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1. Introduction

A well known Banach fixed point theorem states that every Banach contraction on
a complete metric space has a unique fixed point, and every sequence of iterates of
the mapping converges to this fixed point. On the other hand, there are nonexpansive
selfmappings of complete metric spaces, which do not have a fixed point. Hence the
following question arises:
How big (in the space of all nonexpansive mappings) is the set of all mappings which
satisfy the thesis of the Banach fixed point theorem?
In fact, we can formulate many similar questions since we can replace nonexpansive-
ness by other nonexpansive–type conditions, and the thesis of the Banach fixed point
theorem, with some other fixed point properties.
The answers to these questions have been established for the last 40 years, mainly by
Benavides, Alvárez, De Blasi, Myjak, Reich and Zaslavski ([3], [4], [10], [11], [13], [5]).
It turns out that in general, the set of all mappings with some fixed point property is
big in the space of all nonexpansive mappings in the sense that its complement is of
the first category or even σ-lower porous. On the other hand, the set of all Banach
contractions can be σ-lower porous in the space of all nonexpansive mappings.

This paper can be considered as a discussion on part of these results and it is
organized as follows: in the next section be present some notions of porosity, recall the
definitions of the Hausdorff metric and the Kuratowski measure of noncompactness,
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and define some spaces of nonexpansive–type mappings and theirs particular subsets.
In Section 3 we recall some known results. Note that we formulate them in a bit
different way than originally, in order to point out the similarities between them.
In Section 4 we give some further definitions and construct a space of generalized
nonexpansive–type mappings and its particular subset. This section can be consider
as a background for the next one.
In Section 5 we prove a general theorem (Theorem 5.3), and, as an application, we
give some extensions of results mentioned in Section 3.
In Section 6 we show that the result of Reich and Zaslavskii [11], which is considered
as an extension of the earlier result of De Blasi and Myjak [4], is in fact a consequence
of it.
In Section 7 we study the size of the set of all nonexpansive IFS’s, which generate a
Hutchinson–Barnsley fractal. The main result is another application of Theorem 5.3.

2. Notation and basic facts

At first we will present some notions of porosity. Let X be a metric space. In the
following, B(x,R) will stand for an open ball centered in x with a radius R > 0.
We say that M ⊂ X is lower porous, if

∀x∈M ∃α>0 ∃R0>0 ∀R∈(0,R0) ∃z∈X B(z, αR) ⊂ B(x,R)\M, (2.1)

If M is a countable union of lower porous sets, then we say that M is σ-lower porous.

Remark 2.1. In mentioned papers of Benavides, Alvárez, De Blasi, Myjak, Reich
and Zaslavski, there was defined another notion of porosity. Namely, we say that
M ⊂ X is porous, if

∃α>0 ∃R0>0 ∀x∈X ∀R∈(0,R0) ∃z∈X B(z, αR) ⊂ B(x,R)\M.

Additionally, we define σ-porosity in an obvious way.
This notion seems to be stronger than the lower porosity. However, by [16, Proposition
2.2], the following conditions are equivalent:

(i) M is σ-lower porous;
(ii) M is σ-porous.

Clearly, the σ-lower porosity implies meagerness, but the converse need not be true
– in all ”reasonable” complete metric spaces there are sets which are meager and are
not σ-lower porous. Hence if we know that a particular set is not only meager but
also σ-lower porous, then we know that it is even smaller. In fact, there are many
notions of porosity – for more information we refer the reader to survey papers [15]
and [16].
If X is a metric space, then B(X), CB(X) and K(X) will stand, respectively, for
spaces of all bounded, nonempty bounded and closed, and nonempty and compact
subsets of X. If X is a normed space, then we additionally consider the space CK(X)
of all nonempty compact and convex subsets of X. We consider CB(X), K(X) and
CK(X) as metric spaces endowed with the Hausdorff metric H:

H(A,B) := max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
, A,B ⊂ X;
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It is well known that if X is complete, then CB(X), K(X) and CK(X) are also
complete. Assume now that (X, d) and (Y, ρ) are metric spaces. Then we denote by
Cb(X,Y ) the set of all continuous bounded (i.e., of bounded images) functions from
X to Y . We consider Cb(X,Y ) as a metric space with the standard supremum metric
h:

∀f,g∈Cb(X,Y ) h(f, g) := sup{ρ(f(x), g(x)) : x ∈ X}.
It is well known that if Y is a complete metric space, then (Cb(X,Y ), h) is also
complete. Moreover, if Y is a normed space, then the metric h is induced by the
standard supremum norm.
We define the space of all nonexpansive bounded mappings from X to Y by:

Ω(X,Y ) := {f ∈ Cb(X,Y ) : ∀x,y∈X ρ(f(x), f(y)) ≤ d(x, y)}.
We consider Ω(X,Y ) as a metric subspace of Cb(X,Y ). We also define the subsets
of Ω(X,Y ):

kB(X,Y ) := {f ∈ Ω(X,Y ) : ∃k<1 ∀x,y∈X ρ(f(x), f(y)) ≤ kd(x, y)}
and

Ps(X,Y ) :=
⋂
c>0

⋃
f∈kB(X,Y )

B(f, (1− kf )c),

where kf := inf{k > 0 : ∀x,y∈X ρ(f(x), f(y)) ≤ kd(x, y)}.
Remark 2.2. Clearly, Ω(X,X) is the space of all bounded nonexpansive mappings,
and kB(X,X) is the set of all bounded Banach contractions.

If A is a subset of a metric space, then we define the Kuratowski measure of
noncompactness of A by:

ψ(A) := inf{ε > 0 : A can be covered by finitely many sets of diameter ≤ ε}.
We define the following space of continuous, bounded ψ-nonexpansive mappings by

Ωψ(X,Y ) := {f ∈ Cb(X,Y ) : ∀C∈B(X) ψ(f(C)) ≤ ψ(C)}. (2.2)

We consider Ωψ(X,Y ) as a metric subspace of Cb(X,Y ). We also define the subsets
of Ωψ(X,Y ):

kBψ(X,Y ) := {f ∈ Ωψ(X,Y ) : ∃k<1 ∀C∈B(X) ψ(f(C)) ≤ kψ(C)} (2.3)

and
Psψ(X,Y ) :=

⋂
c>0

⋃
f∈kBψ(X,Y )

B(f, (1− kf )c), (2.4)

where kf := inf{k > 0 : ∀C∈B(X) ψ(f(C)) ≤ kψ(C)}.
Remark 2.3. It is easy to see that

Ps(X,Y ) =
⋂
n∈N

⋃
f∈kB(X,Y )

B(f, (1− kf )εn)

and
Psψ(X,Y ) =

⋂
n∈N

⋃
f∈kBψ(X,Y )

B(f, (1− kf )εn),

where (εn) is any sequence of positive reals which converges to 0.
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3. Known results

We will recall the results of Benavides, Alvárez, De Blasi, Myjak, Reich and Za-
slavski.
We say that for a selfmapping f of a metric space (X, d), the fixed point problem is
well posed, if f has a unique fixed point, and every sequence of approximated fixed
points (i.e., a sequence (xn) for which limn→∞ d(f(xn), xn) = 0) converges to this
fixed point.
Let K be a nonempty bounded convex and closed subset of a Banach space. De Blasi
and Myjak proved that the set of all mappings from Ω(K,K) which satisfy the thesis
of the Banach fixed point theorem, forms the complement of a σ-lower porous set [4,
Theorem 4], and so does the set of all mappings from Ω(K,K), for which the fixed
point problem is well posed [4, Theorem 8]. In fact, if we take a closer look at their
proofs, we will see that they proved something more:

Theorem 3.1. If K is nonempty bounded convex and closed subset of a Banach
space, then the set Ω(K,K) \Ps(K,K) is σ-lower porous in Ω(K,K), and for every
f ∈ Ps(K,K), the thesis of the Banach fixed point theorem is satisfied and the fixed
point problem is well posed.

We say that for a selfmapping f of a metric space X, the fixed point problem is
weakly well posed, if the set of fixed points of f is nonempty and compact, and every
sequence of approximated fixed points is precompact.
Now let K be as above. De Blasi and Myjak [4, Theorem 13] proved that the set of
mappings from Ωψ(K,K), for which the fixed point problem is weakly well posed,
forms the complement of σ-lower porous subset of Ωψ(K,K). In fact, they proved
something more:

Theorem 3.2. If K is a nonempty bounded convex and closed subset of a Banach
space, then the set Ωψ(K,K) \ Psψ(K,K) is σ-lower porous in Ωψ(K,K), and for
every f ∈ Psψ(K,K), the fixed point problem is weakly well posed.

If X,Y are metric spaces, then we say that f : X → Y is ψ-condensing, if for every
nonprecompact set C ∈ B(X), we have ψ(f(C)) < ψ(C). Now let X be a Banach
space and K ⊂ X be nonempty closed bounded and convex, and A ⊂ X be nonempty
closed and convex. Benavides and Alvárez [3, Theorem 1] showed that the set of all
mappings from Ωψ(K,A) which are not condensing, is a σ-lower porous subset of
Ωψ(K,A). In fact, they proved something more:

Theorem 3.3. Let K be a nonempty closed bounded and convex subset of a Banach
space X, and A be a nonempty closed and convex subset of X. The set Ωψ(K,A) \
Psψ(K,A) is σ-lower porous in Ωψ(K,A), and every f ∈ Psψ(K,A) is condensing.

Now let us switch the attention to set valued mappings. Recall that we denote by
P(X) the family of all subsets of a set X. If f : X → P(X), then we say that x ∈ X is
a fixed point of f , if x ∈ f(x). Now let S be a closed and bounded subset of a Banach
space, which is additionally star shaped, i.e., st(S) := {x ∈ S : ∀y∈S [x, y] ⊂ S} 6= ∅.
De Blasi, Myjak, Reich and Zaslavski [5, Theorems 2.1 and 2.2] proved that the
set of all mappings from Ω(S,K(S)) [from Ω(S,CK(S))] which have nonempty and
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compact subset of fixed points is a generic subset of Ω(S,K(S)) [of Ω(S,CK(S))].
In fact, they proved something more:

Theorem 3.4. Assume that S is a closed bounded and star shaped subset of a Banach
space. Sets Ps(S,K(S)) and Ps(S,CK(S)) are generic subsets of Ω(S,K(S)) and
Ω(S,CK(S)), respectively. Moreover, if f ∈ Ps(S,K(S)) (and, in particular, f ∈
Ps(S,CK(S))), then f has a nonempty and compact set of fixed points.

As we can see, on one hand, all presented results are different, because they deal
with different spaces, but on the other hand, they share some similarities. In the
following, we will formulate and prove a general result which implies a slight strength-
ening of them.

4. Further notation

At first, we will present the definition of a hyperbolic space, and introduce the
definition of a semi-hyperbolic space. Put R+ := [0,∞) and let (X, d) be a metric
space. The functions c : R→ X and c+ : R+ → X are metric embeddings, if

d(c(t), c(s)) = |t− s| for every t, s ∈ R

and

d(c+(t), c+(s)) = |t− s| for every t, s ∈ R+.

The image c(R) is called a metric line, and the image c+(R+) is called a metric half-
line.
The images of a closed interval [a, b] under c or c+ is called a metric segment (and
denoted by [c(a), c(b)] or [c+(a), c+(b)]).
Now let (X, d) be a metric space and let L be a family of metric lines or half lines
such that for each x, y ∈ X, x 6= y, there is at most one l ∈ L such that x, y ∈ l. From
now on we will consider only metric segments which are subsets of elements of L.
If [x, y] is a metric segment and t ∈ [0, 1], then there exists a unique z ∈ [x, y], such
that d(x, z) = td(x, y) (and, consequently, d(z, y) = (1 − t)d(x, y)). Then we write
z = (1− t)x⊕ ty.
If A ⊂ X, x ∈ X and t > 0 are such that for each y ∈ A, there is a metric segment
joining x and y, then we put (1− t)x⊕ tA := {(1− t)x⊕ ty : y ∈ A}.
We first recall the definition of a hyperbolic space [12] (in fact, we give here an
equivalent definition – cf. [12, p. 558]):

Definition 4.1. Assume that (X, d) is a metric space which contains a family L of
metric lines such that for every x, y ∈ X, x 6= y, there exists a unique metric line in
L which passes through x and y. If, moreover, for every x, z, w and every t ∈ [0, 1],

d((1− t)x⊕ tz, (1− t)x⊕ tw) ≤ td(z, w),

then we say that X is a hyperbolic space. If M ⊂ X is such that for any x, y ∈ M ,
[x, y] ⊂M , then we say that M is h-convex.

Now we will introduce the notion of a semi-hyperbolic space:
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Definition 4.2. Assume that (X, d) is a metric space which contains a family L+ of
metric half-lines in X such that for each x, y ∈ X, x 6= y, there is at most one metric
half line in L+ which passes through x and y. Assume that

Stsh(X) :=
{
x ∈ X : ∀y∈X ∃l+∈L+ x, y ∈ l+

}
6= ∅.

If for every x ∈ Stsh(X), z, w ∈ X and every t ∈ [0, 1],

d((1− t)x⊕ tz, (1− t)x⊕ tw) ≤ td(z, w),

then we say that X is semi-hyperbolic. If M ⊂ X is such that

stsh(M) := {x ∈M ∩ Stsh(X) : ∀y∈M [x, y] ⊂M} 6= ∅,

then we say that M is sh-star shaped. We call any x0 ∈ stsh(M) a star center of M .

Remark 4.3. Since the definitions of a hyperbolic space and a semi-hyperbolic space
involve the families L and L+, respectively, we should define them as a triples (X, d, L)
and (X, d, L+), respectively. However, our simplification will not lead to any confu-
sions.

Proposition 4.4. The following statements holds:

(i) every hyperbolic space is semi hyperbolic;
(ii) every nonempty h-convex subset of a hyperbolic space is sh-star shaped.

Proof. We will only sketch the proof of (i). Let L be the family of metric lines which
appears in the definition of hyperbolic space, and let x0 ∈ X. Let Lx0 be the family
of all lines in L, which passes through x0. It is obvious that we can assume that each
l ∈ Lx0

is an image of metric embedding cl : R→ X such that cl(0) = x0. Define the
family

L+
x0

:= {cl([0,∞)) : l ∈ Lx0} ∪ {cl((−∞, 0]) : l ∈ Lx0}.

It can be easily seen that the family L+
x0

has all needed properties. Hence we have
(i). The proof of (ii), in view of the above construction, is obvious. �

Remark 4.5. By the above result, every hyperbolic space is semi-hyperbolic. In
particular, normed spaces are semi-hyperbolic, and star shaped subsets of normed
spaces are sh-star shaped. The reason for defining semi-hyperbolic spaces and its
sh-star shaped subsets comes from the fact that if X is a normed space, then CB(X)
and K(X) are semi-hyperbolic and need not be hyperbolic, as will be shown in the
sequel. Moreover, as will be recalled in the sequel, there are generic results concerning
hyperbolic spaces. Since we wanted to generalize also them, we needed a definition
which ”gathers” hyperbolic spaces and CB(X) spaces.

Proposition 4.6. Let X be a normed linear space and S be a star shaped subset of
X. The following statements hold:

(i) the spaces CB(X), K(X) and CK(X) (considered as metric spaces with
Hausdorff metric H) are semi-hyperbolic.

(ii) the sets CK(S) and CK(S) are sh-star shaped subsets of CB(X).
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Proof. Directly from the definition of a Hausdorff metric we get that for every x ∈ X,
A ∈ CB(X),

H(A, {x}) = sup{‖ y − x ‖: y ∈ A},
so

∀x∈X ∀A∈CB(X) ∀t≥0 H((1− t)x+ tA, {x}) = tH(A, {x}). (4.1)

Now observe that
(a) ∀x∈X ∀A∈CB(X) ∀t1,t2≥0 H((1− t1)x+ t1A, (1− t2)x+ t2A) = |t1− t2|H(A, {x});
(b) ∀x∈X ∀A,B∈CB(X) ∀t∈[0,1] H((1− t)x+ tA, (1− t)x+ tB) = tH(A,B);
(c) ∀x∈X ∀A⊂X ∀t∈R (A ∈ CB(X) iff (1− t)x+ tA ∈ CB(X)) and

(A ∈ K(X) iff (1−t)x+tA ∈ K(X)) and (A ∈ CK(X) iff (1−t)x+tA ∈ CK(X)).
We first show (a). Take any x ∈ X, A ∈ CB(X) and t1, t2 ≥ 0. Clearly, we can

assume that x = 0. For every y ∈ A, we have:

inf{‖ t1y − t2z ‖: z ∈ A} ≤ |t1 − t2| ‖ y ‖,

and

inf{‖ t2y − t1z ‖: z ∈ A} ≤ |t1 − t2| ‖ y ‖,
so

H(t1A, t2A) ≤ |t1 − t2|H(A, {0}). (4.2)

Moreover, by (4.1), we get

t1H(A, {0}) (4.1)
= H(t1A, {0}) ≤ H(t1A, t2A) +H(t2A, {0})
(4.1)
= H(t1A, t2A) + t2H(A, {0}).

Hence

H(t1A, t2A) ≥ (t1 − t2)H(A, {0}).
In the same way we get

H(t1A, t2A) ≥ (t2 − t1)H(A, {0}),

so finally,

H(t1A, t2A) ≥ |t2 − t1|H(A, {0}). (4.3)

Now (4.2) and (4.3) imply

H(t1A, t2A) = |t2 − t1|H(A, {0}),

which proves (a).
Now we show (b). Let x ∈ X, A,B ∈ CB(X) and t ∈ [0, 1]. Again, assume that
x = 0. For every y ∈ A, we get

inf{‖ ty − tz ‖: z ∈ B} = t inf{‖ y − z ‖: z ∈ B},

and for every y ∈ B,

inf{‖ ty − tz ‖: z ∈ A} = t inf{‖ y − z ‖: z ∈ A},

which easily implies (b).
The fact (c) is trivial.
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Now we show that CB(X) is a semi-hyperbolic space. Set x0 ∈ X and for each
A ∈ CB(X), put lAx0

:= {(1− t)x0 + tA : t ≥ 0}. Define the family

L+
x0

:=
{
lAx0

: A ∈ CB(X), H(A, {x0}) = 1
}
.

By (a) and (c), each element of L+
x0

is a metric half line in CB(X). Now if C ∈ CB(X)

and C ∈ lAx0
∩ lBx0

, where H(A, {x0}) = H(B, {x0}) = 1, then for some t, s ≥ 0, we
have C = (1− t)x0 + tA and C = (1− s)x0 + sB. Hence and by (a), H(C, {x0}) = t
and H(C, {x0}) = s. Thus t = s, so if C 6= {x0}, then A = B. This shows that
the metric half lines in L+

x0
are equal or their intersection contains only {x0}. In

particular, there is at least one metric half line from L+
x0

, which passes through any
two fixed sets.
Now let B ∈ CB(X) \ {{x0}} and set t := 1

H(B,{x0}) . Then B ∈ lAx0
, where A :=

(1− t)x0 + tB. Since H(A, {x0}) = 1, we get {x0} ∈ St(CB(X)).
Now assume that A ∈ St(CB(X)) and A 6= {x0}. Then, in particular, for every
B ∈ CB(X) with H(B, {x0}) = 1, there is C ∈ CB(X) with H(C, {x0}) = 1 and
A,B ∈ lCx0

. Since H(B, {x0}) = 1, we get that C = B, so A ∈ lBx0
. Hence each metric

half line in L+
x0

contains two established points (A and {x0}). This is a contradiction.
Hence {{x0}} = St(CB(X)). Finally, by (b), we have that CB(X) is semi hyperbolic.
The proofs of the facts that K(X) and CK(X) are semi hyperbolic are similar. Now
if S is a star shaped subset of X, then for every A ⊂ S, x ∈ st(S) and t ∈ [0, 1],
we get that (1 − t)x + tA ⊂ S. Hence and by the above construction, we have that
CB(S), K(S) and KC(S) are sh-star shaped subsets of CB(X). �

Now we show that spaces CB(X) and K(X) need not be hyperbolic.

Example 4.7. Let X = R2 and ‖ · ‖ be the Euclidean norm. Define A = {0} ×
[−1, 1], F = {2} × [−1, 1] and C = {(0, 1), (2, 1)}. Then H(A,F ) = H(A,C) =
H(F,D) = 2. It is easy to see that if for some closed set D, H(A,D) = H(D,F ) =
1
2H(A,F ) = 1, then D = {1} × [−1, 1], and if E is such that H(A,E) = H(E,C) =
1
2H(A,C) = 1, then E must be contained in the set E′ = B((0, 1), 1) ∪ B((2, 1), 1).

Since dist((1,−1), E′) > 1, we have that H(D,E) > 1 = 1
2H(F,C). This shows that

CB(X), K(X) are not hyperbolic.

Recall that by B(X) we denote the family of all bounded subsets of X.

Definition 4.8. Let X be a metric space and αX : B(X)→ [0,∞).
We say that αX is monotonic, if

∀C,D∈B(X) (C ⊂ D ⇒ αX(C) ≤ αX(D)) .

We say that αX is Lipschitzian, if

∃L>0 ∀C∈B(X) ∀r>0 αX

⋃
y∈C

B(y, r)

 ≤ αX(C) + Lr.

If, additionally, X is a sh-star shaped subset of a semi-hyperbolic space, then we say
that αX is star-controlled, if for any star center x0 of X,

∀C∈B(X) ∀t∈(0,1) αX((1− t)x0 ⊕ tC) ≤ tαX(C).
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Remark 4.9. It is easy to see that if C is a bounded subset of a sh-star shaped
subset of a semi-hyperbolic space, then for every t ∈ [0, 1] and a star center x0, the
set (1− t)x0 ⊕ tC is also bounded. This omits a possible problem with the definition
of a star-controlled functional.

Remark 4.10. Clearly, the diameter, defined on bounded subsets of a sh-star shaped
set, is monotonic, Lipschitzian and star-controlled.

Now we present the definition of an abstract measure of noncompactness [1, p.
160].

Definition 4.11. Let X be a normed space. We say that a functional φ : B(X) →
[0,∞) is a measure of noncompactness, if for every M,N ∈ B(X) and λ ∈ R, the
following condition are satisfied:

(1.1) φ(M ∪N) = max{φ(M), φ(N)};
(1.2) φ(M +N) ≤ φ(M) + φ(N);
(1.3) φ(λM) = |λ|φ(M);
(1.4) φ(M) ≤ φ(N) for M ⊂ N ;
(1.5) φ([0, 1] ·M) = φ(M);
(1.6) φ(convM) = φ(M);
(1.7) φ(M) = 0 iff M is precompact.

Remark 4.12. Note that all ”reasonable” measures of noncompactness (the Kura-
towski measure of noncompactness, the Hausdorff measure of noncompactness, the
lattice measure of noncompactness – [1, p. 161]) satisfy (1.1)–(1.7).

Remark 4.13. Any measure of noncompactness defined on a star shaped subset of
a Banach space, is monotonic (by (1.4)), Lipschitzian (by (1.2), (1.3) and (1.4)), and
star-controlled (by (1.2), (1.3) and (1.7)).

5. Result

Let X and Y be metric spaces, αX : B(X)→ [0,∞) and αY : B(Y )→ [0,∞). We
will define the space of continuous bounded functions which are, let us say, (αX-αY )-
nonexpansive:

ΩαY
αX (X,Y ) :=

{
f ∈ Cb(X,Y ) : ∀C∈B(X) αY (f(C)) ≤ αX(C)

}
.

As usually, we consider ΩαY
αX (X,Y ) as a metric subspace of Cb(X,Y ).

Remark 5.1. It is easy to see that if αY is monotonic and Lipschitzian, then
ΩαY
αX (X,Y ) is a closed subset of Cb(X,Y ). Hence if Y is a complete sh-star shaped

subset, then the space ΩαY
αX (X,Y ) is complete.

Now let us define the set of all generalized strict contractions:

kBαY
αX (X,Y ) := {f ∈ Ω : ∃k<1 ∀C∈B(X) αY (f(C)) ≤ kαX(C)}.

If f ∈ kBαY
αX (X,Y ), then by kf we define

kf := inf{k : ∀C∈B(X) αY (f(C)) ≤ kαX(C)}.
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Clearly, for every C ∈ B(X), αY (f(C)) ≤ kfαX(C).
Finally, we define the following subset of ΩαY

αX (X,Y ):

PsαYαX (X,Y ) :=
⋂
c>0

⋃
f∈kBαYαX (X,Y )

B(f, (1− kf )c).

Remark 5.2. Assume that X and Y are metric spaces. If αX and αY are the
diameters. It is easy to observe that in this case (recall the notation from Section 2)

ΩαY
αX (X,Y ) = Ω(X,Y ),

kBαY
αX (X,Y ) = kB(X,Y ),

PsαYαX (X,Y ) = Ps(X,Y ).

Assume that X and Y are subsets of the same normed space and φ is a measure of
nonompactness. Define Ωφ(X,Y ), kBφ(X,Y ) and Psφ(X,Y ) in a similar way as we
defined them for Kuratowski measure of nonompactness (cf. (2.2), (2.3), (2.4)). If
αX := φ|B(X) and αY := φ|B(Y ), then

ΩαY
αX (X,Y ) = Ωφ(X,Y ),

kBαY
αX (X,Y ) = kBφ(X,Y ),

PsαYαX (X,Y ) = Psφ(X,Y ).

The main result of this section is the following:

Theorem 5.3. Assume that (X, d) is a metric space, (Y, ρ) is a sh-star shaped sub-
space of a semi-hyperbolic space, αX : B(X)→ [0,∞) is monotonic and αY : B(Y )→
[0,∞) is monotonic and star-controlled. Then the set ΩαY

αX (X,Y ) \PsαYαX (X,Y ) is a
σ-lower porous subset of ΩαY

αX (X,Y ).

The proof is a refinement of the proofs from the mentioned papers.
Proof. For simplicity, we will write Ω, kB and Ps instead of ΩαY

αX (X,Y ), kBαY
αX (X,Y )

and PsαYαX (X,Y ), respectively.

It is easy to see that Ps =
⋂
n∈N

⋃
g∈kBB

(
g, (1− kg) 1

n

)
. Hence we only have to show

that Ω \
⋃
g∈kBB

(
g, (1− kg) 1

n

)
is lower porous in Ω for every n ∈ N. To this end,

fix n ∈ N and f ∈ Ω. Since f is bounded, there exists M <∞ such that

sup
x∈X

ρ(f(x), z0) < M, (5.1)

where z0 is a star center of Y . Now let δ > 0 be such that

nδ <
1− δ
M

, (5.2)

and let r0 := M
1−δ . Take any r ∈ (0, r0). By (5.2), we can take t so that

nrδ < 1− t < r
1− δ
M

. (5.3)

Since r < r0, we also have that 1 − t < 1. Thus t ∈ (0, 1). Now let f t be defined in
the following way:

f t(x) := (1− t)z0 ⊕ tf(x) for x ∈ X.
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By Remark 4.9 and a fact that f t(X) = (1 − t)z0 ⊕ tf(X), we get that f t(X) is
bounded. Now let us note that f t is continuous. Indeed, let x ∈ X and (xn) be a
sequence with xn → x. Then

ρ
(
f t(xn), f t(x)

)
≤ tρ (f(xn), f(x)) .

Hence and by the continuity of f , we get that f t(xn)→ f t(x), so f t is continuous.
Now by (5.1) and (5.3), for every x ∈ X, we have

ρ(f t(x), f(x)) = (1− t)ρ(f(x), z0)
(5.1)

≤ (1− t)M
(5.3)

≤ (1− δ)r,
so B(f t, δr) ⊂ B(f, r). Thus we only have to show that

B(f t, δr) ⊂
⋃
g∈kB

B

(
g, (1− kg)

1

n

)
. (5.4)

Note that f t ∈ kB and kft ≤ t. Indeed, if C ∈ B(X), then by the fact that αY is
star-controlled and f t(C) = (1− t)z0 ⊕ tf(C), we get

αY
(
f t(C)

)
≤ tαY (f(C)) ≤ tαX(C).

Hence and by (5.3), δr
(5.3)
< 1

n (1 − t) ≤ (1 − kft) 1
n . The above facts show (5.4) and

the proof of the theorem is finished. �
Now we will show that Theorem 5.3 implies slight strengthenings of mentioned

results. We will start by recalling the Sadovskĭı’s theorem in a very general form
(in fact, there are also successful attempts to further generalizations – cf. [8]) . It
seems to be a mathematical folklore, but since we did not find such formulation in
the literature, we will sketch its proof. If X and Y are subsets of normed spaces and
φ is a measure of noncompactness, then we say that f : X → Y is φ-condensing, if
for every nonprecompact, bounded set C ⊂ X, φ(f(C)) < φ(C).

Proposition 5.4. Assume that φ is a measure of noncompactness. Then for every
φ-condensing selfmapping f of a nonempty closed convex bounded subset of a Banach
space, the fixed point problem is weakly well posed.

Proof. By the standard proof of Sadovskĭı [14], we get that the set of all fixed points
of f , namely Fix(f), is nonempty. Since f is continuous, Fix(f) is closed. Now
since f is φ-condensing and f(Fix(f)) = Fix(f), we have that Fix(f) is compact.
Now let (xn) be the sequence of approximated fixed points of f , i.e., limn→∞ ‖
f(xn)− xn ‖= 0. Then by (1.1), (1.2), (1.3) and (1.4) (from Definition 4.11), we get
φ(f({xn : n ∈ N})) = φ({xn : n ∈ N}). Hence {xn : n ∈ N} is precompact. �

Theorem 5.5. Let X be a Banach space and

• K,A be nonempty closed and convex subsets (not necessarily bounded) of X;
• S be a closed, starshaped subset (not necessarily bounded) of X;
• φ be any measure of noncompactness.

Then the following statements hold:

(i) the set Ω(K,K) \ Ps(K,K) is σ-lower porous in Ω(K,K), and for every
f ∈ Ps(K,K), the thesis of the Banach fixed point theorem is satisfied and
the fixed point problem is well posed;
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(ii) the set Ωφ(K,K) \Psφ(K,K) is σ-lower porous in Ωφ(K,K), and for every
f ∈ Psφ(K,K) the fixed point problem is weakly well posed;

(iii) the set Ωφ(K,A) \Psφ(K,A) is σ-lower porous in Ωφ(K,A), and every f ∈
Psφ(K,A) is φ-condensing;

(iv) the set Ω(S,K(S))\Ps(S,K(S)) is σ-lower porous in Ω(S,K(S)), and every
f ∈ Ps(S,K(S)) has a nonempty and compact set of fixed points;

(v) the set Ω(S,CK(S)) \Ps(S,CK(S)) is σ-lower porous in Ω(S,CK(S)), and
every f ∈ Ps(S,CK(S)) has a nonempty and compact set of fixed points.

Proof. By Proposition 4.6, Remarks 4.10, 4.13, 5.2 and Theorem 5.3, the sets con-
sidered in (i)–(v) are σ-lower porous. Hence we only have to show the other part of
thesis.
Now we show (i). Let f ∈ Ps(K,K). Then the set K ′ := conv(f(K) + B(0, 1)) ∩K
is a nonempty convex closed and bounded subset of K. Set f ′ := f|K′ . Then
f ′ ∈ Ω(K ′,K ′). Let c > 0. Clearly, we may assume that c < 1. Since f ∈ Ps(K,K),
there exists g ∈ kB(K,K) such that f ∈ B(g, (1 − kg)c). In particular, for every
x ∈ K, ‖ f(x)− g(x) ‖< (1− kg)c < 1, so

g(K) ⊂ (f(K) +B(0, 1)) ∩K ⊂ K ′. (5.5)

Now let g′ := g|K′ . By (5.5), g′ : K ′ → K ′. Hence g′ ∈ kB(K ′,K ′) and kg′ ≤ kg.
Moreover,

sup{‖ f(x)− g(x) ‖: x ∈ K ′} ≤ sup{‖ f(x)− g(x) ‖: x ∈ K} < (1− kg)c ≤ (1− kg′)c.

Hence f ′ ∈ Ps(K ′,K ′). By Theorem 3.1, f ′ satisfies the thesis of Banach fixed point
theorem, and so does f . Now let (xn) be a sequence for which limn→∞ ‖ f(xn)−xn ‖=
0. Then there exists n0 ∈ N such that for any n ≥ n0, ‖ xn − f(xn) ‖< 1. Hence

{xn : n ≥ n0} ⊂ (f(K) +B(0, 1)) ∩K ⊂ K ′,

so again by Theorem 3.1, we get that (xn) is convergent to the unique fixed point of
f ′, so it is convergent to the fixed point of f . The proof of (i) is finished.
Now we prove part (iii). Let f ∈ Psφ(K,A) and C ∈ B(K) be nonprecompact.
Pick c > 0 with cφ(B(0, 1)) < φ(C). Then there exists g ∈ kBφ(K,X) such that
f ∈ B(g, (1− kg)c). Hence

kg +
(1− kg)cφ(B(0, 1))

φ(C)
< 1 (5.6)

and

f(C) ⊂ g(C) +B(0, (1− kg)c). (5.7)

By (5.6), (5.7) and the definition of measure of noncompactness, we get

φ(f(C))
(5.7)

≤ φ(g(C)) + (1− kg)cφ(B(0, 1)) ≤ kgφ(C) + (1− kg)cφ(B(0, 1))
(5.6)
< φ(C).

Hence f is condensing.
Part (ii) follows from (iii) (used for A = K) and a very similar argument to that from
part (i). The difference is that we have to make use of Proposition 5.4 instead of
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Theorem 3.1.
Now we prove part (iv). Let f ∈ Ps(S,K(S)) and x0 ∈ st(S). Put

S′ := conv
((⋃

f(S) +B(0, 1)
)
∪ {x0}

)
∩ S.

Now we show that S′ is closed bounded and star shaped. Since f(S) is bounded in
K(S), the set

⋃
f(S) is bounded. Hence

conv
((⋃

f(S) +B(0, 1)
)
∪ {x0}

)
.

is closed bounded and convex. Now since x0 is an element of the above set, and
x0 ∈ st(S), we get that S′ is star shaped. It is also easy to see that if h(f, g) < 1,
then g(S′) ⊂ K(S′). Then we proceed as in the proof of (i), and by Theorem 3.4, we
get that the set of fixed points of f|S′ is nonempty and compact. Since the set of fixed
points of f|S′ is the same as the set of fixed points of f , the proof of (iv) is finished.
The proof of (v) is very similar to the proof of (iv). �

6. Final remarks and other applications

Define the following family of functions:

Ra := {η : [0,∞)→ [0, 1] : η is nonincreasing and η(t) < 1 for t > 0}.
Now if (X, d) and (Y, ρ) are metric spaces, then we define the set:

kR(X,Y ) := {f ∈ Cb(X,Y ) : ∃η∈Ra ∀x,y∈X ρ(f(x), f(y)) ≤ η(d(x, y))d(x, y)}.
Note that if X = Y , then elements of kR(X,Y ) are called Rakotch contractions. The
following fixed point theorem is known. The proof can be found in [9] (cf. also [7]).

Proposition 6.1. Let X be a complete metric space. For every f ∈ kR(X,X), the
thesis of the Banach fixed point theorem is satisfied, and the fixed point problem is
well posed.

Reich and Zaslavski proved the following (part (i) is stated in [11, Theorem 2.2]
and (ii) is stated in [12, Theorem 4.3]).

Theorem 6.2. The following conditions hold:

(i) If K is a nonempty closed bounded and convex subset of a Banach space, then
the set Ω(K,K) \ kR(K,K) is σ-lower porous subset of Ω(K,K);

(ii) If C is a nonempty closed bounded and h-convex subset of a complete hy-
perbolic space, then the set Ω(C,C) \ kR(C,C) is σ-lower porous subset of
Ω(C,C).

In view of Proposition 6.1, this result (in particular the part (i)) seems to be an
extension of the mentioned results of De Blasi and Myjak (Theorem 3.1). However,
as will be seen, Ps(K,K) ⊂ kR(K,K), so the result of Reich and Zaslavski is not
an extension of the result of De Blasi and Myjak. In fact, the inclusion Ps(K,K) ⊂
kR(K,K) is a special case of a more general statement.
Assume that X, Y are metric spaces, αX : B(X) → [0,∞), αY : B(Y ) → [0,∞).
Define

kRαY
αX (X,Y ) :=

{
f ∈ ΩαY

αX (X,Y ) : ∃η∈Ra ∀C∈B(X) αY (f(C)) ≤ η(αX(C))αX(C)
}
.
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Remark 6.3. Assume that αX and αY are diameters. Obviously, kRαY
αX (X,Y ) ⊂

kR(X,Y ). An easy argument shows that the inverse inclusion also holds. Since it is
not important for our considerations, we skip the proof.

Proposition 6.4. Assume that X and Y are metric spaces, αX : B(X) → [0,∞)
is monotonic and αY : B(Y ) → [0,∞) is monotonic and Lipschitzian. Then
PsαYαX (X,Y ) ⊂ kRαY

αX (X,Y ).

Proof. For simplicity, we write Ps, kB and kR instead of PsαYαX (X,Y ), kBαY
αX (X,Y )

and kRαY
αX (X,Y ), respectively.

It is easy to see that kR =
⋂
n∈NMn, where for every n ∈ N,

Mn :=

{
f ∈ Ω : ∃λ∈(0,1) ∀C∈B(X)

(
αX(C) ≥ 1

n
⇒ αY (f(C)) ≤ λαX(C)

)}
.

Hence it is enough to show that for any n ∈ N, Ps ⊂Mn. So fix n ∈ N and take any
f ∈ Ps. Since αY is Lipschitzian, there exists L > 0 such that

∀C∈B(Y ) ∀r>0 αY

⋃
y∈C

B(y, r)

 ≤ αY (C) + Lr.

Now take c > 0 so that nLc < 1. Since f ∈ Ps, there exists g ∈ kB such that
ds(f, g) < c(1− kg). Set λ := kg + (1− kg)nLc. Clearly, λ < 1. Now take C ∈ B(X)
so that αX(C) ≥ 1

n . Since h(f, g) < (1−kg)c, we have that f(C) ⊂
⋃
y∈g(C)B(y, (1−

kg)c). Thus and by our assumptions, we have

αY (f(C)) ≤ αY (g(C)) + Lc(1− kg) ≤ kgαX(C) + Lc(1− kg) =(
kg +

Lc(1− kg)
αX(C)

)
αX(C) ≤ λαX(C),

so g ∈Mn and the result follows. �

Problem 6.5. The question arises, whether the inverse inclusion holds (we were able
to show this only for the case X = Y = [0, 1]). We state it as an open problem.

The above result together with Remark 6.3, gives us the following corollary:

Corollary 6.6. Let X and Y be metric spaces. Then Ps(X,Y ) ⊂ kR(X,Y ).

Theorem 5.3, Proposition 6.1 and Corollary 6.6, give us the following extension of
Theorem 5.5 (i) (and extension of Theorem 6.2):

Theorem 6.7. Let D be a closed sh-star shaped subset of a complete semi-hyperbolic
space. The set Ω(D,D) \ Ps(D,D) is σ-lower porous in Ω(D,D), and for every
f ∈ Ps(D,D), the thesis of the Banach fixed point theorem is satisfied, and the fixed
point problem is well posed.

Now let K be a nonempty bounded closed and convex subset of a Banach space.
Recall that CB(K) denotes the space of all nonempty closed and bounded subsets of
K. By Proposition 4.6, B(K) is a sh-star shaped subset of a semi-hyperbolic space.
Reich and Zaslavski [13] proved that kR(K,B(K)) is a generic subset of Ω(K,B(K)),
and that elements of kR(K,B(K)) have some interesting properties. Hence Theorem
5.3 and Corollary 6.6 imply the following slight extension of this result:
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Corollary 6.8. Let K be a nonempty bounded closed and convex subset of a Banach
space. The set Ω(K,B(K)) \Ps(K,B(K)) is σ-lower porous.

7. Generic existence of attractors of IFSs

If (X, d) is a metric space and f1, ..., fn : X → X are mappings which are ”in some
sense” contractive, then we call S := (f1, ..., fn) an iterated function system (IFS in
short). IFS generates a natural mapping FS : K(X)→ K(X) in the following way:

FS(D) := f1(D) ∪ ... ∪ fn(D).

It turns out that the function FS takes over many contractive conditions from the
functions f1, ..., fn (for example, if all f1, ..., fn are Banach contractions, so is FS ;
cf., also, Theorem 7.1). Hence in many cases, the function FS has a fixed point.
Such fixed points are called attractors or Hutchinson–Barnsley fractals (Hutchinson
introduced the notion of IFS in [6] and Barnsley popularized it in [2]).
In this section we apply Theorem 5.3 and Corollary 6.6 to show that the set of all
nonexpansive bounded IFSs S, for which FS satisfy the thesis of the Banach fixed
point theorem, is a complement of a σ-lower porous set.
We omit a standard proof of the following:

Theorem 7.1. Assume that X is a complete metric space and f1, ..., fn : X → X
are Rakotch contractions. If S = (f1, ..., fn), then FS is also a Rakotch contraction.

Define the space of all nonexpansive IFSs:

Ωn(X) := {(f1, ..., fn) : fi ∈ Ω(X,X) i = 1, ..., n}.

Consider Ωn(X) as a metric space with a supremum metric. Then we define:

kRn(X) := {(f1, ..., fn) ∈ Ωn(X) : fi ∈ kR(X,X) i = 1, ..., n}

Since each n-tuple of function (f1, ..., fn) can be considered as a function from X to
Xn, and each function f : X → Xn can be considered as an n-tuple f = (f1, ..., fn),
we can easily see that Ωn(X) = Ω(X,Xn) and kRn(X) = kR(X,Xn) (in the
Cartesian product Xn we consider the maximum metric). Therefore, applying
Theorem 5.3, Proposition 6.1, Corollary 6.6 and Theorem 7.1, we get:

Theorem 7.2. Assume that X is a sh-star shaped subset of a semi hyperbolic space
and n ∈ N. Then the set Ωn(X) \ kRn(X) is a σ-lower porous subset of Ωn(X).
In particular, the set of all n-tuples (f1, ..., fn) from Ωn(X), such that the function
FS (for S := (fi)

n
i=1) satisfies the thesis of the Banach fixed point theorem, is a

complement of a σ-lower subset of Ωn(X).
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