
Fixed Point Theory, 15(2014), No. 1, 233-252

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

BOUNDEDNESS AND GLOBAL ATTRACTIVITY FOR A

CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

ZHIDONG TENG∗, LINFEI NIE∗∗ AND BAO-ZHU GUO∗∗∗

∗College of Mathematics and Systems Science, Xinjiang University
Urumqi 830046, PR China

E-mail: zhidong@xju.edu.cn

∗∗College of Mathematics and Systems Science, Xinjiang University
Urumqi 830046, PR China

Academy of Mathematics and Systems Science, Academia Sinica

Beijing 100190, PR China
E-mail: lfnie@163.com

∗∗∗Academy of Mathematics and Systems Science, Academia Sinica

Beijing 100190, PR China

E-mail: bzguo@iss.ac.cn

Abstract. In this paper, we are concerned with the boundedness and global attractivity of some

vector functional differential equations. Using fixed point technique instead of the usual Lyapunov
direct method, some quite general criteria for boundedness and attractivity are established. We then

apply these results to some special delay equations, for which some existing results are included.

Key Words and Phrases: Nonlinear functional differential equation, contraction mapping princi-
ple, boundedness, global attractivity.

2010 Mathematics Subject Classification: 34D20, 34K20, 37C25, 47H10.

1. Introduction

In ordinary and functional differential equations, the stability for equilibrium so-
lution, the boundedness of solution, and the existence of periodic solutions have been
the most concerned issues from both mathematics and applied mathematics point of
views. The Lyapunov direct method is most often used in dealing with these problems.
However, there are some big deals that seem difficult to overcome by the Lyapunov
function method. Examples can be found in [8] where the functions in the equations
are unbounded with time, and [11] where the delay is unbounded, and [9] where the
derivative of the delay is not small. In the past few years, some efforts have been
made to cope with these difficulties by means of fixed point theory, see for instance,
the works in [2, 3, 4, 5, 6, 7] where the focus are putted on some specific equations
with significant applications. Other investigations on the study of stability by fixed
point theory can be found in [10, 12, 13] and the references therein, to just a few.
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Very recently, Burton [1] deals with the stability of the following scalar delay
equations

x′(t) = −
∫ t

t−L
p(s− t)g(x(s)) ds, (1.1)

x′(t) = −
∫ t

0

e−a(t−s) sin(t− s)g(x(s)) ds, (1.2)

x′(t) = −
∫ t

−∞
p(s− t)g(x(s)) ds (1.3)

and

x′(t) = −a(t)g(x(q(t))). (1.4)

In Equations (1.1)-(1.4), if we add the term g(x), then these equations can be written
as follows, respectively

x′(t) = −g(x(t)) +
d

dt

∫ 0

−L
p(s)

∫ t

t+s

g(x(u)) duds, (1.5)

x′(t) = −g(x(t))

∫ ∞
0

e−av sin v dv +
d

dt

∫ t

0

∫ ∞
t−s

e−av sin vg(x(s)) dvds, (1.6)

x′(t) = −g(x(t)) +
d

dt

∫ t

−∞

∫ s−t

−∞
p(u)g(x(s)) duds (1.7)

and

x′(t) = −a(h(t))h′(t)g(x(t))− d

dt

∫ t

h(t)

a(s)g(x(q(s))) ds. (1.8)

It is seen that Equations (1.5)-(1.8) contain a asymptotical stable linear term, so they
can be written as a fixed point of some continuous mappings by means of the variation
of constants. The stability is then obtained by contraction mapping principle. We
refer this to [1]. This also shows that the contraction mapping principle is suitable in
studying some scalar delay equations, especially for those with distributed bounded
delay, distributed unbounded delay, distributed infinite delay, or even pointwise vari-
able delay.

In this paper, motivated from the fact aforementioned, we consider the boundedness
and global attractivity of some delay vector equations by the fixed point technique.
These models are described by the following equations:

x′(t) = A(t)x+
d

dt

∫ 0

−L
P (s)

∫ t

t+s

G(x(u)) duds, (1.9)

x′(t) = A(t)x+
d

dt

∫ t

0

∫ ∞
t−s

P (v) dvG(x(s)) ds, (1.10)

x′(t) = A(t)x+
d

dt

∫ t

−∞

∫ s−t

−∞
Q(u) duG(x(s)) ds (1.11)
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and

x′(t) = A(t)x− d

dt

∫ t

h(t)

B(s)G(x(q(s))) ds, (1.12)

where A(t), B(t), P (t) and Q(t) are continuous n × n matrix functions defined over
R = (−∞,∞), G(u) is a continuous n-dimensional vector function defined over Rn and
G(0) = 0, q(t) is a continuous and strictly increasing function defined over R+ = [0,∞)
with q(t) < t for all t > 0, and h(t) is the inverse function of q(t) such that q(h(t)) = t.

We proceed as follows. In Section 2, some sufficient conditions are given for the
boundedness and global attractivity of the systems (1.9)-(1.12) by the contraction
mapping principle. Section 3 is devoted to the application of the results presented
in Section 2 to the boundedness and global attractivity of some special functional
differential equations.

2. Main results

For any vector a = (a1, a2, · · · , an) ∈ Rn and matrix A = (aij)n×n ∈ Rn×n, define
the norms of a and A by

|a| = max
1≤i≤n

|ai|, |A| = max
1≤i,j≤n

|aij |.

Given constant L > 0, we define Cn[−L, 0] to be the Banach space consisting of
all continuous vector functions φ = (φ1, φ2, · · · , φn) : [−L, 0]→ Rn with the norm

‖φ‖ = sup
t∈[−L, 0]

|φ(t)|,

where |φ(t)| = max1≤i≤n |φi(t)|.
The following assumptions are applied to all Equations (1.9)-(1.12).

(A1). There is a constant k > 0 such that

|G(x)−G(y)| ≤ k|x− y| for all x, y ∈ Rn.

(A2). Let Φ(t) be the fundamental matrix solution of the following linear ordinary
differential equation

x′(t) = A(t)x (2.1)

with Φ(0) = E, where E is the n×n identity matrix. Suppose that there are
positive constants a and b such that

|Φ(t)Φ−1(s)| ≤ ae−b
∫ t
s
|A(u)| du for all t > s.

(A3). The matrix function A(t) satisfies
∫∞
0
|A(t)|dt = +∞.

Remark. In fact, we note that the condition (A2) is a hard proposition to test. So,
in the next section, we will consider some special cases of matrix function A(t) to
simplifies condition (A2).

The following Theorem 2.1 is on the boundedness of all solutions and global at-
tractivity of the zero solution for Equation (1.9).
Theorem 2.1. Suppose that (A1) and (A2) hold. If

k
(

1 +
a

b

)∫ 0

−L
|P (s)s|ds < 1, (2.2)
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then every solution of Equation (1.9) is bounded. In addition, if (A3) also holds, then
every solution tends to zero as time goes to infinity.
Proof. For any φ ∈ Cn[−L, 0], by the fundamental theory of functional differential
equations, we know that Equation (1.9) admits a unique solution x(t, φ) with the
initial condition x0 = φ. By the variation of constants, we can get

x(t, φ) = Φ(t)φ(0) + Φ(t)

∫ t

0

Φ−1(v)
d

dv

∫ 0

−L
P (s)

∫ v

v+s

G(x(u)) dudsdv.

Integration by parts yields

x(t, φ) =

∫ 0

−L
P (s)

∫ t

t+s

G(x(u)) duds− Φ(t)

∫ 0

−L
P (s)

∫ 0

s

G(x(u)) duds

−Φ(t)

∫ t

0

(Φ−1(v))′
∫ 0

−L
P (s)

∫ v

v+s

G(x(u)) dudsdv + Φ(t)φ(0).

Since (Φ−1(v))′ = −Φ−1(v)A(v), it follows that

x(t, φ) =

∫ 0

−L
P (s)

∫ t

t+s

G(x(u)) duds− Φ(t)

∫ 0

−L
P (s)

∫ 0

s

G(x(u)) duds

+Φ(t)

∫ t

0

Φ−1(v)A(v)

∫ 0

−L
P (s)

∫ v

v+s

G(x(u)) dudsdv + Φ(t)φ(0).

(2.3)

We first prove the boundedness of solutions for Equation (1.9). To this purpose let

M = {z(t) : [−L,∞)→ Rn|z0 = φ ∈ Cn[−L, 0], z(t) is bounded and continuous}.

M is a Banach space with the norm ‖z‖ = supt∈[−L,∞) |z(t)| for any z ∈ M . With

reference to (2.3), we define a continuous mapping T : z → φ as following

T (z)(t) =

∫ 0

−L
P (s)

∫ t

t+s

G(z(u)) duds− Φ(t)

∫ 0

−L
P (s)

∫ 0

s

G(φ(u)) duds

+

∫ t

0

Φ(t)Φ−1(v)A(v)

∫ 0

−L
P (s)

∫ v

v+s

G(z(u)) dudsdv + Φ(t)φ(0)

(2.4)
for all t > 0. Now, we prove that T maps M into itself. In fact, T (z)(t) is defined for
any z ∈M and t > −L and (T (z))0 = φ. This follows from the fact (2.4) that

|T (z)(t)| ≤ |Φ(t)φ(0)|
∫ 0

−L
|P (s)|+

∫ t

t+s

|G(z(u))|duds

+|Φ(t)|
∫ 0

−L
|P (s)|

∫ 0

s

|G(φ(u))|duds

+

∫ t

0

|Φ(t)Φ−1(v)||A(v)|
∫ 0

−L
|P (s)|

∫ v

v+s

|G(z(u))|dudsdv.

(2.5)

By assumptions (A1) and (A2), we have

|G(z(t))| ≤ k|z(t)|+ |G(0)|, |Φ(t)| ≤ ae−b
∫ t
0
|A(s)| ds. (2.6)
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This together with (2.5) gives

|T (z)(t)| ≤ aφ(0)e−b
∫ t
0
|A(s)| ds +

∫ 0

−L
|P (s)|

∫ t

t+s

(k|z(u)|+ |G(0)|) duds

+ae−b
∫ t
0
|A(s)| ds

∫ 0

−L
|P (s)|

∫ 0

s

(k|φ(u)|+ |G(0)|) duds

+

∫ t

0

ae−b
∫ t
v
|A(s)| ds|A(v)|

∫ 0

−L
P (s)

∫ v

v+s

(k|z(u)|+ |G(0)|) dudsdv.

≤ aφ(0)e−b
∫ t
0
|A(s)| ds + (kzu + |G(0)|)

(∫ 0

−L
|P (s)s|ds

+ae−b
∫ t
0
|A(s)| ds

∫ 0

−L
|P (s)s|ds

+

∫ t

0

ae−b
∫ t
v
|A(s)| ds|A(v)|dv

∫ 0

−L
|P (s)s|ds

)
with zu = supt≥−L |z(t)|, where we used the facts e−b

∫ t
0
|A(s)| ds ≤ 1 for all t ≥ 0, and∫ t

0

ae−b
∫ t
v
|A(s)| ds|A(v)|dv =

a

b
e−b

∫ t
v
|A(s)| ds

∣∣∣t
0

=
a

b

(
1− e−b

∫ t
0
|A(s)| ds

)
≤ a

b
. (2.7)

This shows that T (z)(t) is bounded on [−L,∞) with the upper bound

B = a|φ(0)|+
(

1 + a+
a

b

)
(kzu + |G(0)|)

∫ 0

−L
|P (s)s|ds.

Therefore, T maps M into itself.
Secondly, we prove that T is a contraction mapping on M . For any z1, z2 ∈M and

z10 = z20 = φ, let T (zi)(t) (i = 1, 2) be defined from Equation (2.4) with z replaced
by z1 and z2, respectively. From assumptions (A1), (A2), and (2.7), we have

|T (z1)(t)− T (z2)(t)|

≤
∫ 0

−L
|P (s)|

∫ s

t+s

|G(z1(u))−G(z2(u))|duds

+

∫ t

0

|Φ(t)Φ−1(v)||A(v)|
∫ 0

−L
P (s)

∫ v

v+s

|G(z1(u))−G(z2(u))|dudsdv

≤ k‖z1 − z2‖
(∫ 0

−L
|P (s)s|ds+

∫ t

0

|Φ(t)Φ−1(v)||A(v)|dv
∫ 0

−L
|P (s)s|ds

)
≤ k

(
1 +

a

b

)
‖z1 − z2‖

∫ 0

−L
|P (s)s|ds

for all t > 0. This together with (2.2) shows that T is a contraction mapping on M .
By virtue of the contraction mapping principle, T has a unique fixed point which is
the solution of Equation (1.9). This shows that all solutions of Equation (1.9) are
bounded.
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Finally, we prove that the zero solution x = 0 is globally attractive. Define

M = {z(t) : [−L,∞)→ Rn|z(t) ∈M and lim
t→∞

z(t) = 0}.

M is a Banach space with the norm ‖z‖ = supt∈[−L,∞) |z(t)| for any z ∈M . According

to (2.4), we limit the previous defined continuous mapping T on M . We show that
T maps M into itself also. In fact, by assumptions (A2) and (A3), it can be easily
shown that

lim
t→∞

|Φ(t)| = 0. (2.8)

Moreover, we have limt→∞Φ(t)φ(0) = 0 and

lim
t→∞

Φ(t)

∫ 0

−L
P (s)

∫ 0

s

G(φ(u)) duds = 0.

Since G(0) = 0 and limt→∞ z(t) = 0, we have limt→∞G(z(t))=0. Therefore,

lim
t→∞

∫ 0

−L
P (s)

∫ t

t+s

G(z(u)) duds = 0.

Given ε > 0, there is a constant t0 > 0 such that |G(z(t))| < ε/2B0 for all t ≥ t0,
where

B0 =
a

b

∫ 0

−L
|P (s)|ds.

By (2.8), there is a constant t1 ≥ t0 + L such that for all t ≥ t1,∣∣∣∣∣Φ(t)

∫ t0+L

0

Φ−1(v)A(v)

∫ 0

−L
P (s)

∫ v

v+s

G(z(u)) dudsdv

∣∣∣∣∣ < ε

2
,

which results in ∣∣∣∣∫ t

0

Φ(t)Φ−1(v)A(v)

∫ 0

−L
P (s)

∫ v

v+s

G(z(u)) dudsdv

∣∣∣∣
≤

∣∣∣∣∣
∫ t0+L

0

Φ(t)Φ−1(v)A(v)

∫ 0

−L
P (s)

∫ v

v+s

G(z(u)) dudsdv

∣∣∣∣∣
+

∣∣∣∣∫ t

t0+L

Φ(t)Φ−1(v)A(v)

∫ 0

−L
P (s)

∫ v

v+s

G(z(u)) dudsdv

∣∣∣∣
<

ε

2
+

ε

2B0

∫ t

t0+L

ae−b
∫ t
v
|A(s)| ds|A(v)|dv

∫ 0

−L
|P (s)s|ds

<
ε

2
+

aε

2B0b

(
1− e−

∫ t
t0+L

|A(s)| ds
)∫ 0

−L
|P (s)s|ds

<
ε

2
+
ε

2
= ε

for all t ≥ t1. This shows that

lim
t→∞

∫ t

0

Φ(t)Φ−1(v)A(v)

∫ 0

−L
P (s)

∫ v

v+s

G(z(u)) dudsdv = 0.
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Therefore, limt→∞ T (z)(t) = 0. That is, T maps M into itself. Moreover, from the
above discussion, T is contraction mapping on M . So, there is a unique z(t) ∈ M
such that z(t) = T (z)(t) and z0 = φ. By the existence and uniqueness of the solution,
we have x(t, φ) = z(t) for all t ≥ 0. Thus, limt→∞ x(t, φ) = 0. This shows that the
zero solution x = 0 is globally attractive. The proof is complete. �

The following Theorem 2.2 is on the boundedness of all solutions, and global at-
tractivity of the zero solution of Equation (1.10).
Theorem 2.2. Assume (A1) and (A2). If

sup
t≥0

∫ t

0

∫ ∞
t−s
|P (v)|dvds = p∗ <∞,

(
1 +

a

b

)
kp∗ < 1, (2.9)

then every solution of Equation (1.10) is bounded. In addition, if (A3) also holds,
then every solution tends to zero as time goes to infinity.
Proof. By the fundamental theory of functional differential equations, we know that
for any x0 ∈ Rn, Equation (1.10) admits a unique solution x(t, x0) with initial condi-
tion x(0) = x0. By variation of constants, we can get

x(t, x0) = Φ(t)x0 + Φ(t)

∫ t

0

Φ−1(u)
d

du

∫ u

0

∫ ∞
u−s

P (v)G(x(s)) dvdsdu.

By integration by part and noticing the fact (Φ−1(u))′ = −Φ−1(u)A(u), we have

x(t, x0) = Φ(t)x0 +

∫ t

0

∫ ∞
t−s

P (v)G(x(s)) dvds

+Φ(t)

∫ t

0

Φ−1(u)A(u)

∫ u

0

∫ ∞
u−s

P (v)G(x(s)) dvdsdu. (2.10)

Now we prove the boundedness of solutions for Equation (1.10). To this purpose
let

M = {z(t) : [0,∞)→ Rn|z0 = x0 ∈ Rn, z(t) is bonded and continuous}.

M is a Banach space with the norm ‖z‖ = supt∈R+ |z(t)| for any z ∈ M . For any
z ∈ M , define a continuous mapping T : M → M using the Equation (2.10) with
x replaced by z. Now, we prove that T maps M into itself. In fact, by definition,
T (z)(t) is defined for any z ∈ M and t > 0 and T (z)(0) = x0. By assumption (A2),
(2.6) and (2.10), we can obtain that

|T (z)(t)| ≤ a|x0|e−b
∫ t
0
|A(s)| ds + (kzu + |G(0)|)

(∫ t

0

∫ ∞
t−s
|P (v)|dvds

+

∫ t

0

ae−b
∫ t
u
|A(s)| ds|A(u)|

∫ u

0

∫ ∞
u−s
|P (v)|dvdsdu

)
,

where zu = supt∈R+ |z(t)|. From (2.7), it follows that T (z)(t) is bounded on R+ with
upper bound

B = a|x0|+ (1 +
a

b
)(kzu + |G(0)|)p∗.

Therefore, T maps M into itself.
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Secondly, we show that T is a contraction mapping on M . Actually, for any
z1, z2 ∈ M and z10 = z20 = x0, let T (zi)(t) (i = 1, 2) be defined by Equation (2.10)
with x replaced by z1 and z2, respectively. By assumptions (A1), (A2), (2.7), (2.9)
and (2.10), we have

|T (z1)(t)− T (z2)(t)| ≤ k‖z1 − z2‖
(∫ t

0

∫ ∞
t−s
|P (v)|dvds

+

∫ t

0

ae−b
∫ t
u
|A(s)| ds|A(u)|

∫ u

0

∫ ∞
u−s
|P (v)|dvdsdu

)
≤ k

(
1 +

a

b

)
p∗‖z1 − z2‖.

By (2.9), T is contraction on M . By virtue of the contraction mapping principle,
there is a unique fixed point of T which is the bounded solution of Equation (1.9).
That means that all solutions of Equation (1.9) are bounded.

Finally, we prove the global attractivity of the zero solution x = 0. Define

M = {z(t) : [0,∞)→ Rn|z ∈M and lim
t→∞

z(t) = 0}.

Again, M is a Banach space with the norm ‖z‖ = supt∈R+ |z(t)| for any z ∈ M .

We limit the previous defined continuous mapping T on M , then the mapping T is
continued on M in a natural way. We show that T maps M into itself. In fact, by
assumptions (A2) and (A3), it can be easily shown that

lim
t→∞

|Φ(t)| = 0. (2.11)

Moreover, limt→∞Φ(t)x0 = 0.
Since G(0) = 0 and limt→∞ z(t) = 0, we have limt→∞G(z(t)) = 0. This together

with (2.9) shows that, given any ε > 0, there are positive constants t0, t1 and t1 > t0
such that |G(z(t))| < ε for all t ≥ t0 and

∫∞
t−t0 |P (v)|dv < ε/Bt0 for all t ≥ t1, where

B = supt∈R+ G(z(t)). Hence, for all t ≥ t1∣∣∣∣∫ t

0

∫ ∞
t−s

P (v)G(z(s)) dvds

∣∣∣∣ =

∣∣∣∣(∫ t0

0

∫ ∞
t−s

+

∫ t

t0

∫ ∞
t−s

)
P (v)G(z(s)) dvds

∣∣∣∣
≤ B

∫ t0

0

∫ ∞
t−t0
|P (v)|dvds+ ε

∫ t

t0

∫ ∞
t−s
|P (v)|dvds

≤ (1 + p∗)ε.

So

lim
t→∞

∫ t

0

∫ ∞
t−s

P (v)G(z(s)) dvds = 0.

By (2.11), there is a constant t2 ≥ t1 such that for all t ≥ t2,∣∣∣∣Φ(t)

∫ t0

0

Φ−1(u)A(u)

∫ u

0

∫ ∞
u−s

P (v)G(z(s)) dvdsdu

∣∣∣∣ < ε.
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This together with (2.6) and (2.9) shows that∣∣∣∣∫ t

0

Φ(t)Φ−1(u)A(u)

∫ u

0

∫ ∞
u−s

P (v)G(z(s)) dvdsdu

∣∣∣∣
≤

∣∣∣∣∫ t0

0

Φ(t)Φ−1(u)A(u)

∫ u

0

∫ ∞
u−s

P (v)G(z(s)) dvdsdu

∣∣∣∣
+

∣∣∣∣∫ t

t0

Φ(t)Φ−1(u)A(u)

∫ u

0

∫ ∞
u−s

P (v)G(z(s)) dvdsdu

∣∣∣∣
≤ ε+ ε(1 + p∗)

∫ t

t0

|Φ(t)Φ−1(u)||A(u)|du

≤
(

1 +
a

b
(1 + p∗)

)
ε, ∀ t ≥ t2,

which leads to

lim
t→∞

∫ t

0

Φ(t)Φ−1(v)A(v)

∫ u

0

∫ ∞
u−s

P (s)G(z(u)) dudsdv = 0.

Therefore, limt→∞ T (z)(t) = 0. That is, T maps M into itself. Further, from the
above discussion, T is contraction on M . So, there is a unique z(t) ∈ M such that
z(t) = T (z)(t) and z0 = x0. By the existence and uniqueness of the solution, we have
x(t, x0) = z(t) for all t ≥ 0. Thus, limt→∞ x(t, x0) = limt→∞ z(t) = 0. This shows
that the zero solution x = 0 is globally attractive. This completes the proof. �

Now we state the boundedness of all solutions and global attractivity of the zero
solution of Equation (1.11).
Theorem 2.3. Assume (A1) and (A2). If

sup
t≥0

∫ t

−∞

∫ s−t

−∞
|Q(u)|duds = p∗ <∞,

(
1 +

a

b

)
kp∗ < 1

and

∫ 0

−∞

∫ s

−∞
|Q(u)|duds = N exists,

(2.12)

then every solution of Equation (1.11) is bounded. In addition, if (A3) also holds,
then every solution tends to zero as time goes to infinity.
Proof. By the fundamental theory of functional differential equations, we know that
for any φ ∈ Cn(∞, 0], Equation (1.11) admits a unique solution x(t, φ) with initial
condition x0(s) = φ for all s ∈ (−∞, 0]. By the variation of constants, we can get

x(t, φ(t)) = Φ(t)φ(0) + Φ(t)

∫ t

0

Φ−1(v)
d

dv

∫ v

−∞

∫ s−v

−∞
Q(u)G(x(s)) dudsdv.

By integration by part and noticing (Φ−1(v))′ = −Φ−1(v)A(v), we have

x(t, φ) =

∫ t

−∞

∫ s−t

−∞
Q(u)G(x(s)) duds− Φ(t)Φ−1(0)

∫ 0

−∞

∫ s

−∞
Q(u)G(x(s)) duds

+Φ(t)

∫ t

0

Φ−1(v)A(v)

∫ v

−∞

∫ s−v

−∞
Q(u)G(x(s)) dudsdv + Φ(t)φ(0). (2.13)
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Again we first prove the boundedness of solutions for Equation (1.11). To this end
let

M = {z(t) : (−∞,∞)→ Rn|z0 = φ ∈ Cn(−∞, 0], z(t) is bonded and continuous}.
Once again, M is a Banach space with the norm ‖z‖ = supt∈R |z(t)| for any z ∈ M .
According to (2.13), for any z ∈ M , we define a continuous mapping T : M → M
using the Equation (2.13) with x replaced by z, as we what have done before. Now,
we prove that T maps M into itself. In fact, by definition, T (z)(t) is defined for any

z ∈M and t ∈ R and T (z)(0) = φ. By (2.6) and e−b
∫ t
0
|A(s)| ds < 1, we have

|T (z)(t)| ≤ (kzu + |G(0)|)
(∫ t

−∞

∫ s−t

−∞
|Q(u)|duds+ a

∫ 0

−∞

∫ s

−∞
|Q(u)|duds

+

∫ t

0

ae−b
∫ t
v
|A(s)| ds|A(v)|

∫ v

−∞

∫ s−v

−∞
|Q(u)|dudsdv

)
+ a|φ(0)|.

where zu = supt∈R |z(t)|. By (2.7) and (2.13), we have T (z)(t) is bounded on R with
the upper bound

B = a|φ(0)|+
(
p∗ + aN +

a

b
p∗
)

(kzu + |G(0)|).

Therefore, T maps M into itself.
Secondly, we show that T is a contraction mapping on M . Indeed, for any z1, z2 ∈

M and z10 = z20 = φ, let T (zi)(t) (i = 1, 2) be defined by Equation (2.13) with x
replaced by z1 and z2, respectively. By assumptions (A1), (A2), (2.7), (2.12) and
(2.13), we have

|T (z1)(t)− T (z2)(t)| ≤ k‖z1 − z2‖
(∫ t

−∞

∫ s−t

−∞
|Q(u)|duds

+

∫ t

0

|Φ(t)Φ−1(v)||A(v)|
∫ v

−∞

∫ s−v

−∞
|Q(u)|dudsdv

)
≤ k

(
1 +

a

b

)
p∗‖z1 − z2‖.

This together with (2.12) shows that T is a contraction on M . By virtue of the
contraction mapping principle, there is a unique fixed point which is the bounded
solution of Equation (1.11). So all solutions of Equation (1.11) are bounded.

Finally, we prove that the zero solution x = 0 is globally attractive. Define

M = {z(t) : (−∞,∞)→ Rn|z ∈M and lim
t→∞

z(t) = 0}.

M is a Banach space with the norm ‖z‖ = supt∈R |z(t)| for any z ∈M . The mapping

T is naturally extended to M . By assumptions (A2) and (A3), it can be easily proved
that

lim
t→∞

|Φ(t)| = 0 (2.14)

and limt→∞Φ(t)φ(0) = 0.
Since G(0) = 0 and limt→∞ z(t) = 0, we have limt→∞G(z(t)) = 0. Therefore,

for any constant ε > 0, there are positive constants t1, t2 and t1 < t2 such that
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|G(z(t))| < ε for all |t| ≥ t1 and |G(z(v + t))| < ε/t1 for all |t| ≥ t2 and v ∈ [−t1, 0].
So ∣∣∣∣∫ t

−∞

∫ s−t

−∞
Q(u)G(z(s)) duds

∣∣∣∣
≤

(∫ −t1
−∞

∫ s−t

−∞
+

∫ 0

−t1

∫ s−t

−∞
+

∫ t1

0

∫ s−t

−∞
+

∫ t

t1

∫ s−t

−∞

)
|Q(u)||G(z(s))|duds

≤ εN + εp∗ +

(∫ 0

−t1

∫ v

−∞
+

∫ t1

0

∫ v

−∞

)
|Q(u)||G(z(v + t))|dudv

≤ 2(N + p∗)ε, ∀ t ≥ t2.
It then follows that

lim
t→∞

∫ t

−∞

∫ s−t

−∞
Q(u)G(z(s)) duds = 0.

Furthermore, by (2.14), there is a constant t3 ≥ t2 such that for all t ≥ t3,∣∣∣∣Φ(t)

∫ t1

0

Φ−1(v)A(v)

∫ v

−∞

∫ s−v

−∞
Q(u)G(z(s)) dudsdv

∣∣∣∣ < ε.

Therefore ∣∣∣∣∫ t

0

Φ(t)Φ−1(v)A(v)

∫ v

−∞

∫ s−v

−∞
Q(u)G(z(s)) dudsdv

∣∣∣∣
≤ ε+ 2(N + p∗)ε

∫ t

t1

|Φ(t)Φ−1(v)||A(v)|dv

≤
(

1 +
2a(N + p∗)

b

)
ε, ∀ t ≥ t3.

This results in

lim
t→∞

∫ t

0

Φ(t)Φ−1(v)A(v)

∫ v

−∞

∫ s−v

−∞
Q(u)G(z(s)) dudsdv = 0.

Therefore, limt→∞ T (z)(t) = 0. That is, T maps M into itself. Moreover, the above
discussion shows that T is a contraction on M . So, there is a unique z(t) ∈ M such
that z(t) = T (z)(t) and z0 = x0. By the existence and uniqueness of the solution, we
have x(t, φ) = z(t) for all t ≥ 0. Thus, limt→∞ x(t, φ) = limt→∞ z(t) = 0. This shows
that the zero solution x = 0 is globally attractive. This completes the proof. �

On the boundedness of all solutions and global attractability of the zero solution
for Equation (1.12), we have the following result.
Theorem 2.4. Suppose that assumptions (A1) and (A2) hold. If

sup
t≥0

∫ h(t)

t

|B(u)|du = p∗ <∞,
(

1 + a+
a

b

)
kp∗ < 1, (2.15)

then every solution of Equation (1.12) is bounded. In addition, if (A3) also holds,
then every solution tends to zero as times goes to infinity.
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Proof. For any φ ∈ Cn[q(0), 0], by the fundamental theory of functional differential
equations, we know that Equation (1.12) admits a unique solution x(t, φ) with initial
condition x0(s) = φ for all s ∈ [q(0), 0]. By variation of constants, we have

x(t, φ(t)) = Φ(t)φ(0)− Φ(t)

∫ t

0

Φ−1(v)
d

dv

∫ v

h(v)

B(s)G(x(q(s))) dsdv.

By integration by parts and (Φ−1(v))′ = −Φ−1(v)A(v), we have

x(t, φ) = −
∫ t

h(t)

B(s)G(x(q(s))) ds+ Φ(t)Φ−1(0)

∫ 0

h(0)

B(s)G(x(q(s))) ds

+Φ(t)

∫ t

0

(Φ−1(v)A(v))

∫ v

h(v)

B(s)G(x(q(s))) dsdv + Φ(t)φ(0).

(2.16)

Firstly, we prove the boundedness of solutions of Equation (1.12). To this purpose
let

M = {z(t) : [q(0),∞)→ Rn|z0 = φ ∈ Cn[q(0), 0], z(t) is bonded and continuous}.

With the supremum norm ‖z‖ = supt∈[q(0),∞) |z(t)| for any z ∈ M , M becomes a
Banach space. For any z ∈ M , we define a continuous mapping T : M → M using
the Equation (2.16) with x replaced by z. Now, we prove that T maps M into itself. In
fact, by the definition, T (z)(t) is defined for any z ∈M and t ∈ R+ and T (z)(0) = φ.
By (2.6), we obtain

|T (z)(t)|

≤ (kzu + |G(0)|)

(∫ h(t)

t

|B(s)|ds + ae−b
∫ t
0
|A(s)| ds

∫ h(0)

0

|B(s)|ds

+

∫ t

0

ae−b
∫ t
v
|A(s)| ds|A(v)|

∫ h(v)

v

|B(s)|dsdv

)
+ ae−b

∫ t
0
|A(s)| ds|φ(0)|,

(2.17)

where zu = supt∈[q(0),∞) |z(t)|. From (2.7), (2.15) and (2.17), it follows that T (z)(t)

is bounded on [0,∞) with the upper bound

K = a|φ(0)|+
(

1 + a+
a

b

)
(kzu + |G(0)|)p∗.

Therefore, T maps M into itself.
Secondly, we prove that T is a contraction on M . For any z1, z2 ∈ M and z10 =

z20 = φ, let T (zi(t)) (i = 1, 2) be defined by Equation (2.16) with x replaced by z1
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and z2, respectively. By assumptions (A1), (A2), (2.7) and (2.16), we have

|T (z1)(t)− T (z2)(t)|

≤ k‖z1 − z2‖

(∫ h(t)

t

|B(s)|ds+ |Φ(t)Φ−1(0)|
∫ h(0)

0

|B(s)|ds

+

∫ t

0

|Φ(t)Φ−1(v)||A(v)|
∫ h(v)

v

|B(s)|dsdv

)

≤ k
(

1 + a+
a

b

)
p∗‖z1 − z2‖.

So, T is contraction on M . By virtue of the contraction mapping principle, there is a
unique fixed point which is the bounded solution of Equation (1.12). So all solutions
of (1.12) are bounded.

Finally, we prove that the zero solution x = 0 is globally attractive. To this end,
define

M = {z(t) : [q(0),∞)→ Rn|z ∈M and lim
t→∞

z(t) = 0}.

Again, with the supremum defined by ‖z‖ = supt∈R+ |z(t)|, for any z ∈M , M becomes

a Banach space. We extend naturally T from M onto M . Now, we show that T maps
M into itself. In fact, by assumptions (A2) and (A3), it can be easily proved that

lim
t→∞

|Φ(t)| = 0, (2.18)

and limt→∞Φ(t)φ(0) = 0.
Since G(0) = 0 and limt→∞ z(t) = 0, we have limt→∞G(z(t)) = 0. Therefore,

given ε > 0, there exists a t1 > 0 such that

|G(z(t))| < ε,

∣∣∣∣∣
∫ t

h(t)

B(s)G(x(q(s))) ds

∣∣∣∣∣ ≤ εp∗,
∣∣∣∣∣
∫ 0

h(0)

B(s)G(x(q(s))) ds

∣∣∣∣∣ ≤ εp∗
for all t ≥ t1. Therefore,

lim
t→∞

∫ t

h(t)

B(s)G(x(q(s))) ds = 0, lim
t→∞

Φ(t)

∫ 0

h(0)

B(s)G(x(q(s))) ds = 0.

Furthermore, by (2.18), there is a constant t2 ≥ t1 such that for all t ≥ t2,∣∣∣∣∣Φ(t)

∫ t1

0

Φ−1(v)A(v)

∫ v

h(v)

B(s)G(x(q(s))) dsdv

∣∣∣∣∣ < ε.
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This together with (2.7) yields∣∣∣∣∣
∫ t

0

Φ(t)Φ−1(v)A(v)

∫ v

h(v)

B(s)G(x(q(s))) dsdv

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t1

0

Φ(t)Φ−1(v)A(v)

∫ v

h(v)

B(s)G(x(q(s))) dsdv

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

t1

Φ(t)Φ−1(v)A(v)

∫ v

h(v)

B(s)G(x(q(s))) dsdv

∣∣∣∣∣
≤ ε+ p∗ε

∫ t

t1

|Φ(t)Φ−1(v)||A(v)|dv ≤
(

1 +
ap∗

b

)
ε, ∀ t ≥ t2.

This leads to

lim
t→∞

∫ t

0

Φ(t)Φ−1(v)A(v)

∫ v

h(v)

B(s)G(x(q(s))) dsdv = 0.

Therefore, limt→∞ T (z)(t) = 0. That is, T maps M into itself. In addition, the above
discussion shows that T is a contraction on M . So, there is a unique z(t) ∈ M such
that z(t) = T (z)(t) and z0 = φ. By the existence and uniqueness of the solution, we
have x(t, φ) = z(t) for all t ∈ R+. Thus, limt→∞ x(t, φ) = limt→∞ z(t) = 0. So the
zero solution x = 0 is globally attractive. This completes the proof. �

3. Some special cases

In this paper, we consider the boundedness and global attractivity of some vector
functional differential equations by fixed point technique instead of the usual Lya-
punov direct method, some quite general criteria for boundedness and attractivity
are established. However, we note that the conditional of (H2) is not easy to test.
So, as some consequence of Theorem 2.1-2.4, we will discuss some special case of
coefficient matrix A(t) of equation (2.1).
Case I. The coefficient matrix A(t) of equation (2.1) is a diagonal matrix.

Suppose that

A(t) = −diag(a1(t), a2(t), · · · , an(t)),

where ai(t) (i = 1, 2, · · · , n) are nonnegative continuous functions defined over R+.
For this special case, the fundamental matrix solution of equation (2.1) has the fol-
lowing form

Φ(t) = diag
(
e−

∫ t
0
a1(u) du, e−

∫ t
0
a2(u) du, · · · , e−

∫ t
0
an(u) du

)
.

Hence,

Φ(t)Φ−1(s) = diag
(
e−

∫ t
s
a1(u) du, e−

∫ t
s
a2(u) du, · · · , e−

∫ t
s
an(u) du

)
for all t, s ∈ R+ with t > s. Obviously, we have

|Φ(t)Φ−1(s)| = max
1≤i≤n

{
e−

∫ t
s
ai(u) du

}
.
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We introduce the following assumptions.
(B1) There exists a constant d > 0 such that for any t ∈ R+

d max
1≤i≤n

{|ai(t)|} ≤ min
1≤i≤n

{|ai(t)|}.

(B2)
∫∞
0

max1≤i≤n{|ai(t)|}dt =∞.
Since for this special case, |A(t)| = max1≤i≤n{|ai(t)|}, we can easily show that if

assumption (B1) holds, then assumption (A2) also holds with a = 1 and b = d, and
if assumption (B2) holds, then assumption (A3) also holds.

For the special case that in Equation (1.9), we have the following Corollary 3.1
that is a direct consequence of Theorem 2.1.
Corollary 3.1. Suppose that A(t) = −diag(a1(t), a2(t), · · · , an(t)), where ai(t) (i =
1, 2, · · · , n) are nonnegative continuous functions on t ∈ R+. Assume (A1) and (B1),
and

k

(
1 +

1

d

)∫ 0

−L
|P (s)s|ds < 1.

Then every solution of Equation (1.9) is bounded. In addition, if (B2) also holds,
then every solution tends to zero as time goes to infinity.

Similar to Corollary 3.1, we have the following consequence of Theorem 2.2.
Corollary 3.2. Suppose that A(t) = −diag(a1(t), a2(t), · · · , an(t)), where ai(t) (i =
1, 2, · · · , n) are nonnegative continuous functions for t ≥ 0. If assumptions (A1) and
(B1) hold and

sup
t≥0

∫ t

0

∫ ∞
t−s
|P (v)|dvds = p∗ <∞,

(
1 +

1

d

)
kp∗ < 1,

then every solution of Equation (1.10) is bounded. In addition, (B2) also holds, then
every solution tends to zero as time goes to infinity.

Again, we have the consequence of Theorem 2.3 as Corollary 3.3 following.
Corollary 3.3. Suppose that A(t) = −diag(a1(t), a2(t), · · · , an(t)), where ai(t) (i =
1, 2, · · · , n) are nonnegative continuous functions on t ≥ 0. If assumptions (A1) and
(B1) hold and

sup
t≥0

∫ t

0

∫ s−t

−∞
|Q(u)|duds = p∗ <∞,

(
1 +

1

d

)
kp∗ < 1,

∫ 0

−∞

∫ s

−∞
|Q(u)|duds exists,

then every solution of equation (1.11) is bounded. In addition, if (B2) also holds, then
every solution tends to zero as times goes to infinity.

As a consequence of Theorem 2.4, we have the following Corollary 2.4.
Corollary 3.4. Suppose that A(t) = −diag(a1(t), a2(t), · · · , an(t)), where ai(t) (i =
1, 2, · · · , n) are nonnegative continuous functions on t ∈ R+. If assumptions (A1) and
(B1) hold and

sup
t≥0

∫ h(t)

t

|B(u)|du = p∗ <∞,
(

2 +
1

d

)
kp∗ < 1,
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then every solution of equation (1.12) is bounded. In addition, if (B2) also holds, then
every solution tends to zero as time goes to infinity.
Remark. Particularly, Corollaries 3.1-3.4 are just the theorems 3.2, 3.4, 3.6 and 3.8
of [1] when our equations are reduced to scalar ones considered in [1]. So, our results
have generalized the existing ones in literature.
Case II. The coefficient matrix A(t) of equation (2.1) is a constant matrix.

We assume that all eigenvalues of A have negative real part, then for any real
symmetric positive matrix C, there is a positive matrix P such that ATP+PA = −C.
Let V (t) = xT (t)Px(t), calculating the upper right derivative of V (t) along solutions
of (2.1), it follows that

V ′(t) = −xT (t)Cx(t) ≤ −αcxT (t)x(t) ≤ −αc
βp
V (t), (3.1)

where αc is the smallest eigenvalue of C and βp is the largest eigenvalue of P . Further,
using the comparison principle, we can get

αpx
T (t)x(t) ≤ V (t) ≤ V (0)e−αct/βp ,

where αp is the smallest eigenvalue of P . Let Φ(t) be a fundamental matrix solution
of (2.1), from the above, one have

|Φ(t)Φ−1(s)| = |Φ(t− s)| ≤ 1

αp
e−αc(t−s)/βp .

(C1) There exists a constant d > 0 such that for any t ∈ R+

d|A| ≤ αc/βp.

(C2)
∫∞
0
|A|dt =∞.

It is easy to prove that assumption (A2) holds with a = 1/αp and b = d. Further,
assumption (A3) also holds if (C2) holds.

For the special case that in Equations (1.9)-(1.12), we have the following Corollaries
3.5-3.8, these are direct consequences of Theorems 2.1-2.4.
Corollary 3.5. Suppose that the coefficient matrix A(t) of (2.1) is a constant matrix
and the eigenvalues of A have negative real part. Assume (A1) and (C1), and

k

(
1 +

1

dαp

)∫ 0

−L
|P (s)s|ds < 1.

Then every solution of Equation (1.9) is bounded. In addition, if (C2) also holds,
then every solution tends to zero as time goes to infinity.
Corollary 3.6. Suppose that the coefficient matrix A(t) of (2.1) is a constant matrix
and the eigenvalues of A have negative real part. If assumptions (A1) and (C1) hold
and

sup
t≥0

∫ t

0

∫ ∞
t−s
|P (v)|dvds = p∗ <∞,

(
1 +

1

dαp

)
kp∗ < 1,

then every solution of Equation (1.10) is bounded. In addition, if (C2) also holds,
then every solution tends to zero as time goes to infinity.
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Corollary 3.7. Suppose that the coefficient matrix A(t) of (2.1) is a constant matrix
and the eigenvalues of A have negative real part. If assumptions (A1) and (C1) hold
and

sup
t≥0

∫ t

0

∫ s−t

−∞
|Q(u)|duds = p∗ <∞,

(
1 +

1

dαp

)
kp∗ < 1,

∫ 0

−∞

∫ s

−∞
|Q(u)|duds exists,

then every solution of equation (1.11) is bounded. In addition, if (C2) also holds, then
every solution tends to zero as times goes to infinity.
Corollary 3.8. Suppose that the coefficient matrix A(t) of (2.1) is a constant matrix
and the eigenvalues of A have negative real part. If assumptions (A1) and (C1) hold
and

sup
t≥0

∫ h(t)

t

|B(u)|du = p∗ <∞,
(

1 +
1

αp
+

1

dαp

)
kp∗ < 1,

then every solution of equation (1.12) is bounded. In addition, if (C2) also holds, then
every solution tends to zero as time goes to infinity.
Case III. The coefficient matrix A(t) is a row strictly diagonally dominant matrix.

We introduce the following assumption for this special case.
(D1) There are positive constants λ and λi (i = 1, 2, · · · , n) such that for any

t ∈ R+

λiaii(t) +

n∑
j 6=i

λj |aij(t)| ≤ −λ. (3.2)

Let (t0, x0) ∈ R+ ×Rn be any initial point and

x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0), · · · , xn(t, t0, x0))

be the solution of equation (2.1) satisfying initial condition x(t0) = x0. Then, we
have

x(t, t0, x0) = Φ(t)Φ−1(t0)x0, t ≥ t0.

Further, let

V (t) = max
1≤i≤n

{
|xi(t, t0, x0)|

λi

}
.

For any t ≥ t0, we assume V (t) = |xi(t, t0, x0)|/λi. Hence, we have

|xj(t, t0, x0)|
λj

≤ |xi(t, t0, x0)|
λi

, j = 1, 2, · · · , n.
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Calculating the upper right derivative of V (t), it follows that

D+V (t) ≤ aii(t)
|xi(t, t0, x0)|

λi
+

n∑
j 6=i

|aij(t)|
|xj(t, t0, x0)|

λi

=
1

λi
(λiaii(t)

|xi(t, t0, x0)|
λi

+

n∑
j 6=i

λj |aij(t)|
|xj(t, t0, x0)|

λj
)

≤ 1

λi
(λiaii(t)

|xi(t, t0, x0)|
λi

+

n∑
j 6=i

λj |aij(t)|
|xi(t, t0, x0)|

λi
) ≤ − λ

λmax
V (t).

where λmax = max{λ1, λ2, · · · , λn}. Integrating from t0 to t, we obtain

V (t) ≤ V (t0)e−
λ

λmax
(t−t0). (3.3)

Since V (t) ≥ |x(t,t0,x0)|
λmax

, V (t0) ≤ |x0|
λmin

, from (3.3) we further obtain for any t ≥ t0

|x(t, t0, x0)| ≤ λmax

λmin
|x0|e−

λ
λmax

(t−t0).

Hence, for any t ≥ t0 we have

|Φ(t)Φ−1(t0)x0| ≤
λmax

λmin
|x0|e−

λ
λmax

(t−t0).

Since Φ(t)Φ−1(t0) = (Φ(t)Φ−1(t0)e1,Φ(t)Φ−1(t0)e2, · · · ,Φ(t)Φ−1(t0)en),
where ei = (0, · · · , 0, 1, 0, · · · , 0) (i = 1, 2, · · · , n), we further obtain

|Φ(t)Φ−1(t0)| ≤ max
1≤i≤n

|Φ(t)Φ−1(t0)ei| ≤
λmax

λmin
e−

λ
λmax

(t−t0).

Therefore, we finally obtain for any t, s ∈ R+ and t ≥ s

|Φ(t)Φ−1(s)| ≤ λmax

λmin
e−

λ
λmax

(t−s). (3.4)

Further, we introduce the assumption
(D2) There exists a constant d > 0 such that for any t ∈ R+, d|A(t)| ≤ λ

λmax
.

Then, from (3.4) we can obtain that assumption (A2) holds with a = λmax/λmin

and b = d, and assumption (A3) also holds due to (3.2).
For the special case that in Equations (1.9)-(1.12), we have the following Corollaries

3.9-3.12, these are direct consequences of Theorems 2.1-2.4.
Corollary 3.9. Assume (A1), (D1) and (D2), and

k

(
1 +

λmax

bλmin

)∫ 0

−L
|P (s)s|ds < 1.

Then every solution of Equation (1.9) is bounded and every solution tends to zero as
time goes to infinity.
Corollary 3.10. If assumptions (A1), (D1) and (D2) hold and

sup
t≥0

∫ t

0

∫ ∞
t−s
|P (v)|dvds = p∗ <∞,

(
1 +

λmax

bλmin

)
kp∗ < 1,
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then every solution of Equation (1.10) is bounded and every solution tends to zero as
time goes to infinity.
Corollary 3.11. If assumptions (A1), (D1) and (D2) hold and

sup
t≥0

∫ t

0

∫ s−t

−∞
|Q(u)|duds = p∗ <∞,

(
1 +

λmax

bλmin

)
kp∗ < 1,∫ 0

−∞

∫ s

−∞
|Q(u)|duds exists,

then every solution of equation (1.10) is bounded and every solution tends to zero as
times goes to infinity.
Corollary 3.12. If assumptions (A1), (D1) and (D2) hold and

sup
t≥0

∫ h(t)

t

|B(u)|du = p∗ <∞,
(

1 +
λmax

λmin
+
λmax

bλmin

)
kp∗ < 1,

then every solution of equation (1.10) is bounded and every solution tends to zero as
time goes to infinity.
Case IV. The coefficient matrix A(t) of equation (2.1) is a lower triangular matrix.

In this case, for the convenience we only give the discussion for n = 2. Using the
formula of the variation of constants, we can get

Φ(t) =

 e
∫ t
0
a11(u) du 0

e
∫ t
0
a22(u) du

∫ t

0

a21(u)e−
∫ u
0
[a11(v)+a22(v)] dv e

∫ t
0
a22(u) du


and hence,

Φ(t)Φ−1(s) =

 e
∫ t
s
a11(u) du 0

Ψ(s, t)e
∫ t
s
a22(u) due

∫ s
0
[a22(u)−a11(u)] du e

∫ t
s
a22(u) du

 ,

where Ψ(s, t) =
∫ t
s
a21(u)e−

∫ u
s
[a11(v)+a22(v)] dv du.

We introduce the following assumptions for this special case.
(E1) There exists a constant d > 0 such that for any t ∈ R+

d max
1≤i,j≤2

{|aij(t)|} ≤ min{|a11(t)|, |a22(t)|}.

(E2)
∫∞
0
|A(t)|dt =∞.

Similarly, we can easily show that if assumption (E1) holds, then assumption (A2)
also holds with

a = max

{
1, max

0<s<t
e
∫ s
0
[a22(u)−a11(u)] du

∫ t

s

a21(u)e−
∫ u
s
[a11(v)+a22(v)] dv du

}
and b = d, and if assumption (E2) holds, then assumption (A3) also holds.

Directly applying Theorems 2.1-2.4 we can obtained the boundedness and global
attractivity of (1.9)-(1.12).
Remark. Obviously, the results of this special case can be generalized to the more
general case that the coefficient matrix A(t) = (aij(t))n×n of (2.1) is lower triangular
matrix and aii(t) < 0 (i = 1, 2, · · · , n), where n ≥ 3.
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Remark. Similarly, if A(t) is upper triangular matrix, we also obtained the bound-
edness and global attractivity of (1.9)-(1.12).
Case V. The coefficient matrix A(t) of equation (2.1) is periodic matrix.

If the matrix A(t) is a periodic matrix function with minimum positive period ω,
it follows the Floquet’s Theory there is a differentiable ω periodic nonsingular ma-
trix function P (t) and a constant matrix R such that Φ(t) = P (t)eRt, where Φ(t)
be a fundamental matrix solution of (2.1). Further, let x = P (t)y, then Equation
(2.1) equivalent to the following linear differential system of equations with constant
coefficients y′(t) = Ry(t). Therefore, similar to the Case II, we also obtained the
boundedness and global attractivity of (1.9)-(1.12) if the eigenvalues of R have nega-
tive real part.
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