discuss existence
and uniqueness and the data dependence on data of the solutions for nonlinear differ-
ential equations. For more details, one can see Rus et al. [16, 17, 18, 19, 20, 21, 22],
Şerban et al. [23], Mureşan [24, 25], Olaru [26] and Wang et al. [27].

In this paper, we will use Picard and weakly Picard operators methods to discuss
existence and uniqueness and the data dependence on data of the solutions for the
following impulsive fractional Cauchy problems

cDq
tu(t) = f(t, u(t)), t ∈ J ′ := J \ {t1, · · · , tm} , J := [0, T ],

u(t+k ) = u(t−k ) + Ik(u(t−k )), k = 1, 2, · · · ,m,
u(0) = u0,

(1.1)

in a Banach space X, where cDq
t is the Caputo fractional derivative of order q ∈ (0, 1)

with the lower limit zero, u0 ∈ X, f : J ×X → X is a Carathéodory function, Ik :
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X → X and tk satisfy 0 = t0 < t1 < · · · < tm < tm+1 = T , u(t+k ) = limε→0+ u(tk + ε)

and u(t−k ) = limε→0− u(tk + ε) represent the right and left limits of u(t) at t = tk.
We emphasize that fractional derivative was firstly introduced at the end of the

nineteenth century by Liouville and Riemann, but the concept of non-integer deriva-
tive and integral, as a generalization of the traditional integer order differential and
integral calculus was mentioned by Leibniz and L’Hospital over 300 years.

Let us recall the following known fractional calculus definitions. For more details
see Baleanu et al. [28], Diethelm [29], Kilbas et al. [30], Lakshmikantham et al. [31],
Miller and Ross [32], Michalski [33], Podlubny [34] and Tarasov [35].

Definition 1.1. A function f(t) is said to be in the space Cγ , γ ∈ R if there exists
a real number κ > γ, such that f(t) = tκg(t), where g ∈ C[0,∞) and it is said to be
in the space Cmγ iff f (m) ∈ Cγ , m ∈ N .

Definition 1.2. The fractional integral of order γ with the lower limit zero for a
function f ∈ Cγ , γ ≥ −1 is defined as

Iγt f(t) =
1

Γ(γ)

∫ t

0

f(s)

(t− s)1−γ ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the Gamma
function.

Definition 1.3. The Riemann-Liouville derivative of order γ with the lower limit
zero for a function f ∈ Cγ−1, γ ∈ N , can be written as

LDγ
t f(t) =

1

Γ(n− γ)

dn

dtn

∫ t

0

f(s)

(t− s)γ+1−n ds, t > 0, n− 1 < γ < n.

Definition 1.4. The Caputo derivative of order γ for a function f ∈ Cγ−1, γ ∈ N ,
can be written as

CDγ
t f(t) = LDγ

t

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < γ < n.

Remark 1.5. (i) If f(t) ∈ Cn[0,∞), then

CDγ
t f(t) =

1

Γ(n− γ)

∫ t

0

f (n)(s)

(t− s)γ+1−n ds = In−γf (n)(t), t > 0, n− 1 < γ < n.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in Banach space X, then integrals

which appear in Definitions 1.2 and 1.3 are taken in Bochner’s sense.

Motivated by Fec̆kan et al. [15], we give a definition of a solution for the problem
(1.1).

Definition 1.6. A function u ∈ PC(J,X) is said to be a solution of the problem (1.1)
if u(t) = uk(t) for t ∈ (tk, tk+1) and uk ∈ C([0, tk+1], X), k = 0, 1, 2, · · · ,m satisfies
cDq

tuk(t) = f(t, uk(t)) a.e. on (0, tk+1) with the restriction of uk(t) on [0, tk) is just
uk−1(t), and the conditions u(t+k ) = u(t−k ) + yk, k = 1, 2, · · · ,m, and u(0) = u0.
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Similar to the Lemma 2.7 in Fec̆kan et al. [15], a function u ∈ PC(J,X) is a
solution of the problem (1.1) if and only if u is a solution of the integral equation

u(t) = u0 +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds, t ∈ (tk, tk+1]. (1.2)

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts.
Let (X, d) be a metric space and A : X → X an operator. We shall use the

following notations:
P (X) := {Y ⊆ X | Y 6= ∅}; FA := {x ∈ X | A(x) = x}−the fixed point set of A;
I(A) := {Y ∈ P (X) | A(Y ) ⊆ Y };
OA(x) :=

{
x,A(x), A2(x), · · · , An(x), · · ·

}
−the A−orbit of x ∈ X;

H : P (X)× P (X)→ R+ ∪ {+∞};
Hd(Y,Z) := max {supa∈Y infb∈Z d(a, b), supb∈Z infa∈Y d(a, b)} - the Pompeiu-

Hausdorff functional on P (X).
Let us recall the following known definitions. For more details, see Rus [17, 18].

Definition 2.1. Let (X, d) be a metric space. An operator A : X → X is a Picard
operator if there exists x∗ ∈ X such that FA = {x∗} and the sequence (An(x0))n∈N
converges to x∗ for all x0 ∈ X.

Definition 2.2. Let (X, d) be a metric space. An operator A : X → X is a weakly
Picard operator if the sequence (An(x0))n∈N converges for all x0 ∈ X and its limit
(which may depend on x0) is a fixed point of A.

Definition 2.3. If A is a weakly Picard operator, then we consider the operator

A∞ : X → X, A∞(x) = lim
n→∞

An(x).

It is clear that A∞(X) = FA and ωA(x) = {A∞(x)} where ωA(x) is the ω−limit
point set of mapping A for point x.

The following results appeared in Rus [16, 18, 19] are useful in this paper.

Theorem 2.4. Let (Y, d) be a complete metric space and A,B : Y → Y two operators.
We suppose the following:

(i) A is a contraction with contraction constant α and FA = {x∗A}.
(ii) B has fixed points and x∗B ∈ FB .
(iii) There exists γ > 0 such that d(A(x), B(x)) ≤ γ, for all x ∈ Y .

Then d(x∗A, x
∗
B) ≤ γ

1−α .

Theorem 2.5. Let (X, d) be a metric space. Then A : X → X is a weakly Picard
operator if and only if there exists a partition of X, X =

⋃
λ∈ΛXλ, where Λ is the

indices’ set of partition, such that
(i) Xλ ∈ I(A),
(ii) A |Xλ : Xλ → Xλ is a Picard operator, for all λ ∈ Λ.

Theorem 2.6. Let (X, d) be a complete metric space and A,B : X → X two orbitally
continuous operators. We suppose the following:
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(i) There exists α ∈ [0, 1) such that

d(A2(x), A(x)) ≤ αd(x,A(x)), d(B2(x), B(x)) ≤ αd(x,B(x))

for all x ∈ X
(ii) There exists γ > 0 such that d(A(x), B(x)) ≤ γ for all x ∈ X.
Then Hd(FA, FB) ≤ γ

1−α where Hd denotes the Pompeiu-Hausdorff functional.

3. Solvability

In this section, we use ‖φ‖Lp(J) to denote the Lp(J,R+) norm of φ whenever
φ ∈ Lp(J,R+) for some p with 1 < p < ∞. Let C(J,X) be the space of all X-
valued continuous functions from J into X. Let ‖ · ‖B and ‖ · ‖C be the Bielecki and
Chebyshev norms on C(J,X) defined by

‖x‖B := sup
t∈J

{
sup
t∈J
{‖x(t)‖}e−τt

}
(τ > 0) and ‖x‖C := sup

t∈J
{‖x(t)‖}

and denote by dB and dC their corresponding metrics.
We consider the set

Cq−q
∗

L (J,X) :=
{
x ∈ C(J,X) : ‖x(t1)− x(t2)‖ ≤ L|t1 − t2|q−q

∗
, t1, t2 ∈ J

}
where L > 0, q∗ ∈ (0, q).

If d ∈ {dC , dB}, then (C(J,X), d) and (Cq−q
∗

L (J,X), d) are complete metric spaces.
Set PC(J,X) :=

{
x : J → X | x is continuous at t ∈ J \D, and x is continuous

from left and has right hand limits at t ∈ D
}

. Let ‖ ·‖PB and ‖ ·‖PC be the piecewise
Bielecki and piecewise Chebyshev norms on PC(J,X) defined by

‖x‖PB := sup
t∈J

{
sup
t∈J
{‖x(t+)‖}e−τt, sup

t∈J
{‖x(t−)‖}e−τt

}
(τ > 0),

‖x‖PC := max

{
sup
t∈J
{‖x(t+)‖}, sup

t∈J
{‖x(t−)‖}

}
,

and denote by dPB and dPC their corresponding metrics. Set

PCq−q
∗

L (J,X) :=
{
x ∈ PC(J,X) : ‖x(t1)− x(t2)‖ ≤ L|t1 − t2|q−q

∗
, t1, t2 ∈ J

}
where L > 0, q∗ ∈ (0, q).

If d ∈ {dPC , dPB}, one can apply the above results on each interval (tk, tk+1](k =

0, 1, 2, · · · ,m) to obtain that (PC(J,X), d) and (PCq−q
∗

L (J,X), d) are complete met-
ric spaces.

We list the following assumptions.
(C1) f : J ×X → X is a Carathéodory function.

(C2) There exist a constant q1 ∈ (0, q) and a function m(·) ∈ L
1
q1 (J,R+) such that

‖f(t, u)‖ ≤ m(t) for all u ∈ PC(J,X) and all t ∈ J . Moreover, M := ‖m‖
L

1
q1 (J)

.

(C3) There exist constants L > 0 and β := q−1
1−q1 such that

L ≥ 2M

Γ(q)(1 + β)1−q1
.
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(C4) There exists a function l(·) ∈ C(J,R+) such that

‖f(t, u1)− f(t, u2)‖ ≤ l(t)‖u1 − u2‖
for all u1, u2 ∈ PC(J,X) and all t ∈ J .

(C5) Ii: X → X and there exists a constant LI > 0 such that

‖Ii(u)− Ii(v)‖ ≤ LI‖u− v‖,
for all u, v ∈ X and i = 1, 2, · · · ,m.

(C6) There exist constants q1 and τ such that

L0

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
+mLI < 1

where LI > 0 and L0 := maxt∈J{l(t)}.
The main result of this section is contained in the below given theorem.

Theorem 3.1. Let the assumptions (C1)–(C6) hold. Then the problem (1.1) has a

unique solution u∗ in PCq−q1L (J,X), and this solution can be obtained by the successive

approximation method, starting from any element of PCq−q1L (J,X).

Proof. Consider the operator

A : (PCq−q1L (J,X), ‖ · ‖PB)→ (PCq−q1L (J,X), ‖ · ‖PB)

defined by

A(u)(t) = u0 +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds, for t ∈ (tk, tk+1].

It is easy to see the operator A is well defined due to (C1)–(C2).

Step 1. We check that Au ∈ PC(J,X) for every u ∈ PCq−q1L (J,X).

If t ∈ (0, t1] then for any δ > 0 and 0 < t < t+δ < t1, every u ∈ PCq−q1L ((0, t1], X),
by (C2), Hölder inequality,

‖A(u)(t+ δ)−A(u)(t)‖ ≤ 1

Γ(q)

∫ t

0

((t− s)q−1 − (t+ δ − s)q−1)m(s)ds

1

Γ(q)

∫ t+δ

t

(t+ δ − s)q−1m(s)ds

≤ 1

Γ(q)

(∫ t

0

[(t− s)q−1 − (t+ δ − s)q−1]
1

1−q1 ds

)1−q1 (∫ t

0

(m(s))
1
q1 ds

)q1
+

1

Γ(q)

(∫ t+δ

t

[(t+ δ − s)q−1]
1

1−q1 ds

)1−q1 (∫ t+δ

t

(m(s))
1
q1 ds

)q1

≤
‖m‖

L
1
q1 ([0,t1])

Γ(q)

(∫ t

0

δβds

)1−q1

+
‖m‖

L
1
q1 ([0,t1])

Γ(q)

(∫ t+δ

t

(t+ δ − s)βds

)1−q1

≤
2‖m‖

L
1
q1 ([0,t1])

Γ(q)(1 + β)1−q1
δ(1+β)(1−q1).
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It is easy to see that the right-hand side of the above inequality tends to zero as
δ → 0. Therefore Au ∈ PC((0, t1], X).

If t ∈ (t1, t2] then for any δ > 0 and t1 < t < t + δ < t2, every u ∈
PCq−q1L ((t1, t2], X), repeating the same process, one can obtain

‖A(u)(t+ δ)−A(u)(t)‖ ≤
2‖m‖

L
1
q1 ([t1,t2])

Γ(q)(1 + β)1−q1
δ(1+β)(1−q1),

which implies that Au ∈ PC((t1, t2], X).
If t ∈ (tk, tk+1] then for any δ > 0 and tk < t < t + δ < tk+1, every

u ∈ PCq−q1L ((tk, tk+1], X), repeating the same process, one can obtain

‖A(u)(t+ δ)−A(u)(t)‖ ≤
2‖m‖

L
1
q1 ([tk,tk+1])

Γ(q)(1 + β)1−q1
δ(1+β)(1−q1),

which implies that Au ∈ PC((tk, tk+1], X).
From the above discussion, we must have Au ∈ PC(J,X) for every u ∈

PCq−q1L (J,X).

Step 2. We show that Au ∈ PCq−q1L (J,X).
Without lose of generality, for any τ1 < τ2, τ1, τ2 ∈ (tk, tk+1], applying (C2) and

Hölder inequality, we have

‖A(u)(τ2)−A(u)(τ1)‖ ≤ 1

Γ(q)

∫ τ1

0

[(τ1 − s)q−1 − (τ2 − s)q−1]m(s)ds

+
1

Γ(q)

∫ τ2

τ1

(τ2 − s)q−1m(s)ds

≤ 1

Γ(q)

(∫ τ1

0

[(τ1 − s)q−1 − (τ2 − s)q−1]
1

1−q1 ds

)1−q1 (∫ τ1

0

(m(s))
1
q1 ds

)q1
+

1

Γ(q)

(∫ τ2

τ1

[(τ2 − s)q−1]
1

1−q1 ds

)1−q1 (∫ τ2

τ1

(m(s))
1
q1 ds

)q1
≤ M

Γ(q)

(∫ τ1

0

((τ1 − s)β − (τ2 − s)β)ds

)1−q1
+

M

Γ(q)

(∫ τ2

τ1

(τ2 − s)βds
)1−q1

≤ M

Γ(q)(1 + β)1−q1

(
τ1+β
1 − τ1+β

2 + (τ2 − τ1)1+β
)1−q1

+
M

Γ(q)(1 + β)1−q1
(τ2 − τ1)(1+β)(1−q1)

≤ 2M

Γ(q)(1 + β)1−q1
|τ1 − τ2|(1+β)(1−q1) =

2M

Γ(q)(1 + β)1−q1
|τ1 − τ2|q−q1 .

Similarly, for any τ1 < τ2, τ1, τ2 ∈ (tk, tk+1], we also have the above inequality. This

implies that Au is belong to PCq−q1L (J,X) due to (C3).
Step 3. We show that A is continuous.
For that, let {un} be a sequence of BR := {u ∈ PC(J,X) : ‖u‖PC ≤ R} such that

un → u in BR. Then, f(s, un(s)) → f(s, u(s)) as n → ∞ due to (C1). On the one
other hand using (C2), we get for each s ∈ [0, t], ‖f(s, un(s)) − f(s, u(s))‖ ≤ 2m(s).
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On the other hand, using the fact that the functions 2(t− s)q−1m(s) is integrable on
[0, t], by means of the Lebesgue Dominated Convergence Theorem yields∫ t

0

(t− s)q−1‖f(s, un(s))− f(s, u(s))‖ds→ 0.

For all t ∈ J , by (C5) we have

‖A(un)(t)−A(u)(t)‖ ≤ 1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, un(s))− f(s, u(s))‖ds

+mLI‖un − u‖PC −→ 0,

as n→∞. Thus, A is continuous.
Step 4. A is a Picard operator.
In fact, for all x, z ∈ PCq−q1L (J,X), using (C4), (C6) and Hölder inequality we

have

‖A(x)(t)−A(z)(t)‖ ≤ 1

Γ(q)

∫ t

0

(t− s)q−1l(s)‖x(s)− z(s)‖ds+
∑

0<ti<t

LI‖x(ti)− z(ti)‖

≤ 1

Γ(q)

∫ t

0

(t− s)q−1 sup
s∈[0,t]

{l(s)}
[
‖x(s)− z(s)‖e−τs

]
eτsds

+
∑

0<ti<t

LI
[
‖x(ti)− z(ti)‖e−τti

]
eτti

≤ L0

Γ(q)
‖x− z‖PB

∫ t

0

(t− s)q−1eτsds+ LI
∑

0<ti<t

eτti‖x− z‖PB

≤

[
L0

Γ(q)

(∫ t

0

(t− s)βds
)1−q1 (∫ t

0

e
τs
q1 ds

)q1
+ LI

∑
0<ti<t

eτti

]
‖x− z‖PB

≤ L0

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
eτt‖x− z‖PB + LI

∑
0<ti<t

eτti‖x− z‖PB .

It follows that

‖A(x)(t)−A(z)(t)‖e−τt ≤

[
L0

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
+ LI

∑
0<ti<t

e−(t−ti)τ

]
‖x−z‖PB

for all t ∈ J . So we have

‖A(x)−A(z)‖PB ≤
[
L0

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
+mLI

]
‖x− z‖PB

for all x, z ∈ PCq−q1L (J,X).
The operator A is of Lipschitz type with constant

LA =
L0

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
+mLI (3.1)

and 0 < LA < 1 due to (C6). By applying the Contraction Principle to this operator
we obtain that A is a Picard operator. This completes the proof. �
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4. Application to data dependence

Now we turn to consider another impulsive fractional Cauchy problem
cDq

tu(t) = h(t, u(t)), t ∈ J ′,
u(t+k ) = u(t−k ) + Ik(u(t−k )), k = 1, 2, · · · ,m,
u(0) = v0 ∈ X,

(4.1)

where h : J ×X → X is another Carathéodory function and Ik : X → X.
A function u ∈ PC(J,X) is a solution of the problem (4.1) if and only if u ∈

PC(J,X) is a solution of the integral equation

u(t) = v0 +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1h(s, u(s))ds, t ∈ (tk, tk+1]. (4.2)

We introduce the following assumptions.
(D1) All conditions in Theorem 3.1 are satisfied and x∗ ∈ PCq−q1L (J,X) is the

unique solution of the integral equation (1.2).

(D2) With the same function m(·) ∈ L
1
q1 (J,R+) as in Theorem 3.1, ‖h(t, u)‖ ≤

m(t) for all u ∈ X and all t ∈ J.
(D3) With the same function l(·) ∈ C(J,R+) as in Theorem 3.1, ‖h(t, u1) −

h(t, u2)‖ ≤ l(t)‖u1 − u2‖ for all u1, u2 ∈ X and all t ∈ J .
(D4) With the same constant LI as in Theorem 3.1, ‖Ii(u)− Ii(v)‖ ≤ LI‖u− v‖

for all u, v ∈ X.
(D5) L ≥ 2M

Γ(q)(1+β)1−q1
.

(D6) There exists a constant Lη ∈ L
1
q1 (J,R+) such that ‖f(t, u)−h(t, u)‖ ≤ Lη(t)

for all u ∈ X and t ∈ J .
(D7) There exists a constant Lµ > 0 such that ‖Ii(u)− Ii(u)‖ ≤ Lµ for all u ∈ X.

Theorem 4.1. Let the assumptions (D1)–(D7) hold. If y∗ is the solution of the
integral equation (4.2), then

‖x∗ − y∗‖PB ≤
‖u0 − v0‖+

T (1+β)(1−q1)‖Lη‖
L

1
q1 (J)

Γ(q)(1+β)1−q1
+mLµ

1− LA
(4.3)

and LA is given by (3.1) with a τ = τ∗ > 0 such that 0 < LA < 1.

Proof. Consider the following two continuous operators

A,B : (PCq−q1L (J,X), ‖ · ‖PB)→ (PCq−q1L (J,X), ‖ · ‖PB)

defined by

A(u)(t) := u0 +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds,

B(u)(t) := v0 +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1h(s, u(s))ds,
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for t ∈ (tk, tk+1]. Clearly,

‖A(u)(t)−B(u)(t)‖ ≤ ‖u0 − v0‖+
1

Γ(q)

∫ t

0

(t− s)q−1‖f (s, u(s))− h (s, u(s)) ‖ds

+

m∑
i=1

‖Ii(u(ti))− Ii(u(ti))‖ ≤ ‖u0 − v0‖+
T (1+β)(1−q1)‖Lη‖

L
1
q1 (J)

Γ(q)(1 + β)1−q1
+mLµ

for t ∈ J . It follows that

‖Au−Bu‖PB ≤ ‖u0 − v0‖+
T (1+β)(1−q1)‖Lη‖

L
1
q1 (J)

Γ(q)(1 + β)1−q1
+mLµ.

So we can apply Theorem 2.4 to obtain the inequality (4.3) which completes the
proof. �

Next, we consider another integral equation

u(t) = u(0) +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1f (s, u(s)) ds, t ∈ (tk, tk+1], (4.4)

where f , Ii are as in the problem (1.1).

Theorem 4.2. Suppose that for the integral equation (4.4) the same conditions as

in Theorem 3.1 are satisfied. Then this equation has solutions in PCq−q1L (J,X). If

S̃ ⊂ PCq−q1L (J,X) is its solutions set, then card S̃= card X.

Proof. Consider the operator A∗ : (PCq−q1L (J,X), ‖ · ‖PB)→ (PCq−q1L (J,X), ‖ · ‖PB)
defined by

A∗(u)(t) := u(0) +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1f (s, u(s)) ds, t ∈ (tk, tk+1].

(4.5)

This is a continuous operator, but not a Lipschitz one. We can write PCq−q1L (J,X) =⋃
α∈X Xα, Xα =

{
u ∈ PCq−q1L (J,X) : u(0) = α

}
. We have that Xα is an invariant

set of A∗ and we apply Theorem 3.1 to A∗|Xα . By using Theorem 2.5 we obtain

that A∗ is a weakly Picard operator. Consider the operator A∞∗ : PCq−q1L (J,X) →
PCq−q1L (J,X), A∞∗ (u) = limn→∞An∗ (u). From An+1

∗ (u) = A∗(A
n
∗ (u)) and the con-

tinuity of A∗, A
∞
∗ (u) ∈ FA∗ . Then A∞∗ (PCq−q1L (J,X)) = FA∗ = S̃ and S̃ 6= ∅. So,

card S̃= card X. �

In order to study data dependence for the solutions set of the integral equation
(4.4) we consider both (4.4) and the following integral equation

u(t) = u(0) +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1h (s, u(s)) ds, t ∈ (tk, tk+1],

where h, Ii are as in the problem (4.1). Let S̃1 be the solutions set of this equation.
We make the following assumptions.
(E1) There exists a constant L∗ > 0 such that ‖f(t, u1)− f(t, u2)‖ ≤ L∗‖u1 − u2‖

and ‖h(t, u1)− h(t, u2)‖ ≤ L∗‖u1 − u2‖ for all u1, u2 ∈ X and all t ∈ J .
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(E2) There exists a constant L
∗
> 0 such that ‖Ii(u) − Ii(v)‖ ≤ L

∗‖u − v‖ and

‖Ii(u)− Ii(v)‖ ≤ L∗‖u− v‖ for all u, v ∈ X.

(E3) There exists a function m(·) ∈ L
1
q1 (J,R+) such that ‖f(t, u)‖ ≤ m(t) and

‖h(t, u)‖ ≤ m(t) for all u ∈ X and all t ∈ J. Moreover, M := ‖m‖
L

1
q1 (J)

.

(E4) There exists a constant L > 0 such that L ≥ 2M
Γ(q)(1+β)1−q1

.

(E5) There exists a constant L∗η ∈ L
1
q1 (J,R+) such that ‖f(t, u)−h(t, u)‖ ≤ L∗η(t)

for all u ∈ X and t ∈ J .
(E6) There exists a constant L∗µ > 0 such that ‖Ii(u)− Ii(u)‖ ≤ L∗µ for all u ∈ X.

(E7) L∗

Γ(q)
T (1+β)(1−q1)

(1+β)1−q1

(
q1
τ

)q1
+mL

∗
< 1.

Theorem 4.3. Suppose the assumptions (E1)–(E7) are satisfied. Then

H‖·‖PB (S̃, S̃1) ≤
mL∗µ +

T (1+β)(1−q1)‖L∗
η‖
L

1
q1 (J)

Γ(q)(1+β)1−q1

1−mL∗ − L∗

Γ(q)
T (1+β)(1−q1)

(1+β)1−q1

(
q1
τ

)q1 .
where by H‖·‖PB we denote the Pompeiu-Hausdorff functional with respect to ‖ · ‖PB
on PCq−q1L (J,X).

Proof. Consider the operator B∗ : (PCq−q1L (J,X), ‖ · ‖PB)→ (PCq−q1L (J,X), ‖ · ‖PB)
defined by

B∗(u)(t) := u(0) +
∑

0<ti<t

Ii(u(ti)) +
1

Γ(q)

∫ t

0

(t− s)q−1h (s, u(s)) ds, t ∈ (tk, tk+1].

Moreover, we have

‖A2
∗(u)(t)−A∗(u)(t)‖

≤ L∗

Γ(q)

∫ t

0

(t− s)q−1‖A∗(u)(s)− u(s)‖ds+
∑

0<ti<t

‖Ii(A∗(u)(ti))− Ii(u(ti)‖

≤

(
L∗

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
eτt + L

∗ ∑
0<ti<t

eτti

)
‖A∗(u)− u‖PB

for all x ∈ PCq−q1L (J,X). Similarly,

‖B2
∗(u)(t)−B∗(u)(t)‖≤

(
L∗

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
eτt + L

∗ ∑
0<ti<t

eτti

)
‖B∗(u)−u‖PB

for all x ∈ PCq−q1L (J,X).
Thus,

‖A2
∗(u)−A∗(u)‖PB ≤

(
L∗

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
+mL

∗
)
‖A∗(u)− u‖PB ,

‖B2
∗(u)−B∗(u)‖PB ≤

(
L∗

Γ(q)

T (1+β)(1−q1)

(1 + β)1−q1

(q1

τ

)q1
+mL

∗
)
‖B∗(u)− u‖PB .
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Because of (E5)–(E6), ‖A∗(u)−B∗(u)‖PB ≤ mL∗µ +
T (1+β)(1−q1)‖L∗

η‖
L

1
q1 (J)

Γ(q)(1+β)1−q1

for all x ∈ PCq−q1L (J,X). By (E7) and applying Theorem 2.6 we obtain

H‖·‖PB (FA∗ , FB∗) ≤
mL∗µ +

T (1+β)(1−q1)‖L∗
η‖
L

1
q1 (J)

Γ(q)(1+β)1−q1

1−mL∗ − L∗

Γ(q)
T (1+β)(1−q1)

(1+β)1−q1

(
q1
τ

)q1 .
This completes the proof. �

5. Conclusions

This paper revisits some impulsive fractional differential equations in Banach
spaces by applying a powerful tool named by Picard and weakly Picard operators
methods. After introducing a suitable piecewise continuous functions space with
piecewise Bielecki norm, some new existence and uniqueness theorems and data de-
pendence results are obtained.
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Seminar on Fixed Point Theory, Preprint no. 3(1987), 55-64.

[18] I.A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae, 34(1993), 769-773.
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[23] M.A. Şerban, I.A. Rus, A. Petruşel, A class of abstract Volterra equations, via weakly Picard
operators technique, Math. Ineq. Appl., 13(2010), 255-269.
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