AN APPLICATION OF A FIXED POINT THEOREM FOR NONEXPANSIVE OPERATORS

GIUSEPPE RAO
*Department of Mathematics, University of Palermo
Via Archirafi 34, 90123 Palermo, Italy
E-mail: giuseppe.rao@unipa.it

Abstract

In this note, we present an application of a recent fixed point theorem by Ricceri to a two-point boundary value problem. Key Words and Phrases: Fixed point, nonexpansive operator, two-point boundary value problem. 2010 Mathematics Subject Classification: 34K10, 47H09, 47H10.

Very recently, in [1], B. Ricceri established the following fixed point theorem: Theorem 1. Let X be a real Hilbert space and let $J: X \rightarrow \mathbf{R}$ be a C^{1} functional whose Gâteaux derivative is nonexpansive. Assume also that there exists $r>0$ such that

$$
\begin{equation*}
\sup _{\|x\|=r} J(x)<r^{2} \sup _{\|x\|>r} \frac{J(x)}{\|x\|^{2}} . \tag{*}
\end{equation*}
$$

Under such hypotheses, there exists a fixed point of J^{\prime} whose norm is less than r.
The aim of the present short note is to give an application of this result to the two-point boundary value problem

$$
\begin{cases}-u^{\prime \prime}=f(u) & \text { in } \tag{P}\\ 0<u<\rho & \text { in }] 0,1[\\ u(0)=u(1)=0 & \end{cases}
$$

where $\rho>0$ and $f:[0, \rho] \rightarrow[0,+\infty[$.
Before stating our main result, we introduce the following notation. For each $\rho>0$ and $a \geq 0$, we denote by $\mathcal{A}_{\rho, a}$ the family of all Lipschitzian functions $g:[\rho,+\infty[\rightarrow$ $\left[0,+\infty\left[\right.\right.$, with Lipschitz constant not greater than π^{2}, such that $g(\rho)=a$. Moreover, we put

$$
\theta_{\rho, a}=\rho^{2} \sup \left\{\frac{\int_{\rho}^{\sigma} g(t) d t}{4 \sigma^{2}-\rho^{2}}:(g, \sigma) \in \mathcal{A}_{\rho, a} \times\right] \rho,+\infty[\}
$$

Our main result reads as follows:

Theorem 2. Let $\rho>0$ and let $f:[0, \rho] \rightarrow[0,+\infty[$ be a Lipschitzian function, with Lipschitz constant not greater than π^{2} and with $f(0)>0$. Assume also that

$$
\begin{equation*}
\int_{0}^{\rho} f(t) d t<\theta_{\rho, f(\rho)} \tag{1}
\end{equation*}
$$

Under such hypotheses, problem (P) has a classical solution u such that

$$
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<4 \rho^{2}
$$

Proof. Let $H_{0}^{1}(0,1)$ be the usual Sobolev space with the scalar product

$$
\langle u, v\rangle=\int_{0}^{1} u^{\prime}(t) v^{\prime}(t) d t
$$

and the induced norm

$$
\|u\|=\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}
$$

Let us recall that

$$
\begin{equation*}
\max _{[0,1]}|u| \leq \frac{1}{2}\|u\| \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{0}^{1}|u(t)|^{2} d t\right)^{\frac{1}{2}} \leq \frac{1}{\pi}\|u\| \tag{3}
\end{equation*}
$$

for all $u \in H_{0}^{1}(0,1)$. In view of (1), there exist $g \in \mathcal{A}_{\rho, f(\rho)}$ and $\sigma>\rho$ such that

$$
\begin{equation*}
\int_{0}^{\rho} f(t) d t<\rho^{2} \frac{\int_{\rho}^{\sigma} g(t) d t}{4 \sigma^{2}-\rho^{2}} \tag{4}
\end{equation*}
$$

Now, consider the function $\varphi: \mathbf{R} \rightarrow[0,+\infty[$ defined by

$$
\varphi(\xi)=\left\{\begin{array}{lll}
f(0) & \text { if } & \xi<0 \\
f(\xi) & \text { if } & \xi \in[0, \rho] \\
g(\xi) & \text { if } & \xi>\rho
\end{array}\right.
$$

Clearly, observing that $g(\rho)=f(\rho)$, the function φ is Lipschitzian in \mathbf{R} with Lipschitz constant not greater than π^{2}. Now, put

$$
J(u)=\int_{0}^{1} \Phi(u(t)) d t
$$

for all $u \in H_{0}^{1}(0,1)$, where $\Phi(\xi)=\int_{0}^{\xi} \varphi(t) d t$. The functional J is C^{1} with derivative given by

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{0}^{1} \varphi(u(t)) v(t) d t
$$

for all $u, v \in H_{0}^{1}(0,1)$. So, the fixed points of J^{\prime} are exactly the classical solutions of the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=\varphi(u) \quad \text { in }[0,1] \tag{1}\\
u(0)=u(1)=0
\end{array}\right.
$$

Since $f(0)>0$ and φ is non-negative, each classical solution of $\left(P_{1}\right)$ is positive in $] 0,1\left[\right.$. On the other hand, if $u \in H_{0}^{1}(0,1)$ is a fixed point of J^{\prime} with $\|u\|<2 \rho$, then, in view of (2), we have

$$
u(t)<\rho
$$

for all $t \in[0,1]$, and so u turns out to be a solution of problem (P). As a consequence, to reach our conclusion it is enough to show that it is possible to apply Theorem 1 to the functional J (with $X=H_{0}^{1}(0,1)$ of course), with $r=2 \rho$. In this connection, let us show that J^{\prime} is non-expansive. So, let $u, v \in H_{0}^{1}(0,1)$. We have

$$
\begin{equation*}
\left\|J^{\prime}(u)-J^{\prime}(v)\right\|=\sup _{\|w\|=1}\left|\left\langle J^{\prime}(u)-J^{\prime}(v), w\right\rangle\right| \tag{5}
\end{equation*}
$$

Fix $w \in H_{0}^{1}(0,1)$ with $\|w\|=1$. Taking (3) into account, we have

$$
\begin{aligned}
& \left|\left\langle J^{\prime}(u)-J^{\prime}(v), w\right\rangle\right| \leq \int_{0}^{1}\left|\varphi(u(t))-\varphi(v(t))\left\|w(t)\left|d t \leq \pi^{2} \int_{0}^{1}\right| u(t)-v(t)\right\| w(t)\right| d t \\
& \leq \pi^{2}\left(\int_{0}^{1}|u(t)-v(t)|^{2} d t\right)^{\frac{1}{2}}\left(\int_{0}^{1}|w(t)|^{2} d t\right)^{\frac{1}{2}} \leq \pi^{2} \frac{1}{\pi}\|u-v\| \frac{1}{\pi}\|w\|=\|u-v\|
\end{aligned}
$$

Hence, from (5), we get

$$
\left\|J^{\prime}(u)-J^{\prime}(v)\right\| \leq\|u-v\|
$$

as claimed. The final step consists in checking that condition $(*)$ holds. To this end, consider the function $\hat{u}:[0,1] \rightarrow[0,+\infty[$ defined by

$$
\hat{u}(t)=\left\{\begin{array}{lll}
4 \sigma t & \text { if } & t \in\left[0, \frac{1}{4}[\right. \\
\sigma & \text { if } & t \in\left[\frac{1}{4}, \frac{3}{4}\right] \\
4 \sigma(1-t) & \text { if } & \left.t \in] \frac{3}{4}, 1\right]
\end{array}\right.
$$

Clearly, $\hat{u} \in H_{0}^{1}(0,1)$ and

$$
\begin{equation*}
\|\hat{u}\|=\sqrt{8} \sigma \tag{6}
\end{equation*}
$$

Since Φ is non-decreasing (recall that $\varphi \geq 0$), in view of (2) again, we have

$$
\begin{equation*}
\sup _{\|u\|=2 \rho} J(u) \leq \Phi(\rho) \tag{7}
\end{equation*}
$$

Further, by the positivity of Φ in $] 0,+\infty[$, we clearly have

$$
\begin{equation*}
J(\hat{u})>\frac{\Phi(\sigma)}{2} \tag{8}
\end{equation*}
$$

From (4), we get

$$
\left(1-\frac{\rho^{2}}{4 \sigma^{2}}\right) \int_{0}^{\rho} f(t) d t<\frac{\rho^{2}}{4 \sigma^{2}} \int_{\rho}^{\sigma} g(t) d t
$$

and so

$$
\begin{equation*}
\Phi(\rho)<\frac{\rho^{2}}{4 \sigma^{2}} \Phi(\sigma) \tag{9}
\end{equation*}
$$

Finally, from (6) - (9), we obtain

$$
\sup _{\|u\|=2 \rho} J(u)<4 \rho^{2} \frac{J(\hat{u})}{\|\hat{u}\|^{2}}
$$

which gives $(*)$. The proof is complete.

References

[1] B. Ricceri, Another fixed point theorem for nonexpansive potential operators, Studia Math., 211 (2012), 147-151.

Received: June 16, 2012; Accepted: August 5, 2012.

