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1. Introduction

In 1972, Ky Fan [5] proved the following minimax inequality for real-valued func-
tions.

Theorem 1.1. Let X be a Hausdorff topological vector space, and let K be a
nonempty compact convex subset of X. Suppose that f : K × K → R satisfies the
following:

(1) f(x, x) ≤ 0, ∀x ∈ K;

(2) ∀y ∈ K, f(., y) is quasiconcave;

(3) ∀x ∈ K, f(x, .) is lower semicontinuous.

Then there exists y∗ ∈ K such that f(x, y∗) ≤ 0, ∀x ∈ K.

The above Ky Fan minimax inequality is well known. It plays a very important
role in many fields, such as variational inequalities, game theory, mathematical eco-
nomics, optimization theory, and fixed point theory. Because of wide applications,
this inequality has been generalized in a number ways (e.g., see Allen [1], Aubin and
Ekeland [2], Chang [3], Ding and Tan [4], Tian [14], Yen [16], Yuan [17], and Zhou and
Chen [19], Horvath [7], Georgiev and Tanaka [6]). In the framework of topological
semilattices, Horvath and Llinares Ciscar (1996, [8]) first established an order theo-
retical version of the classical result of Knaster-Kuratowski-Mazurkiewicz, as well as
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fixed point theorems for multivalued mappings.
In 2001, by using Horvath and Llinares Ciscar’s results, Luo [10] proved a simi-

lar result to Theorem 1.1 in topological semilattices. In 2006, Luo [11] studied Ky
Fan’s minimax inequalities for vector multivalued mappings in topological semilat-
tices. However, his results does not imply scalar Ky Fan minimax inequality in the
setting of topological semilattice spaces.

Recently, Song and Wang [13] gave an extension of Ky Fan minimax inequality but
only for vector single-valued mappings in topological semilattices.

Motivated and inspired by research works mentioned above, in this paper, we will
use the cone semicontinuity and cone quasiconvexity for multivalued mappings to
show four kinds of vector valued Ky Fan’s type inequality for multivalued mappings.
Any of our Theorems 3.1-3.4 implies the scalar Fan minimax inequality in topological
semilattices, while the main result in [11] does not imply it in its full generality, but
only for continuous functions.

The rest of the paper is organized as follows. In Section 2, we introduce about
topological semilattices and recall some concepts of cone semicontinuity and cone
convexity. In Section 3, we prove the existence of solutions for multivalued Ky Fan
inequalities (SKFI) as an application by means of Browder-Fan fixed point theorem
in the setting of topological semilattices. We also give some examples to illustrate
our results.

2. Preliminaries

Definition 2.1. ([8]) A partially ordered set (X,6) is called a sup-semilattice if any
two elements x, y of X have a least upper bound, denoted by sup{x, y}. The partially
ordered set (X,6) is a topological semilattice if X is a sup-semilattice equipped with
a topology such that the mapping

X ×X → X

(x, y) 7→ sup{x, y}
is continuous.

We have given the definition of a sup-semilattice, we could obviously also consider
inf-semilattices. When no confusion can arise we will simply use the word semilattice.
It is also evident that each nonempty finite set A of X will have a least upper bound,
denoted by supA.

In a partially ordered set (X,≤), two arbitrary elements x and x′ do not have to
be comparable but, in the case where x ≤ x′, the set

[x, x′] = {y ∈ X : x ≤ y ≤ x′}

is called an order interval or simply, an interval. Now assume that (X,≤) is a semi-
lattice and A is a nonempty finite subset; then the set

∆(A) =
⋃
a∈A

[a, supA]

is well defined and it has the following properties:
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(1) A ⊆ ∆(A);

(2) if A ⊂ A′, then ∆(A) ⊆ ∆(A′).

We say that a subset E ⊆ X is ∆-convex if for any nonempty finite subset A ⊆ E we
have ∆(A) ⊆ E.

Example 2.2. We consider R2 with usual order defined by

(a, b), (c, d) ∈ R2, (a, b) ≤ (c, d)⇔ a ≤ c; b ≤ d.

Clearly, (R2,≤) is a topological semilattice.

(1) The set

X = {(x, 1) : 0 ≤ x ≤ 1} ∪ {(1, y) : 0 ≤ y ≤ 1}

is ∆-convex but not convex in the usual sense.

(2) The set

X = {(x, y) : 0 ≤ x ≤ 1; y = 1− x}
is convex in the usual sense but not ∆-convex.

Lemma 2.3. ([18], Lemma 1.1) Let Y be a topological vector space and C a closed,
convex and pointed cone of Y with intC 6= ∅, where intC denotes the interior of C.
Then we have intC + C ⊂ intC.

We now recall some concepts of generalized convexity of multivalued mappings.
Let X be a nonempty convex subset of a vector space E, C be a convex cone of a
vector space Y , and F : X → 2Y be a set-valued mapping with nonempty values.

The mapping F is called C-quasiconvex if for all xi ∈ X, i = 1, 2 and x ∈
conv{x1, x2},

either

F (x) ⊂ F (x1)− C,
or

F (x) ⊂ F (x2)− C.
The mapping F is called C-quasiconcave if for all xi ∈ X, i = 1, 2, and x ∈

conv{x1, x2},
either

F (x1) ⊂ F (x) + C,

or

F (x2) ⊂ F (x) + C.

Similarly, in the setting of topological semilattices, we introduce the following
definition.

Definition 2.4. Let X be a topological semilattice or a ∆-convex subset of a topo-
logical semilattice, Y be a topological vector space, C ⊂ Y be a convex cone. Let
F : X → 2Y be a multivalued mapping with nonempty values.
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(1) F is called C∆-quasiconvex mapping if, for any pair x1, x2 ∈ X and for any
x ∈ ∆({x1, x2}), we have either

F (x) ⊂ F (x1)− C
or

F (x) ⊂ F (x2)− C.
(2) F is called C∆-quasiconcave mapping if, for any pair x1, x2 ∈ X and for any

x ∈ ∆({x1, x2}), we have either

F (x1) ⊂ F (x) + C,

or
F (x2) ⊂ F (x) + C.

We use ∈ instead of ⊂ when F is single-valued.

Remark 2.5. If Y = R = (−∞,+∞) and C = [0,+∞), and F is a real function,
then the C∆-quasiconvexity of ϕ is equivalent to the ∆-quasiconvexity of ϕ (see [10]).

Example 2.6. Let X = [0, 1] × [0, 1]. We set x1 ≤ x2 denoting that x2 ∈ x1 +
R2

+,∀x1, x2 ∈ X, where R2
+ = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}. It is obvious that

(X,≤) is a topological semilattice, in which

x1 ∨ x2 = (max(x1
1, x

2
1),max(x1

2, x
2
2)), ∀xi = (xi1, x

i
2) ∈ X, i = 1, 2.

(1) Let F : X → 2R and C = R+ such that

F (x) = [(1− x1)(1− x2),+∞), ∀x = (x1, x2) ∈ X.
It is clear that F is C∆-quasiconcave mapping but not C-quasiconcave. In-
deed, for x1 = (0, 1), x2 = (1, 0), x = 1

2x
1 + 1

2x
2 = ( 1

2 ,
1
2 ), we see that

F (x1) = F (x2) = [0,+∞), F (x) =

[
1

4
,+∞

)
while

F (x1) = F (x2) = [0,+∞) 6⊂ F (x) + C =

[
1

4
,+∞

)
.

(2) Let F : X → 2R and C = R+ such that

F (x) = {x2
1 + x2

2}, ∀x = (x1, x2) ∈ X.
It is easy to see that F is C-quasiconvex but not C∆-quasiconvex.

Now, we recall the semicontinuous properties of multivalued mappings (see Ref. [2]).
Let F : X → 2Y be a multivalued mapping between topological spaces X and Y . The
domain of F is defined to be the set domF = {x ∈ D : F (x) 6= ∅}.

The mapping F is upper semicontinuous (shortly, usc) at x0 ∈ domF if, for any
open set V of Y with F (x0) ⊂ V , there exists a neighborhood U of x0 such that
F (x) ⊂ V for all x ∈ U .

The mapping F is lower semicontinuous (shortly, lsc) at x0 ∈ domF if, for any
open set V of Y with F (x0) ∩ V 6= ∅, there exists a neighborhood U of x0 such that
F (x) ∩ V 6= ∅ for all x ∈ U .
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The mapping F is continuous at x0 ∈ domF if it is both usc and lsc at x0. The
mapping F is continuous (resp. usc, lsc) if domF = X and if F is continuous (resp.
usc, lsc) at each point x ∈ X.

If Y is a partially ordered topological vector space, then the above definitions of
semicontinuous can be weakened. More precisely, we can introduce the following
definitions taken from Ref. [9, 12].

Definition 2.7. Let X be a topological space, Y be a topological vector space with
a cone C. Let F : X → 2Y . We say that

(1) F is C-upper semicontinuous (shortly, C-usc) at x0 ∈ domF if for any open
set V of Y with F (x0) ⊂ V there exists a neighborhood U of x0 such that

F (x) ⊂ V + C for each x ∈ domF ∩ U.

(2) F is C-lower semicontinuous (shortly, C-lsc) at x0 ∈ domF if for any open
set V of Y with F (x0)∩V 6= ∅ there exists a neighborhood U of x0 such that

F (x) ∩ [V − C] 6= ∅ for each x ∈ domF ∩ U.

(3) F is C-usc (resp. C-lsc) if domF = X and if F is C-usc (resp. C-lsc) at each
point of domF .

Remark 2.8. If Y = R and C = R+ = {x ∈ R : x ≥ 0} (resp. C = −R+),
F is single-valued and C-usc at x0, then F is lower semicontinuous (resp. upper
semicontinuous) at x0 in the usual sense.

Remark 2.9. The upper (resp. lower) semicontinuity of F implies the C-upper (resp.
C-lower) semicontinuity of F . Example 3.1 in Section 3 will show that the converse
statement is no longer true.

Definition 2.10. Let X,Y be two topological spaces; F : X → 2Y is said to have
open lower sections if F−1(y) = {x ∈ X : y ∈ F (x)} is open for any y ∈ Y .

The following lemma is a special case of [8, Corollary 1, pp. 298].

Lemma 2.11. (Browder-Fan fixed point theorem) Let K be a nonempty compact ∆-
convex subset of a topological semilattice with path-connected intervals M , F : K →
2K with nonempty ∆-convex values, and F−1(y) ⊂ K be open, for any y ∈ K. Then
F has a fixed point.

3. Ky Fan’s inequalities for vector-valued multifunctions

Let X be a topological semilattice, K ⊂ X a nonempty ∆-convex subset, Y a
topological vector space, A : K → 2K , f : K × K → 2Y , C a closed, pointed and
convex cone in Y with intC 6= ∅.
We consider the following multivalued Ky Fan inequalities (SKFI):

(SKFI1) Find x ∈ K such that

x ∈ A(x), f(x, y) 6⊂ intC, ∀y ∈ A(x).
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(SKFI2) Find x ∈ K such that

x ∈ A(x), f(x, y) ∩ intC = ∅, ∀y ∈ A(x).

(SKFI3) Find x ∈ K such that

x ∈ A(x), f(x, y) ∩ (−C) 6= ∅, ∀y ∈ A(x).

(SKFI4) Find x ∈ K such that

x ∈ A(x), f(x, y) ⊂ −C, ∀y ∈ A(x).

The existence of solutions for the problems (SKFI1), (SKFI2), (SKFI4) were stud-
ied by Luo in [11]. However, he used either upper semicontinuous or lower semicontin-
uous multifunctions. So, in the scalar case, the single-valued function f is continuous
with respect to the first variable, and therefore, his results are weaker than the origi-
nal form.

In this paper, we use the cone semicontinuity and cone convexity of multivalued
mappings to give some genuine generalizations of scalar Ky Fan minimax inequality
in the setting of topological semilattices.

Theorem 3.1. Let K be a nonempty compact ∆-convex subset of a topological semi-
lattice with path-connected intervals M , Y a topological vector space, A : K → 2K

with nonempty ∆-convex values, f : K × K → 2Y , C a closed, pointed and convex
cone in Y with intC 6= ∅. Assume that

(1) A has open lower sections and B := {x ∈ K : x ∈ A(x)} is closed;

(2) f(x, x) 6⊂ intC, ∀x ∈ K;

(3) ∀x ∈ K, f(x, .) is −C∆-quasiconvex;

(4) ∀y ∈ K, f(., y) is C-upper semicontinuous.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y) 6⊂ intC, ∀y ∈ A(x∗).

Proof. Define P : K → 2K by

P (x) = {y ∈ K : f(x, y) ⊂ intC}, ∀x ∈ K.

Suppose that there exists x′ ∈ K such that P (x′) is not ∆-convex; then there exist
y1, y2 ∈ P (x′) such that ∆({y1, y2}) 6⊂ P (x′), i.e., there exists z ∈ ∆({y1, y2}) and
z 6∈ P (x′); hence f(x′, z) 6⊂ intC. By (3), we have either

f(x′, z) ⊂ f(x′, y1) + C

or

f(x′, z) ⊂ f(x′, y2) + C.

By Lemma 2.1, we have either

f(x′, z) ⊂ f(x′, y1) + C ⊂ intC + C ⊂ intC

or

f(x′, z) ⊂ f(x′, y2) + C ⊂ intC + C ⊂ intC
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which is a contradiction. Therefore, for any x ∈ X,P (x) is ∆-convex.
Next, we prove that P−1(y) is open for each y ∈ K. We have

P−1(y) = {x ∈ K : f(x, y) ⊂ intC}

For each y ∈ K and each x ∈ P−1(y), we have f(x, y) ⊂ intC. By (4), there exists
a neighborhood U(x) of x such that f(x′, y) ⊂ intC+C ⊂ intC whenever x′ ∈ U(x),
which implies that U(x) ⊂ P−1(y), i.e., P−1(y) is open.

By Lemma 2.2, B is a nonempty set. Define S : K → 2K by

S(x) =

{
A(x) ∩ P (x), if x ∈ B,
A(x), if x ∈ K \B.

Then for any x ∈ K, S(x) is ∆-convex. And for any y ∈ K,

S−1(y) = (A−1(y) ∩ P−1(y)) ∪ ((K \B) ∩A−1(y))

is open.
Suppose that ∀x ∈ K, S(x) is nonempty. By Lemma 2.2, we deduce that S has

a fixed point, i.e., there exists x0 ∈ K such that x0 ∈ S(x0). If x0 ∈ B, then
x0 ∈ S(x0) = A(x0) ∩ P (x0). Hence x0 ∈ P (x0), f(x0, x0) ∩ − intC 6= ∅ which
contradicts our assumption (2). If x0 ∈ K \ B, then x0 ∈ S(x0) = A(x0) ⊂ A(x0),
and hence x0 ∈ B which contradicts x0 ∈ K \ B. Therefore, there exists x∗ ∈ K
such that S(x∗) = ∅. Since A(x) is nonempty for all x ∈ K, hence x∗ ∈ B, S(x∗) =
A(x∗) ∩ P (x∗) = ∅, i.e., x∗ ∈ A(x∗) and for any y ∈ A(x∗), y 6∈ P (x∗), we have

x∗ ∈ A(x∗), f(x∗, y) ∩ intC = ∅, ∀y ∈ A(x∗).

Therefore, the assertion of Theorem 3.1 is true.

In Theorem 3.1, when f is single-valued, we have the following corollary.

Corollary 3.2. Let K be a nonempty compact ∆-convex subset of a topological
semilattice with path-connected intervals M , Y a topological vector space, A : K → 2K

with nonempty ∆-convex values, f : K×K → Y , C a closed, pointed and convex cone
in Y with intC 6= ∅. Assume that

(1) A has open lower sections and B := {x ∈ K : x ∈ A(x)} is closed;

(2) f(x, x) 6∈ intC, ∀x ∈ K;

(3) ∀x ∈ K, f(x, .) is −C∆-quasiconvex;

(4) ∀y ∈ K, f(., y) is C-upper semicontinuous.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y) 6∈ intC, ∀y ∈ A(x∗).

Now we give an example to explain that Corollary 3.2 is applicable.

Example 3.3. Let X be given in Example 2.6 and Y = R with C = R+. For each
x ∈ X, let A(x) = [(0, 1), (1, 1)] ∪ [(1, 0), (1, 1)], where [(0, 1), (1, 1)] denotes the line
segment joining points (0, 1) and (1, 1). Then we have:

(1) for each x ∈ X, A(x) is nonempty and ∆-convex;
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(2) for y = (y1, y2) ∈ X,

A−1(y) =

{
X if y ∈ [(0, 1), (1, 1)] ∪ [(1, 0), (1, 1)]

∅ if y ∈ X \ {[(0, 1), (1, 1)] ∪ [(1, 0), (1, 1)]}
Therefore, for each y ∈ X, A−1(y) is open in X.

(3) The set B = {x ∈ X : x ∈ A(x)} = [(0, 1), (1, 1)] ∪ [(1, 0), (1, 1)] is closed.
For any x = (x1, x2), y = (y1, y2) ∈ X, we define f : X ×X → Y by

f(x, y) =

{
−(1 + x1 − y1)(1 + x2 − y2), if (x, y) 6= (0, 0)

−2, if (x, y) = (0, 0)

Then all the assumptions of Corollary 3.2 are satisfied. So Corollary 3.2 is applicable.
The set of solutions for the (SKFI1) is the overall B.

Remark 3.4. For every fixed x, following the same argument as Example 2.1 in Ref.
[13], we see that f(x, .) is not a usual quasiconcave function. Indeed, for x = 0, we
have

f(0, y) =

{
−(1− y1)(1− y2), if (y1, y2) 6= (0, 0)

−2, if (y1, y2) = (0, 0)

Clearly, for y1 = (1, 0), y2 = (0, 1), y = 1
2y

1 + 1
2y

2 = ( 1
2 ,

1
2 ), we see that f(0, y1) = 0,

f(0, y2) = 0, while f(0, y) = − 1
4 .

When Y = (−∞,+∞), C = [0,+∞) and A(x) = K, ∀x ∈ K, from Corollary 3.2,
we get scalar Ky Fan inequality for real-valued functions in topological semilattices
(see, for instance, [10, 15]).

Corollary 3.5. Let K be a nonempty compact ∆-convex subset of a topological
semilattice with path-connected intervals M and let f : K ×K → R be such that

(1) f(x, x) ≤ 0, ∀x ∈ K;

(2) ∀x ∈ K, f(x, .) is ∆-quasiconcave;

(3) ∀y ∈ K, f(., y) is lower semicontinuous.

Then there exists x∗ ∈ K such that f(x∗, y) ≤ 0, ∀y ∈ K.

Theorem 3.6. Let K be a nonempty compact ∆-convex subset of a topological semi-
lattice with path-connected intervals M , Y a topological vector space, A : K → 2K

with nonempty ∆-convex values, f : K × K → 2Y , C a closed, pointed and convex
cone in Y with intC 6= ∅. Assume that

(1) A has open lower sections and B := {x ∈ K : x ∈ A(x)} is closed;

(2) f(x, x) ∩ intC = ∅, ∀x ∈ K;

(3) ∀x ∈ K, f(x, .) is C∆-quasiconvex;

(4) ∀y ∈ K, f(., y) is −C-lower semicontinuous.
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Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y)∩ intC = ∅, ∀y ∈ A(x∗).

Proof. Define P : K → K by

P (x) = {y ∈ K : f(x, y) ∩ intC 6= ∅}, ∀x ∈ K.

Suppose that there exists x′ ∈ K such that P (x′) is not ∆-convex; then there exist
y1, y2 ∈ P (x′) such that ∆({y1, y2}) 6⊂ P (x′), i.e., there exists z ∈ ∆({y1, y2}) and
z 6∈ P (x′); hence f(x′, z) ∩ intC = ∅. By (3), we have either

f(x′, y1) ⊂ f(x′, z)− C

or

f(x′, y2) ⊂ f(x′, z)− C.
Since f(x′, yi) ∩ intC 6= ∅, take ui ∈ f(x′, yi) ∩ intC, i = 1, 2. Then there exist

vi ∈ f(x′, z) and wi ∈ C such that either u1 = v1 − w1 or u2 = v2 − w2. By Lemma
2.1, we have either v1 = u1 + w1 ∈ intC or v2 = u2 + w2 ∈ intC which contradicts
f(x′, z) ∩ intC = ∅. Therefore, for any x ∈ X, P (x) is ∆-convex.

Next, we prove that P−1(y) is open for each y ∈ K. We have

P−1(y) = {x ∈ K : f(x, y) ∩ intC 6= ∅}.

Take arbitrarily x ∈ P−1(y), we have f(x, y)∩ intC 6= ∅. By assumption (4), there
exists an open neighborhood U(x) such that

f(x′, y) ∩ (intC + C) = f(x′, y) ∩ intC 6= ∅,

for all x′ ∈ U(x).
Let {xα} be any net in D converging to x̄, hence there exists β such that xα ∈ U ,

∀α ≥ β and then f(xα, y) ∩ intC 6= ∅, which contradicts xα ∈ D. Therefore, x̄ ∈ D
and D is closed. Consequently, we infer that P−1(y) is open for each y ∈ K. The
rest of the proof is similar to that of Theorem 3.1. Hence the proof is complete.

Theorem 3.7. Let K be a nonempty compact ∆-convex subset of a topological semi-
lattice with path-connected intervals M , Y a topological vector space, A : K → 2K

with nonempty ∆-convex values, f : K × K → 2Y , C a closed, pointed and convex
cone in Y with intC 6= ∅. Assume that

(1) A has open lower sections and B := {x ∈ K : x ∈ A(x)} is closed;

(2) f(x, x) ∩ (−C) 6= ∅, ∀x ∈ K;

(3) ∀x ∈ K, f(x, .) is −C∆-quasiconvex;

(4) ∀y ∈ K, f(., y) is C-upper semicontinuous.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y)∩(−C) 6= ∅, ∀y ∈ A(x∗).

Proof. Define P : K → 2K by

P (x) = {y ∈ K : f(x, y) ∩ (−C) = ∅}, ∀x ∈ K.

Suppose that there exists x′ ∈ K such that P (x′) is not ∆-convex; then there exist
y1, y2 ∈ P (x′) such that ∆({y1, y2}) 6⊂ P (x′), i.e., there exists z ∈ ∆({y1, y2}) and
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z 6∈ P (x′); hence f(x′, z) ∩ (−C) 6= ∅. Take u ∈ f(x′, z) ∩ (−C). By (3), we have
either

f(x′, z) ⊂ f(x′, y1) + C

or

f(x′, z) ⊂ f(x′, y2) + C.

Since u ∈ f(x′, z), then there exist vi ∈ f(x′, yi) and wi ∈ C such that either
u = v1 +w1 or u = v2 +w2. Therefore either v1 = u−w1 ∈ −C or v2 = u−w2 ∈ −C,
which is a contradiction. Therefore, for any x ∈ X,P (x) is ∆-convex.

Next, we prove that P−1(y) is open for each y ∈ K. We have

P−1(y) = {x ∈ K : f(x, y) ∩ (−C) = ∅}.

Take arbitrarily x ∈ P−1(y), we have

f(x, y) ∩ (−C) = ∅ or f(x, y) ⊂ Y \ (−C).

By assumption (4), there exists an open neighborhood U(x) such that

f(x′, y) ⊂ Y \ (−C) + C ⊂ Y \ (−C),

for all x′ ∈ U(x), it means f(x′, y)∩(−C) = ∅ for all x′ ∈ U(x). We infer that P−1(y)
is open for each y ∈ K.

The rest of the proof is similar to that of Theorem 3.1. Hence our proof is finished.

Theorem 3.8. Let K be a nonempty compact ∆-convex subset of a topological semi-
lattice with path-connected intervals M , Y a topological vector space, A : K → 2K

with nonempty ∆-convex values, f : K × K → 2Y , C a closed, pointed and convex
cone in Y with intC 6= ∅. Assume that

(1) A has open lower sections and B := {x ∈ K : x ∈ A(x)} is closed;

(2) f(x, x) ⊂ −C, ∀x ∈ K;

(3) ∀x ∈ K, f(x, .) is −C∆-quasiconcave;

(4) ∀y ∈ K, f(., y) is −C-lower semicontinuous.

Then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and f(x∗, y) ⊂ −C, ∀y ∈ A(x∗).

Proof. Define P : K → 2K by

P (x) = {y ∈ K : f(x, y) 6⊂ −C}, ∀x ∈ K.

Suppose that there exists x′ ∈ K such that P (x′) is not ∆-convex; then there exist
y1, y2 ∈ P (x′) such that ∆({y1, y2}) 6⊂ P (x′), i.e., there exists z ∈ ∆({y1, y2}) and
z 6∈ P (x′); hence f(x′, z) ⊂ −C. By (3), we have either

f(x′, y1) ⊂ f(x′, z)− C

or

f(x′, y2) ⊂ f(x′, z)− C.
Consequently, we have either

f(x′, y1) ⊂ f(x′, z)− C ⊂ −C − C ⊂ −C
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or

f(x′, y2) ⊂ f(x′, z)− C ⊂ −C − C ⊂ −C,
which is a contradiction. Therefore, for any x ∈ X,P (x) is ∆-convex.

Next, we prove that P−1(y) is open for each y ∈ K. We have

P−1(y) = {x ∈ K : f(x, y) 6⊂ −C}.

Take arbitrarily x ∈ P−1(y), we have f(x, y) 6⊂ −C. It is equivalent to f(x, y) ∩
[Y \(−C)] 6= ∅. By assumption (4), there exists an open neighborhood U(x) such that

f(x, y) ∩ [Y \ (−C) + C] 6= ∅,
for all x′ ∈ U(x). Since Y \ (−C) + C ⊂ Y \ (−C), it follows that

f(x, y) ∩ [Y \ (−C)] 6= ∅,
for all x′ ∈ U(x). Therefore f(x′, y) 6⊂ −C for all x′ ∈ U(x). We infer that P−1(y) is
open for each y ∈ K.

The rest of the proof is similar to that of Theorem 3.1. Hence our proof is finished.
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