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Abstract. In the paper Qualitative behavior of an integral equation related to some epidemic model

(Demonstratio Mathematica, Vol. XXXVI, No 3/2003, 603-609) the author Eva Brestovanska has

considered the integral equation

x(t) =
[
g1(t) +

t∫
0

A1(t− s)F1(s, x(s))ds
]
· · ·

[
gp(t) +

t∫
0

Ap(t− s)Fp(s, x(s))ds
]
, t ≥ 0.

In this paper we shall study by weakly Picard technique operators in a gauge space: the existence,

uniqueness and data dependence such as the continuity, smooth dependence on parameter for the
solution of the following integral equation

x(t) =
[
g1(t) +

t∫
0

K1(t, s, x(s))ds
]
·
[
g2(t) +

t∫
0

K2(t, s, x(s))ds
]
, t ∈ [0,∞).

Our approach are connected with some results due from I.M. Olaru (An integral equation via weakly

Picard operators, Fixed Point Theory, Vol 11 No1/2010, 97-106 and Generalization of an integral
equation related to some epidemic models, Carpathian J. Math. Vol 26, No.1(2010), 92-96).
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1. Introduction

The theory of integral equations has many applications in describing numerous
events and problems of real world. For example, integral equations are often applicable
in mathematical physics, engineering, economics and biology (see [1], [4], [5], [6], [11],
[12], [13] and their references for results about existence and uniqueness, continuous
dependence of solution and even more specialized topics). The purpose of this paper
is to study the following integral equation

x(t) =
[
g1(t) +

t∫
0

K1(t, s, x(s))ds
]
·
[
g2(t) +

t∫
0

K2(t, s, x(s))ds
]
, t ∈ [0,∞). (1.1)
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This equation has, as a particular case, the integral equation studied by Eva Bresto-
vanska in [1]. Also we notice that the survey of equation (1.1) for the case when
t ∈ [a, b] can be found in [11] where I. M. Olaru were obtained the results concerning
the existence, uniqueness and data dependence: continuity, monotony, smooth depen-
dence on parameter for the solution of equation (1.1). Also, a generalization of (1.1)
with t ∈ [a, b], is provided by I. M. Olaru in [12]. In order to approach the equation
(1.1) we shall use weakly Picard operators technique. Also, weakly Picard operators
technique is given in [10] and [14]. The Picard operators are used in various fields,
especially in one of the most modern area of mathematics, namely Fractals Theory
(see for instance [18]).

2. Basic notions and results of the weakly Picard
operators theory

Throughout this paper we shall follow the standard terminologies and notations in
nonlinear analysis. For the convenience of the reader we shall recall some of them.

Let X be a nonempty set and A : X → X an operator. We denote by A0 := 1X ,
A1 := A, An+1 := An ◦ A, n ∈ N, the iterate operators of the operator A. We also
have

P (X) := {Y ⊂ X | Y 6= ∅}
FA := {x ∈ X | A(x) = x}

I(A) := {Y ∈ P (X) | A(Y ) ⊂ Y }
By (X,→) we will denote an L-space. For examples of such spaces one can see
[7], [8], [9].

In this paper, we need the following notations, notions and results from weakly
Picard operators technique (I.A. Rus [16] and [17]).

Definition 2.1. Let (X,→) be a L-space. An operator A : X → X is weakly Picard
operator (briefly WPO) if the sequence (An(x))n∈N converges, for all x ∈ X, and the
limit (which may depending on x) is a fixed point of A.

Definition 2.2. Let (X,→) be a L-space. An operator A : X → X is a Picard
operator (briefly PO) if the following properties hold:

(i) FA = {x?};
(ii) An(x)→ x? as n→∞, for all x ∈ X.

If A : X → X is weakly Picard operator, then we may define the operator
A∞ : X → X by A∞(x) = lim

n→∞
An(x). Moreover, if A is PO and we denote by x? its

unique fixed point, then A∞(x) = x?, for each x ∈ X.
We have (see [15], [16], [17] and [19]):

Theorem 2.1. (existence and uniqueness) Let (X, (di)i∈I) be a sequentially complete
Hausdorff gauge space and let T : X → X be such that, for every i ∈ I, there exists
αi ∈ I such that

di(T (x), T (y)) ≤ αi · di(x, y),

for each x, y ∈ X. Then T is PO.
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Definition 2.3. Let X be a nonempty. By definition (X,→,≤) is an ordered L-space
if and only if:

(i) (X,→) is an L-space;
(ii) (X,≤) is a partially ordered set;

(iii) xn → x, yn → y and xn ≤ yn for each n ∈ N imply x ≤ y.

Theorem 2.2. (abstract Gronwall’s Lemma) Let (X,→,≤) be an ordered L-space
and A : X → X be an operator. We suppose that:

(i) operator A is Picard and FA = {x?A};
(ii) A is increasing.

Then

(a) x ≤ A(x) implies x ≤ x?A;
(b) x ≥ A(x) implies x ≥ x?A.

Theorem 2.3. (data dependence) Let (X, (dλ)λ∈Λ) be a gauge space and
A,B : X → X be two cλ− WPOs. We suppose that, for each λ ∈ Λ, there exists
ηλ > 0 such that

dλ(A(x)), B(x) ≤ ηλ, for all x ∈ X.
Then

Hdλ(FA, FB) ≤ cλ · ηλ, for all λ ∈ Λ.

Other results about data dependence on gauge spaces can be found in [2].
For the study of the smooth dependence of parameter we shall use the following

result

Theorem 2.4. Let (X,→) be a L-space and (Y, (di)i∈I) be a sequentially complete
Hausdorff gauge space. Let B : X → X and C : X × Y → Y be two operators. We
suppose that:

(i) B is a Picard operator(PO) (we denote by x? its unique fixed point);
(ii) for every i ∈ I there exists αi ∈ (0, 1) such that

di
(
C(x, y1), C(x, y2)

)
≤ αidi(y1, y2),

for all x ∈ X and y1, y2 ∈ Y (we denote by y? the unique fixed point of the
operator C(x?, ·));

(iii) the operator C(·, y?) is continuous in x?.

Then A : X×Y → X×Y , A(x, y) :=
(
B(x), C(x, y)

)
is a Picard operator. Moreover,

FA =
{

(x?, y?)
}

.

3. Existence and uniqueness results

In this section we shall prove that the equation (1.1) has a unique solu-
tion in C

(
[0,∞),R

)
. For this, in what follows we consider the gauge space

X :=
(
C([0,∞),R), (dm)m∈N?

)
, where

dm(x, y) := max
t∈[0,m]

∣∣x(t)− y(t)
∣∣e−τt, τ > 0.

Our first main result is the following.



182 ION MARIAN OLARU

Theorem 3.1. We suppose that

(i) g1, g2 ∈ C(R+,R), K1,K2 ∈ C(R+
2 × R,R);

(ii) for each m ∈ N? and i = 1, 2, there exists M(Ki,m) > 0 such that

|Ki(t, s, u)| ≤M(Ki,m),

for all t, s ∈ [0,m], u ∈ R;
(iii) there exists L > 0 such that

|Ki(t, s, u)−Ki(t, s, v)| ≤ L|u− v|,

for all t, s ∈ [0,+∞), u, v ∈ R, i = 1, 2;

Then the equation (1.1) has a unique solution x? in C(R+,R).

Proof. We consider the operator A : X → X defined by:

A(x)(t) =
[
g1(t) +

t∫
0

K1(t, s, x(s))ds
]
·
[
g2(t) +

t∫
0

K2(t, s, x(s))ds
]
.

We set

αm := L ·
2∑
i=1

(
M(gi,m) +m ·M(Ki,m)

)
,

where

M(gi,m) := max
t∈[0,m]

|gi(t)|,

Notice that, for all x, y ∈ X, one has∣∣A(x)(t)−A(y)(t)
∣∣

=
∣∣∣(g1(t) +

t∫
0

K1

(
t, s, x(s)

)
ds
)
·
(
g2(t) +

t∫
0

K2

(
t, s, x(s)

)
ds
)

−
(
g1(t) +

t∫
0

K1

(
t, s, y(s)

)
ds
)
·
(
g2(t) +

t∫
0

K2

(
t, s, y(s)

)
ds
)∣∣∣

=
∣∣∣(g1(t) +

t∫
0

K1

(
t, s, x(s)

)
ds
)
·
(
g2(t) +

t∫
0

K2

(
t, s, x(s)

)
ds
)

−
(
g1(t) +

t∫
0

K1

(
t, s, x(s)

)
ds
)
·
(
g2(t) +

t∫
0

K2

(
t, s, y(s)

)
ds
)

+
(
g1(t) +

t∫
0

K1

(
t, s, x(s)

)
ds
)
·
(
g2(t) +

t∫
0

K2

(
t, s, y(s)

)
ds
)
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−
(
g1(t) +

t∫
0

K1

(
t, s, y(s)

)
ds
)
·
(
g2(t) +

t∫
0

K2

(
t, s, y(s)

)
ds
)∣∣∣

≤ L · (M(g1,m) +mM(K1,m))‖x− y‖m

t∫
0

eτ ·sds

+L ·
(
M(g2,m) +mM(K2,m)

)
‖x− y‖m

t∫
0

eτ ·sds

≤ αm
τ
‖x− y‖m · eτt.

It follows that

‖A(x)−A(y)‖m ≤
αm
τ
‖x− y‖m.

For a suitable choice of τ , according to Theorem 2.1, we obtain the conclusion. �

Example 3.1. Let us consider the following integral equation

x(t) =

(
g1(t) +

t∫
0

2t · s · sin a1x(s)

1 + (t+ s)2
ds

)
·
(
g2(t) +

t∫
0

2t · s · sin a2x(s)

1 + (t+ s)2
ds

)
,

where the functions gi ∈ C(R+,R) are arbitrarily chosen and ai ∈ R, i = 1, 2. Then
one can apply Theorem 3.1.

Proof. We establish that the requirement of Theorem 3.1 are verified.
Indeed, we have

K1,K2 : R2
+ × R→ R, Ki(t, s, u) = 2t · s · sin ai · u

1 + (t+ s)2
, i = 1, 2.

We notice that, for each m ∈ N, one has

|Ki(t, s, u)| = 2t · s ·
∣∣∣ sin u

1 + (t+ s)2

∣∣∣ ≤ 2m2,

for all t, s ∈ [0,m] and u ∈ R (i = 1, 2). So, M(Ki,m) = 2m2. Also, we observe that∣∣∣∂Ki

∂u
(t, s, u)

∣∣∣ =
2t · s · |ai|

1 + (t+ s)2
·
∣∣∣ cos

ai · u
1 + (t+ s)2

∣∣∣ ≤ |ai| ≤ max{|a1|, |a2|} =: L,

for all t, s ∈ R+ and u ∈ R. Therefore∣∣Ki(t, s, u)−Ki(t, s, v)
∣∣ ≤ L|u− v|,

for any t, s ∈ [0,+∞), u, v ∈ R, i = 1, 2, as required. �
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4. Data dependence results

We consider the following integral equations

x(t) =
(
gi1(t) +

t∫
0

Ki
1

(
t, s, x(s)

)
ds
)
·
(
gi2(t) +

t∫
0

Ki
2

(
t, s, x(s)

)
ds
)
, i = 1, 2. (4.1)

Assume that we are in the conditions of Theorem 3.1. Let x?i , i = 1, 2 be the unique
solution of equation (4.1). Then we have:

Theorem 4.1. Let gi1, g
i
2,K

i
1,K

i
2, i = 1, 2 be as in the statement of Theorem 3.1.

We suppose that

(a) there exists η1 such that
∣∣g1
i (t)− g2

i (t)
∣∣ ≤ η1, for every t ≥ 0, i = 1, 2;

(b) there exists η2 > 0 such that∣∣K1
i (t, s, u)−K2

i (t, s, u)
∣∣ ≤ η2,

for all t, s ∈ R+and u ∈ R, i = 1, 2;

(c) τ > max{α1
m, α

2
m}, where αim := L ·

2∑
j=1

(
M(gij ,m) +m ·M(Ki

j ,m)
)
, i = 1, 2.

Then

‖x∗1 − x∗2‖m ≤ (η1 +m · η2)(α1
m + α2

m) ·max
{ 1

1− α1
m

τ

,
1

1− α2
m

τ

}
,

for all m ∈ N?

Proof. Let Ai : X → X be defined as

Ai(x)(t) =
(
gi1(t) +

t∫
0

Ki
1(t, s, x(s))ds

)
·
(
gi2(t) +

t∫
0

Ki
2(t, s, x(s))ds

)
, i = 1, 2.

Since

‖Ai(x)−Ai(y)‖m ≤
αim
τ
‖x− y‖m, i = 1, 2,

deduce that A1, A2 are cm−Picard operators, where cm = max
{ 1

1− α1
m

τ

,
1

1− α2
m

τ

}
.

On the other hand, for al x ∈ X we have

|A1(x)(t)−A2(x)(t)|

=
∣∣∣(g1

1(t) +

t∫
0

K1
1 (t, s, x(s))ds

)
·
(
g1

2(t) +

t∫
0

K1
2 (t, s, x(s))ds

)

−
(
g2

1(t) +

t∫
0

K2
1 (t, s, x(s))ds

)
·
(
g2

2(t) +

t∫
0

K2
2 (t, s, x(s))ds

)∣∣∣
≤
∣∣∣(g1

1(t) +

t∫
0

K1
1 (t, s, x(s))ds

)
·
(
g1

2(t) +

t∫
0

K1
2 (t, s, x(s))ds

)
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−
(
g1

1(t) +

t∫
0

K1
1 (t, s, x(s))ds

)
·
(
g2

2(t) +

t∫
0

K2
2 (t, s, x(s))ds

)∣∣∣
+
∣∣∣(g1

1(t) +

t∫
0

K1
1 (t, s, x(s))ds

)
·
(
g2

2(t) +

t∫
0

K2
2 (t, s, x(s))ds

)

−
(
g2

1(t) +

t∫
0

K2
1 (t, s, x(s))ds

)
·
(
g2

2(t) +

t∫
0

K2
2 (t, s, x(s))ds

)∣∣∣
≤ (η1 +mη2) ·

(
M(g1

1 ,m) +m ·M(K1
1 ,m) +M(g2

2 ,m) +m ·M(K2
2 ,m)

)
≤ (η1 +mη2) · α

1
m + α2

m

L
=: ηm.

The conclusion follows from Theorem 2.3. �
Next we consider the inequalities

x(t) ≤
(
g1(t) +

t∫
0

K1(t, s, x(s))ds
)
·
(
g2(t) +

t∫
0

K2(t, s, x(s))ds
)

(4.2)

x(t) ≥
(
g1(t) +

t∫
0

K1(t, s, x(s))ds
)
·
(
g2(t) +

t∫
0

K2(t, s, x(s))ds
)

(4.3)

Theorem 4.2. We suppose that:

(a) gi(R+) ⊆ R+ and Ki(R+ × R+ × R) ⊆ R+ , i = 1, 2;
(b) g1, g2,K1,K2 verify the hypothesis of Theorem 3.1;
(c) gi and Ki(t, s, ·) are increasing;

Then

(i) for each solution x of inequality (4.2) we have x ≤ x∗;
(ii) for each solution x of inequality (4.3) we have x ≤ x∗,

where x∗ is the unique solution of equation (1.1).

Proof. Consider on C(R+,R) the partial order defined by

x ≤ y if and only if x(t) ≤ y(t) for any t ∈ R+.

Also, we consider the L-space (C(R+,R),→) where ”→” stands for uniform conver-
gence on each compact subset of R+. Then (C(R+,R),→,≤) is an ordered L-space.

Now we define, A : C(R+,R)→ C(R+,R) by

A(x)(t) =
(
g1(t) +

t∫
0

K1

(
t, s, x(s)

)
ds
)
·
(
g2(t) +

t∫
0

K2

(
t, s, x(s)

)
ds
)

First observe that from (b) A is PO. From (a) and (c) it follows that A is an
increasing operator. The conclusion follows from Theorem 2.2. �
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5. Smooth dependence on parameter

Next we are going to apply fiber principle contraction to study smooth dependence
on parameter for the equation (5.1). We remark that fiber principle contraction tech-
nique, can be found in many papers(see for instance [13], [15], [16], [17]). Throughout
of this section we consider gauge space X := (C(R+ × J,R), dm), where

dm(x, y) = max
(t,λ)∈[0,m]×J

|x(t, λ)− y(t, λ)|e−τt,m ∈ N?.

Let us consider the integral equation

x(t, λ) =
(
g1(t, λ) +

t∫
0

K1

(
t, s, x(s, λ), λ

)
ds
)
·
(
g2(t, λ) +

t∫
0

K2

(
t, s, x(s, λ), λ

)
ds
)
,

(5.1)
for all t ∈ [0,∞), λ ∈ J ⊂ R. We assume that

(H1) J ⊂ R an compact interval;
(H2) g1, g2 ∈ C1(R+ × J,R), K1,K2 ∈ C1(R+

2 × R× J,R);
(H3) there exists L > 0 such that∣∣∣∂Ki

∂u
(t, s, u, λ)

∣∣∣ ≤ L,
for all t, s ∈ R+, u ∈ R, λ ∈ J ;

(H4) for each m ∈ N? and i = 1, 2, there exists M(Ki,m) > 0 such that

|Ki(t, s, u, λ)| ≤M(Ki,m),

for all t, s ∈ [0,m], u ∈ R and λ ∈ J ;

We set αm := L ·
2∑
i=1

[M(gi,m) +m ·M(Ki,m)], where

M(gi,m) := max
(t×λ)∈[0,m]×J

|gi(t, λ)|.

We define the operator B : X → X, given by

B(x)(t, λ) =
(
g1(t, λ) +

t∫
0

K1(t, s, x(s), λ)ds
)
·
(
g2(t, λ) +

t∫
0

K2(t, s, x(s), λ)ds
)

It is clear that, in the conditions (H1) − (H4), B is Picard operator. Let x?(·, λ)
the unique fixed point of operator B. Then

x?(t, λ)

=
(
g1(t, λ) +

t∫
0

K1(t, s, x?(s, λ), λ)ds
)
·
(
g2(t, λ) +

t∫
0

K2(t, s, x?(s, λ), λ)ds
)
, (5.2)

for all t ∈ [a, b], λ ∈ J ⊂ R.

We suppose that there exists
∂x?

∂λ
. Then from relation (5.2) we obtain that
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∂x?

∂λ
=
(∂g1

∂λ
(t, λ)+

t∫
0

∂K1

∂u
(t, s, x?(s, λ), λ)·∂x

?

∂λ
(s, λ)ds+

t∫
0

∂K1

∂λ
(t, s, x?(s, λ), λ)ds

)
·

(
g2(t, λ) +

t∫
0

K2(t, s, x?(s, λ), λ)ds) + (g1(t, λ) +

t∫
0

K1(t, s, x?(s, λ), λ)ds
)
·

(∂g2

∂λ
(t, λ) +

t∫
0

∂K2

∂u
(t, s, x?(s, λ), λ) · ∂x

?

∂λ
(s, λ)ds+

t∫
0

∂K2

∂λ
(t, s, x?(s, λ), λ)ds

)
.

This relation suggest us to consider the following operator C : X ×X → X,

C(x, y)(t, λ)

=
(∂g1

∂λ
(t, λ) +

t∫
0

∂K1

∂u
(t, s, x(s, λ), λ) · y(s, λ)ds+

t∫
0

∂K1

∂λ
(t, s, x(s, λ), λ)ds

)
·

(
g2(t, λ) +

t∫
0

K2(t, s, x(s, λ), λ)ds
)

+
(
g1(t, λ) +

t∫
0

K1(t, s, x(s, λ), λ)ds
)
·

(∂g2

∂λ
(t, λ) +

t∫
0

∂K2

∂u
(t, s, x(s, λ), λ) · y(s, λ)ds+

t∫
0

∂K2

∂λ
(t, s, x(s, λ), λ)ds

)
.

Let be m ∈ N and x ∈ X. Then for all y, z ∈ X we have

‖C(x, y)− C(x, z)‖m ≤
αm
τ
· ‖y − z‖m.

For a suitable choice of τ , the operator C(x, ·) is contraction. In this way we have the
triangular operator

A : X ×X → X ×X,
A(x, y)(t, λ) =

(
B(x)(t, λ), C(x, y)(t, λ)

)
.

Using Theorem 2.4 we conclude that A is a Picard operator. So, the sequences

xn+1 = B(xn), n ∈ N

yn+1 = C(xn, yn)

converges uniformly on each compact of R+ × J to (x?, y?) ∈ FA, for all x0, y0 ∈ X.

If we take x0 = 0, y0 =
∂x0

∂λ
= 0 then y1 =

∂x1

∂λ
and thus by induction we can

prove that yn = ∂xn
∂λ , for all n ∈ N?.

Hence xn → x? and, also,
∂xn
∂λ
→ y? as n→∞, uniformly on each interval [0,m],

m ∈ N?.
Therefore, there exists

∂x?

∂λ
and

∂x?

∂λ
= y?.

From the above considerations, we have that
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Theorem 5.1. We consider the integral equation (5.1) in the hypothesis (H1)−(H4).
Then

(i) the equation (5.2) has a unique solution x?(t, ·) ∈ X;
(ii) x?(t, ·) ∈ C1(J), for all t ∈ [a, b].
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