ON THE EXISTENCE OF CONNECTED SETS OF SOLUTIONS FOR NONLINEAR OPERATORS

DONAL O'REGAN
Dedicated to James N. (Jim) Flavin with admiration
School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway, Ireland
E-mail: donal.oregan@nuigalway.ie

Abstract

In this paper we discuss continua of fixed points and coincidence points. Key Words and Phrases: Continua of fixed points, continua of coincidence points. 2010 Mathematics Subject Classification: $47 \mathrm{H} 10,47 \mathrm{H} 04$.

1. Introduction

In this paper we investigate the solution set of a map F and in particular we present conditions on F which guarantee that the solution set contains a connected component. These bifurcation results rely on the notion of an essential map $[1,7]$. We refer the reader to $[2,3,4]$ for other approaches in the literature.

Let X and Y be Hausdorff topological spaces. Given a class \mathbf{X} of maps, $\mathbf{X}(X, Y)$ denotes the set of maps $F: X \rightarrow 2^{Y}$ (nonempty subsets of Y) belonging to \mathbf{X}, and \mathbf{X}_{c} the set of finite compositions of maps in \mathbf{X}. We let

$$
\mathbf{F}(\mathbf{X})=\{Z: \text { Fix } F \neq \emptyset \text { for all } F \in \mathbf{X}(Z, Z)\}
$$

where Fix F denotes the set of fixed points of F.
The class \mathbf{U} of maps is defined by the following properties:
(i) \mathbf{U} contains the class \mathbf{C} of single valued continuous functions;
(ii) each $F \in \mathbf{U}_{c}$ is upper semicontinuous and compact valued; and
(iii) $B^{n} \in \mathbf{F}\left(\mathbf{U}_{c}\right)$ for all $n \in\{1,2, \ldots$.$\} ; here B^{n}=\left\{x \in \mathbf{R}^{n}:\|x\| \leq 1\right\}$.

We say $F \in \mathbf{U}_{c}^{k}(X, Y)$ if for any compact subset K of X there is a $G \in \mathbf{U}_{c}(K, Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$.

Recall \mathbf{U}_{c}^{k} is closed under compositions. The class \mathbf{U}_{c}^{k} contains almost all the well known maps in the literature (see [8] and the references therein). It is also possible to consider more general maps (see $[6,7]$) and in this paper we will consider a class of maps which we will call \mathbf{A}.

2. Continua of solutions

Let E be a completely regular topological space and U an open subset of E.
We will consider a class A of maps (see [5]).
Definition 2.1. We say $F \in A(\bar{U}, E)$ if $F \in \mathbf{A}(\bar{U}, E)$ and $F: \bar{U} \rightarrow K(E)$ is an upper semicontinuous map; here \bar{U} denotes the closure of U in E and $K(E)$ denotes the family of nonempty compact subsets of E.
Definition 2.2. We say $F \in A_{\partial U}(\bar{U}, E)$ if $F \in A(\bar{U}, E)$ with $x \notin F(x)$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Definition 2.3. Let $F \in A_{\partial U}(\bar{U}, E)$. We say F is essential in $A_{\partial U}(\bar{U}, E)$ if for every map $J \in A_{\partial U}(\bar{U}, E)$ with $\left.J\right|_{\partial U}=\left.F\right|_{\partial U}$ there exists $x \in U$ with $x \in J(x)$.

Recall a compact connected set is called a continuum. For our results in this paper we will use Whyburn's lemma from topology which we state here for convenience.

Theorem 2.1. Let A and B be disjoint closed subsets of a compact Hausdorff topological space K such that no connected component of K intersects both A and B. Then there exists a partition $K=K_{1} \cup K_{2}$ where K_{1} and K_{2} are disjoint compact sets containing A and B respectively.

An easy consequence of Theorem 2.1 was established by Martelli in [3].
Theorem 2.2. Let X be a metric space and K a compact subset of X. Assume that A and B are two disjoint closed subsets of K such that no connected component of K intersects both. Then there exists an open bounded set U such that

$$
A \subset U, \bar{U} \cap B=\emptyset \text { and } \partial U \cap K=\emptyset
$$

For our next results we assume E is a metric space and U an open subset of $E \times[0,1]$. We will also assume the following condition:

$$
\left\{\begin{array}{l}
\text { for Hausdorff topogical spaces } X_{1} \text { and } X_{2}, \text { if } F \in A\left(X_{1}, X_{2}\right), \tag{2.1}\\
v \in \mathbf{C}\left(X_{1},[0,1]\right) \text { and if } \Phi(y)=(F(y), v(y)) \text { for } y \in X_{1}, \\
\text { then } \Phi \in A\left(X_{1}, X_{2} \times[0,1]\right)
\end{array}\right.
$$

Our first result was motivated by ideas in [7].
Theorem 2.3. Suppose $N \in A(\bar{U}, E)$ with

$$
\begin{equation*}
x \notin N(x, \lambda) \text { for }(x, \lambda) \in \partial U . \tag{2.2}
\end{equation*}
$$

Let $H: \bar{U} \times[0,1] \rightarrow K(E \times[0,1])$ be given by $H(x, \lambda, \mu)=(N(x, \lambda), \mu)$ for $(x, \lambda) \in \bar{U}$ and $\mu \in[0,1]$. In addition assume the following two conditions hold:

$$
\left\{\begin{array}{l}
H_{0} \text { is essential in } A_{\partial U}(\bar{U}, E \times[0,1]) ; \text { here } \tag{2.3}\\
H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0) \text { for } \quad(x, \lambda) \in \bar{U}
\end{array}\right.
$$

and

$$
\begin{equation*}
\Omega=\{(x, \lambda) \in \bar{U}: x \in N(x, \lambda)\} \text { is compact and } \Omega_{1} \neq \emptyset ; \tag{2.4}
\end{equation*}
$$

here $\Omega_{t}=\{x \in E:(x, t) \in \Omega\}$ for each $t \in[0,1]$. Then Ω contains a continuum intersecting $\Omega_{0} \times\{0\}$ and $\Omega_{1} \times\{1\}$.

Remark 2.1. Conditions to guarantee that $\Omega_{1} \neq \emptyset$ for maps in $A(\bar{U}, E)$ can be found in [5, Theorem 2.5].
Proof. Note $A=\Omega_{0} \times\{0\} \subseteq \Omega$ and $B=\Omega_{1} \times\{1\} \subseteq \Omega$ are closed (and compact). If there is no continuum intersecting A and B then from Theorem 2.1, Ω can be represented as $\Omega=\Omega^{\star} \cup \Omega^{\star \star}$ where Ω^{\star} and $\Omega^{\star \star}$ are disjoint compact sets with $A \subseteq \Omega^{\star}$ and $B \subseteq \Omega^{\star \star}$. Notice Ω^{\star} and $\Omega^{\star \star} \cup \partial U$ are closed and disjoint (note $\Omega^{\star} \cap \partial U=\emptyset$ since if there exists a $(x, \lambda) \in \partial U$ and $(x, \lambda) \in \Omega^{\star}$ then (note $\left.(x, \lambda) \in \Omega^{\star} \subseteq \Omega\right) x \in N(x, \lambda)$ which contradicts (2.2)). Now there exists a continuous map $\mu: \bar{U} \rightarrow[0,1]$ with $\mu\left(\Omega^{\star \star} \cup \partial U\right)=0$ and $\mu\left(\Omega^{\star}\right)=1$. Let

$$
T(x, \lambda)=(N(x, \lambda), \mu(x, \lambda)) \quad \text { for } \quad(x, \lambda) \in \bar{U} .
$$

Notice (2.1) guarantees that $T \in A(\bar{U}, E \times[0,1])$ and in fact $T \in A_{\partial U}(\bar{U}, E \times$ $[0,1])$ since if there exists a $(x, \lambda) \in \partial U$ with $(x, \lambda) \in T(x, \lambda)$ then $(x, \lambda) \in$ $(N(x, \lambda), \mu(x, \lambda))=(N(x, \lambda), 0)$ so $x \in N(x, 0)$ which contradicts (2.2). Notice as well (here $\left.H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0)\right)$ that

$$
\left.T\right|_{\partial U}=\left.H_{0}\right|_{\partial U}
$$

since if $(x, \lambda) \in \partial U$ then $T(x, \lambda)=(N(x, \lambda), \mu(x, \lambda))=(N(x, \lambda), 0)$ (note $\mu\left(\Omega^{\star \star} \cup\right.$ $\partial U)=0$). Now (2.3) guarantees that there exists a $(x, \lambda) \in U$ with $(x, \lambda) \in T(x, \lambda)$ i.e. $x \in N(x, \lambda)$ and $\lambda=\mu(x, \lambda)$. Note $(x, \lambda) \in \Omega \operatorname{since}(x, \lambda) \in U$ and $x \in N(x, \lambda)$. Now either $(x, \lambda) \in \Omega^{\star}$ or $(x, \lambda) \in \Omega^{\star \star}$.
Case 1. Suppose $(x, \lambda) \in \Omega^{\star}$.
Then $\mu(x, \lambda)=1$. Thus $\lambda=\mu(x, \lambda)=1$ and $x \in N(x, \lambda)=N(x, 1)$ i.e. $(x, 1) \in$ $B \subseteq \Omega^{\star \star}$ which contradicts $(x, 1)=(x, \lambda) \in \Omega^{\star}$.
Case 2. Suppose $(x, \lambda) \in \Omega^{\star \star}$.
Then $\mu(x, \lambda)=0$. Thus $\lambda=\mu(x, \lambda)=0$ and $x \in N(x, \lambda)=N(x, 0)$ i.e. $(x, 0) \in$ $A \subseteq \Omega^{\star}$ which contradicts $(x, 0)=(x, \lambda) \in \Omega^{\star \star}$.

In our next result (2.2) is not assumed.
Theorem 2.4. Suppose $N \in A(\bar{U}, E)$ with

$$
\begin{equation*}
x \notin N(x, 0) \quad \text { for }(x, 0) \in \partial U . \tag{2.5}
\end{equation*}
$$

Let $H: \bar{U} \times[0,1] \rightarrow K(E \times[0,1])$ be given by $H(x, \lambda, \mu)=(N(x, \lambda), \mu)$ for $(x, \lambda) \in \bar{U}$ and $\mu \in[0,1]$ and assume (2.3) and (2.4) hold. In addition for open subsets W of U with $\Omega_{0} \times\{0\} \subseteq W \subseteq U$ (so $x \notin N(x, 0)$ for $\left.(x, 0) \in U \backslash W\right), \partial W \cap \Omega=\emptyset$ and $\bar{W} \cap(\partial U \cap \Omega)=\emptyset$ assume $N \in A(\bar{W}, E)$ and the following conditions holds:

$$
\begin{cases}H_{0} \text { is essential in } A_{\partial W}(\bar{W}, E \times[0,1]) ; & \text { here } \tag{2.6}\\ H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0) \text { for }(x, \lambda) \in \bar{W}\end{cases}
$$

and

$$
\begin{equation*}
\Sigma_{1} \neq \emptyset \tag{2.7}
\end{equation*}
$$

here $\Sigma=\{(x, \lambda) \in \bar{W}: x \in N(x, \lambda)\}$ and $\Sigma_{t}=\{x \in E:(x, t) \in \Sigma\}$ for each $t \in[0,1]$. Then Ω contains a continuum intersecting $\Omega_{0} \times\{0\}$ and $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$; here $\Omega_{t}=\{x \in E:(x, t) \in \Omega\}$ for each $t \in[0,1]$.

Proof. There are two cases to consider, namely $\Omega \cap \partial U=\emptyset$ or $\Omega \cap \partial U \neq \emptyset$. If $\Omega \cap \partial U=\emptyset$ then (2.2) holds so the result follows from Theorem 2.3. Now suppose $\Omega \cap \partial U \neq \emptyset$. Let $A=\Omega_{0} \times\{0\}, B=\Omega_{1} \times\{1\}$ and $C=\Omega \cap \partial U(\neq \emptyset)$. Notice $C \subseteq \Omega$ is closed and (2.5) guarantees that C is disjoint from A. Now from Theorem 2.1 either (1). there exists a continuum of Ω which intersects A and C (and we are finished), or (2). $\Omega=\Omega^{\star} \cup \Omega^{\star \star}$ where Ω^{\star} and $\Omega^{\star \star}$ are disjoint compact sets with $A \subseteq \Omega^{\star}$ and $B \subseteq \Omega^{\star \star}$. Suppose (2) occurs. Now from Theorem 2.2 there exists an open set V with

$$
\begin{equation*}
\Omega^{\star} \subseteq V, \bar{V} \cap \Omega^{\star \star}=\emptyset \text { and } \partial V \cap \Omega=\emptyset \tag{2.8}
\end{equation*}
$$

Let $W=U \cap V$. We claim

$$
\begin{equation*}
A \subseteq W \subseteq U, \quad \partial W \cap \Omega=\emptyset \text { and } \bar{W} \cap(\partial U \cap \Omega)=\emptyset \tag{2.9}
\end{equation*}
$$

Note clearly $A \subseteq W$ since $A \subseteq \Omega^{\star} \subseteq V$ and $A \subseteq U$ from (2.5). To see that $\partial W \cap \Omega=\emptyset$ first notice that

$$
\begin{aligned}
\partial W & =(\overline{U \cap V}) \backslash(U \cap V) \subseteq(\bar{U} \cap \bar{V}) \backslash(U \cap V) \\
& =((\bar{U} \backslash U) \cap \bar{V}) \cup((\bar{V} \backslash V) \cap \bar{U}) \\
& =(\partial U \cap \bar{V}) \cup(\partial V \cap \bar{U}) \subseteq(\partial U \cap \bar{V}) \cup \partial V .
\end{aligned}
$$

If we show $\partial V \cap \Omega=\emptyset$ and $(\partial U \cap \bar{V}) \cap \Omega=\emptyset$ then $\partial W \cap \Omega=\emptyset$. Clearly $\partial V \cap \Omega=\emptyset$ from (2.8). Also from (2.8) we have $\bar{V} \cap \Omega^{\star \star}=\emptyset$ so since $C=\Omega \cap \partial U \subseteq \Omega^{\star \star}$ we have $\bar{V} \cap \Omega \cap \partial U=\emptyset$. Thus $\partial W \cap \Omega=\emptyset$. Next note $\bar{W} \cap \Omega^{\star \star}=\emptyset$ since $\bar{W} \subseteq \bar{U} \cap \bar{V} \subseteq \bar{V}$ and $\bar{V} \cap \Omega^{\star \star}=\emptyset$ from (2.8). Now $\bar{W} \cap \Omega^{\star \star}=\emptyset$ and $C \subseteq \Omega^{\star \star}$ implies $\bar{W} \cap(\partial U \cap \Omega)=\emptyset$. Consequently (2.9) holds [Note also that $\Omega^{\star} \subseteq W$ since $\Omega^{\star} \subseteq V$ from (2.8), $\Omega^{\star} \subseteq \bar{U}$ and $\partial U \cap \Omega^{\star}=\emptyset$ since if $x \in \partial U \cap \Omega^{\star}$ then $x \in \partial U \cap \Omega=C \subseteq \Omega^{\star \star}$ so $x \in \Omega^{\star} \cap \Omega^{\star \star}$, which is a contradiction since $\Omega^{\star} \cap \Omega^{\star \star}=\emptyset$. Of course if there exists $(x, 0) \in U \backslash W$ with $x \in N(x, 0)$ then $(x, 0) \in \Omega_{0} \times\{0\}=A \subseteq W$, a contradiction since $(x, 0) \in U \backslash W$. Thus $x \notin N(x, 0)$ for $(x, 0) \in U \backslash W$.] Let

$$
\Sigma=\{(x, \lambda) \in \bar{W}: \quad x \in N(x, \lambda)\} .
$$

Note $\partial W \cap \Sigma=\emptyset$ from (2.9) since $\Sigma \subseteq \Omega$. Now Theorem 2.3 implies that Σ contains a continuum intersecting $\Sigma_{0} \times\{0\}\left(\subseteq \Omega_{0} \times\{0\}\right)$ and $\Sigma_{1} \times\{1\}\left(\subseteq \Omega_{1} \times\{1\}\right)$ and our result follows.

Remark 2.2. From the proof above we see that that one could replace (2.4) with the assumption that $\Omega_{1} \neq \emptyset$ and $\{(x, \lambda) \in \bar{W}: x \in N(x, \lambda)\}$ is compact for open subsets W of U described in the statement of Theorem 2.4. We note also that (2.7) guarantees $\Omega_{1} \neq \emptyset$ and (2.6) guarantees (2.3) if we remove $\partial W \cap \Omega=\emptyset$ and $\bar{W} \cap(\partial U \cap \Omega)=\emptyset$ in the statement of Theorem 2.4.

In our next result $\{(x, \lambda) \in \bar{U}: x \in N(x, \lambda)\}$ is compact is not assumed. For convenience we assume E is a normed space (basically the same proof below works if E is a metric space), U is an open subset of $E \times[0,1]$ and (2.1) holds.

Theorem 2.5. Suppose $N \in A(\bar{U}, E)$ with

$$
\begin{equation*}
x \notin N(x, 0) \quad \text { for } \quad(x, 0) \in \partial U \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{0} \text { is compact; } \tag{2.11}
\end{equation*}
$$

here $\Omega_{0}=\{x \in E:(x, 0) \in \Omega\}$ where $\Omega=\{(x, \lambda) \in \bar{U}: x \in N(x, \lambda)\}$. Let $H: \bar{U} \times[0,1] \rightarrow K(E \times[0,1])$ be given by $H(x, \lambda, \mu)=(N(x, \lambda), \mu)$ for $(x, \lambda) \in \bar{U}$ and $\mu \in[0,1]$. In addition for open bounded subsets W of U with $\Omega_{0} \times\{0\} \subseteq W \subseteq U$ (so $x \notin N(x, 0)$ for $(x, 0) \in U \backslash W)$ assume $N \in A(\bar{W}, E)$ and the following conditions hold:

$$
\begin{cases}H_{0} \text { is essential in } A_{\partial W}(\bar{W}, E \times[0,1]) ; & \text { here } \tag{2.12}\\ H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0) \text { for }(x, \lambda) \in \bar{W}\end{cases}
$$

and

$$
\begin{equation*}
\Sigma=\{(x, \lambda) \in \bar{W}: x \in N(x, \lambda)\} \quad \text { is compact and } \Sigma_{1} \neq \emptyset ; \tag{2.13}
\end{equation*}
$$

here $\Sigma_{t}=\{x \in E:(x, t) \in \Sigma\}$ for each $t \in[0,1]$. Then Ω contains a connected component intersecting $\Omega_{0} \times\{0\}$ and which either intersects $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$ or is unbounded; here $\Omega_{t}=\{x \in E:(x, t) \in \Omega\}$ for each $t \in[0,1]$.

Proof. Since Ω_{0} is compact there exists $n_{0} \in \mathbf{N}$ with $\Omega_{0} \subseteq B\left(0, n_{0}\right)$. For $n \geq n_{0}$ let

$$
U^{n}=U \cap(B(0, n) \times[0,1]) \text { and } \Omega^{n}=\left\{(x, \lambda) \in \overline{U^{n}}: x \in N(x, \lambda)\right\} .
$$

Now $\Omega_{0} \subseteq B\left(0, n_{0}\right)$ and (2.10) implies $\Omega_{0} \times\{0\} \subseteq U$ so $\Omega_{0} \times\{0\} \subseteq U^{n}$. Of course if there exists $(x, 0) \in U \backslash U^{n}$ with $x \in N(x, 0)$ then $(x, 0) \in \Omega_{0} \times\{0\} \subseteq U^{n}$, a contradiction. Thus $x \notin N(x, 0)$ for $(x, 0) \in U \backslash U^{n}$. For each $n \geq n_{0}$, Theorem 2.4 implies there exists $\left(x_{n}, 0\right) \in \Omega_{0} \times\{0\}$ and a connected component \mathcal{C}_{n} of Ω^{n} containing $\left(x_{n}, 0\right)$ and intersecting $\left(\partial U^{n} \cap \Omega^{n}\right) \cup\left(\Omega_{1}^{n} \times\{1\}\right)$ (here $\Omega_{1}^{n}=\{x \in E$: $\left.\left.(x, 1) \in \Omega^{n}\right\}\right)$. Since Ω_{0} is compact the sequence $\left(x_{n}\right)$ has an accumulation point $x_{0} \in \Omega_{0}$. Assume that there is NO connected component of Ω intersecting $\Omega_{0} \times\{0\}$ and $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$. Let \mathcal{C}_{0} be the connected component containing x_{0} (and not intersecting $\left.(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)\right)$. Our result follows if we show \mathcal{C}_{0} is unbounded. Assume \mathcal{C}_{0} is bounded. Note $\mathcal{C}_{0} \subseteq \bar{U}$ and $\mathcal{C}_{0} \cap \partial U=\emptyset$ (since \mathcal{C}_{0} does not intersect $\left.(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)\right)$ so $\mathcal{C}_{0} \subseteq U$, and note $\mathcal{C}_{0}, \Omega_{0} \times\{0\}$ are closed and bounded and as a result we can choose an open bounded set V with

$$
\mathcal{C}_{0} \cup\left(\Omega_{0} \times\{0\}\right) \subseteq V \subseteq U
$$

We claim $\partial V \cap \Omega \neq \emptyset$. Suppose $\partial V \cap \Omega=\emptyset$. Of course if there exists $(x, 0) \in U \backslash V$ with $x \in N(x, 0)$ then $(x, 0) \in \Omega_{0} \times\{0\} \subseteq V$, a contradiction. Thus $x \notin N(x, 0)$ for $(x, 0) \in U \backslash V$. Now Theorem 2.3 (note $\tilde{\Omega}_{0} \times\{0\} \subseteq V \subseteq U$ and $\partial V \cap \tilde{\Omega}=\emptyset$ since $\tilde{\Omega} \subseteq \Omega)$ implies that $\tilde{\Omega}=\{(x, \lambda) \in \bar{V}: x \in N(x, \lambda)\}$ has a connected component intersecting $\tilde{\Omega}_{0} \times\{0\}\left(\subseteq \Omega_{0} \times\{0\}\right)$ and $\tilde{\Omega}_{1} \times\{1\}\left(\subseteq \Omega_{1} \times\{1\}\right)$, which contradicts the assumption that there is no connected component of Ω intersecting $\Omega_{0} \times\{0\}$ and $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$; here $\tilde{\Omega}_{t}=\{x \in E:(x, t) \in \tilde{\Omega}\}$ for $t \in[0,1]$. Thus $\partial V \cap \Omega \neq \emptyset$. Note $\left(x_{0}, 0\right) \in \Omega_{0} \times\{0\} \subseteq V$ so $\left(x_{0}, 0\right)$ and $\partial V \cap \Omega$ are closed disjoint subsets of the compact set $\tilde{\Omega}$ and the connected component of $\tilde{\Omega}$ containing ($x_{0}, 0$) does not intersect
$\partial V \cap \Omega$ (since $\mathcal{C}_{0} \subseteq V$). Now from Theorem 2.2 there exists an open neighborhood V_{0} of $\left(x_{0}, 0\right)$ with

$$
\begin{equation*}
\left(x_{0}, 0\right) \in V_{0}, \overline{V_{0}} \cap(\Omega \cap \partial V)=\emptyset \text { and } \partial V_{0} \cap \tilde{\Omega}=\emptyset \tag{2.14}
\end{equation*}
$$

Let $W=V \cap V_{0}$. Now $W \subseteq V$ with

$$
\begin{equation*}
\left(x_{0}, 0\right) \in W \quad \text { and } \quad \partial W \cap \Omega=\emptyset \tag{2.15}
\end{equation*}
$$

since $\partial W \subseteq\left(\partial V \cap \overline{V_{0}}\right) \cup\left(\partial V_{0} \cap \bar{V}\right)$ and note $\left(\partial V \cap \overline{V_{0}}\right) \cap \Omega=\overline{V_{0}} \cap(\partial V \cap \Omega)=\emptyset$ from (2.14) and $\left(\partial V_{0} \cap \bar{V}\right) \cap \Omega=\partial V_{0} \cap(\bar{V} \cap \Omega)=\partial V_{0} \cap \tilde{\Omega}=\emptyset$ from (2.14).

Now V is bounded and W is an open neighborhood of $\left(x_{0}, 0\right)$ so there exists a $n_{1} \geq n_{0}$ with

$$
\left(x_{n_{1}}, 0\right) \in W \quad \text { and } \quad V \subseteq B\left(0, n_{1}\right) \times[0,1]
$$

Note $\left(x_{n_{1}}, 0\right) \in W \cap \mathcal{C}_{n_{1}}$ so $W \cap \mathcal{C}_{n_{1}} \neq \emptyset$. Also note that $\mathcal{C}_{n_{1}}$ meets $(E \times[0,1]) \backslash W$ since $\mathcal{C}_{n_{1}}$ intersects $\left(\partial U^{n_{1}} \cap \Omega^{n_{1}}\right) \cup\left(\Omega_{1}^{n_{1}} \times\{1\}\right)$ (and does not intersect $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$). Now $\mathcal{C}_{n_{1}}$ is connected so $\mathcal{C}_{n_{1}} \cap \partial W \neq \emptyset$. This is a contradiction since $\mathcal{C}_{n_{1}} \cap \partial W \subseteq$ $\Omega^{n_{1}} \cap \partial W \subseteq \Omega \cap \partial W=\emptyset$ from (2.15).

We now show that the ideas in this section can be applied to other natural situations. First let E be a completely regular topological vector space, Y a topological vector space, and U an open subset of E. Also let $L: \operatorname{dom} L \subseteq E \rightarrow Y$ be a linear (not necessarily continuous) single valued map; here $\operatorname{dom} L$ is a vector subspace of E. Finally $T: E \rightarrow Y$ will be a linear, continuous single valued map with $L+T: \operatorname{dom} L \rightarrow Y$ an isomorphism (i.e. a linear homeomorphism); for convenience we say $T \in H_{L}(E, Y)$.

Definition 2.4. Let $F: \bar{U} \rightarrow 2^{Y}$. We say $F \in A(\bar{U}, Y ; L, T)$ if $(L+T)^{-1}(F+T) \in$ $A(\bar{U}, E)$.
Definition 2.5. We say $F \in A_{\partial U}(\bar{U}, Y ; L, T)$ if $F \in A(\bar{U}, Y ; L, T)$ with $L x \notin F(x)$ for $x \in \partial U \cap \operatorname{dom} L$.

Definition 2.6. Let $F \in A_{\partial U}(\bar{U}, Y ; L, T)$. We say F is essential in $A_{\partial U}(\bar{U}, Y ; L, T)$ if for every map $J \in A_{\partial U}(\bar{U}, Y ; L, T)$ with $\left.J\right|_{\partial U}=\left.F\right|_{\partial U}$ there exists $x \in U \cap \operatorname{dom} L$ with $L x \in J(x)$.

For our next results we assume E is a metric vector space, Y a topological vector space, and U an open subset of $E \times[0,1]$. Also let $L: \operatorname{dom} L \subseteq E \rightarrow Y$ be a linear (not necessarily continuous) single valued map; here $\operatorname{dom} L$ is a vector subspace of E. Now let $\mathcal{L}: \operatorname{dom} \mathcal{L}=\operatorname{dom} L \times[0,1] \rightarrow Y \times[0,1]$ be given by $\mathcal{L}(y, \lambda)=(L y, \lambda)$. Let $T: E \rightarrow Y$ be a linear, continuous single valued map with $L+T: \operatorname{dom} L \rightarrow Y$ an isomorphism (i.e. a linear homeomorphism) and let $\mathcal{T}: E \times[0,1] \rightarrow Y \times[0,1]$ be given by $\mathcal{T}(y, \lambda)=(T y, 0)$. Notice $(\mathcal{L}+\mathcal{T})^{-1}(y, \lambda)=\left((L+T)^{-1} y, \lambda\right)$ for $(y, \lambda) \in Y \times[0,1]$.

We will also assume

$$
\left\{\begin{array}{l}
\text { if } F \in A(\bar{U}, Y ; L, T), v \in \mathbf{C}(\bar{U},[0,1]) \tag{2.16}\\
\text { and if } \Phi(y)=(F(y), v(y)) \text { for } y \in \bar{U}, \\
\text { then } \Phi \in A(\bar{U}, Y \times[0,1] ; \mathcal{L}, \mathcal{T})
\end{array}\right.
$$

Theorem 2.6. Suppose $N \in A(\bar{U}, Y ; L, T)$ with

$$
\begin{equation*}
L x \notin N(x, \lambda) \text { for }(x, \lambda) \in \partial U \cap \operatorname{dom} \mathcal{L} . \tag{2.17}
\end{equation*}
$$

Let $H: \bar{U} \times[0,1] \rightarrow 2^{Y \times[0,1]}$ be given by $H(x, \lambda, \mu)=(N(x, \lambda), \mu)$ for $(x, \lambda) \in \bar{U}$ and $\mu \in[0,1]$. In addition assume the following two conditions hold:

$$
\left\{\begin{array}{l}
H_{0} \text { is essential in } A_{\partial U}(\bar{U}, Y \times[0,1] ; \mathcal{L}, \mathcal{T}) ; \text { here } \tag{2.18}\\
H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0) \text { for }(x, \lambda) \in \bar{U}
\end{array}\right.
$$

and

$$
\begin{equation*}
\Omega=\{(x, \lambda) \in \bar{U} \cap \operatorname{dom} \mathcal{L}: L x \in N(x, \lambda)\} \text { is compact and } \Omega_{1} \neq \emptyset ; \tag{2.19}
\end{equation*}
$$

here $\Omega_{t}=\{x \in E:(x, t) \in \Omega\}$ for each $t \in[0,1]$. Then Ω contains a continuum intersecting $\Omega_{0} \times\{0\}$ and $\Omega_{1} \times\{1\}$.

Remark 2.3. Conditions to guarantee that $\Omega_{1} \neq \emptyset$ for maps in $A(\bar{U}, Y ; L, T)$ can be found in [5, Theorem 2.12].
Proof. Note $A=\Omega_{0} \times\{0\} \subseteq \Omega$ and $B=\Omega_{1} \times\{1\} \subseteq \Omega$ are closed (and compact). If there is no continuum intersecting A and B then from Theorem 2.1, Ω can be represented as $\Omega=\Omega^{\star} \cup \Omega^{\star \star}$ where Ω^{\star} and $\Omega^{\star \star}$ are disjoint compact sets with $A \subseteq \Omega^{\star}$ and $B \subseteq \Omega^{\star \star}$. Notice Ω^{\star} and $\Omega^{\star \star} \cup \partial U$ are closed and disjoint (note $\Omega^{\star} \cap \partial U=\emptyset$ since if there exists a $(x, \lambda) \in \partial U$ and $(x, \lambda) \in \Omega^{\star}$ then (note $\left.(x, \lambda) \in \Omega^{\star} \subseteq \Omega\right) L x \in N(x, \lambda)$ which contradicts (2.17)). Now there exists a continuous map $\mu: \bar{U} \rightarrow[0,1]$ with $\mu\left(\Omega^{\star \star} \cup \partial U\right)=0$ and $\mu\left(\Omega^{\star}\right)=1$. Let

$$
T_{0}(x, \lambda)=(N(x, \lambda), \mu(x, \lambda)) \quad \text { for } \quad(x, \lambda) \in \bar{U}
$$

Notice (2.16) guarantees that $T_{0} \in A(\bar{U}, Y \times[0,1] ; \mathcal{L}, \mathcal{T})$ and in fact $T_{0} \in A_{\partial U}(\bar{U}, Y \times$ $[0,1] ; \mathcal{L}, \mathcal{T})$ since if there exists a $(x, \lambda) \in \partial U$ with $\mathcal{L}(x, \lambda)=(L x, \lambda) \in T_{0}(x, \lambda)$ then $(L x, \lambda) \in(N(x, \lambda), \mu(x, \lambda))=(N(x, \lambda), 0)$ so $L x \in N(x, 0)$ which contradicts (2.17). Notice as well (here $\left.H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0)\right)$ that

$$
\left.T_{0}\right|_{\partial U}=\left.H_{0}\right|_{\partial U}
$$

since if $(x, \lambda) \in \partial U$ then $T_{0}(x, \lambda)=(N(x, \lambda), \mu(x, \lambda))=(N(x, \lambda), 0)$ (note $\mu\left(\Omega^{\star \star} \cup\right.$ $\partial U)=0)$. Now (2.18) guarantees that there exists a $(x, \lambda) \in U \cap \operatorname{dom} \mathcal{L}$ with $\mathcal{L}(x, \lambda) \in$ $T_{0}(x, \lambda)$ i.e. $L x \in N(x, \lambda)$ and $\lambda=\mu(x, \lambda)$. Note $(x, \lambda) \in \Omega$ since $(x, \lambda) \in U \cap \operatorname{dom} \mathcal{L}$ and $L x \in N(x, \lambda)$. Now either $(x, \lambda) \in \Omega^{\star}$ or $(x, \lambda) \in \Omega^{\star \star}$.
Case 1. Suppose $(x, \lambda) \in \Omega^{\star}$.
Then $\mu(x, \lambda)=1$. Thus $\lambda=\mu(x, \lambda)=1$ and $L x \in N(x, \lambda)=N(x, 1)$ i.e. $(x, 1) \in B \subseteq \Omega^{\star \star}$ which contradicts $(x, 1)=(x, \lambda) \in \Omega^{\star}$.
Case 2. Suppose $(x, \lambda) \in \Omega^{\star \star}$.
Then $\mu(x, \lambda)=0$. Thus $\lambda=\mu(x, \lambda)=0$ and $L x \in N(x, \lambda)=N(x, 0)$ i.e. $(x, 0) \in A \subseteq \Omega^{\star}$ which contradicts $(x, 0)=(x, \lambda) \in \Omega^{\star \star}$.

In our next result (2.17) is not assumed.
Theorem 2.7. Suppose $N \in A(\bar{U}, Y ; L, T)$ with

$$
\begin{equation*}
L x \notin N(x, 0) \quad \text { for }(x, \lambda) \in \partial U \cap \operatorname{dom} \mathcal{L} . \tag{2.20}
\end{equation*}
$$

Let $H: \bar{U} \times[0,1] \rightarrow 2^{Y \times[0,1]}$ be given by $H(x, \lambda, \mu)=(N(x, \lambda), \mu)$ for $(x, \lambda) \in \bar{U}$ and $\mu \in[0,1]$ and assume (2.18) and (2.19) hold. In addition for open subsets W of U with $\Omega_{0} \times\{0\} \subseteq W \subseteq U, \partial W \cap \Omega=\emptyset$, and $\bar{W} \cap(\partial U \cap \Omega)=\emptyset$ assume $N \in A(\bar{W}, Y ; L, T)$ and the following conditions hold:

$$
\begin{gather*}
\left\{\begin{array}{l}
\text { if } F \in A(\bar{W}, Y ; L, T), v \in \mathbf{C}(\bar{W},[0,1]) \\
\text { and if } \Phi(y)=(F(y), v(y)) \text { for } y \in \bar{W}, \\
\text { then } \Phi \in A(\bar{W}, Y \times[0,1] ; \mathcal{L}, \mathcal{T})
\end{array}\right. \tag{2.21}\\
\left\{\begin{array}{l}
H_{0} \text { is essential in } A_{\partial W}(\bar{W}, Y \times[0,1] ; \mathcal{L}, \mathcal{T}) ; \text { here } \\
H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0) \text { for }(x, \lambda) \in \bar{W}
\end{array}\right. \tag{2.22}
\end{gather*}
$$

and

$$
\begin{equation*}
\Sigma_{1} \neq \emptyset \tag{2.23}
\end{equation*}
$$

here $\Sigma=\{(x, \lambda) \in \bar{W} \cap \operatorname{dom} \mathcal{L}: L x \in N(x, \lambda)\}$ and $\Sigma_{t}=\{x \in E:(x, t) \in \Sigma\}$ for each $t \in[0,1]$. Then Ω contains a continuum intersecting $\Omega_{0} \times\{0\}$ and $(\partial U \cap \Omega) \cup$ $\left(\Omega_{1} \times\{1\}\right)$; here $\Omega_{t}=\{x \in E:(x, t) \in \Omega\}$ for each $t \in[0,1]$.
Proof. There are two cases to consider, namely $\Omega \cap \partial U=\emptyset$ or $\Omega \cap \partial U \neq \emptyset$. If $\Omega \cap \partial U=\emptyset$ then (2.17) holds so the result follows from Theorem 2.6. Now suppose $\Omega \cap \partial U \neq \emptyset$. Let $A=\Omega_{0} \times\{0\}, B=\Omega_{1} \times\{1\}$ and $C=\Omega \cap \partial U(\neq \emptyset)$. Notice $C \subseteq \Omega$ is closed and (2.20) guarantees that C is disjoint from A. Now from Theorem 2.1 either (1). there exists a continuum of Ω which intersects A and C (and we are finished), or (2). $\Omega=\Omega^{\star} \cup \Omega^{\star \star}$ where Ω^{\star} and $\Omega^{\star \star}$ are disjoint compact sets with $A \subseteq \Omega^{\star}$ and $B \subseteq \Omega^{\star \star}$. Suppose (2) occurs. Now from Theorem 2.2 there exists an open set V with

$$
\Omega^{\star} \subseteq V, \quad \bar{V} \cap \Omega^{\star \star}=\emptyset \text { and } \partial V \cap \Omega=\emptyset .
$$

Let $W=U \cap V$ and the same reasoning as in Theorem 2.4 establishes that

$$
\begin{equation*}
A \subseteq W \subseteq U, \quad \partial W \cap \Omega=\emptyset \text { and } \bar{W} \cap(\partial U \cap \Omega)=\emptyset \tag{2.24}
\end{equation*}
$$

Let

$$
\Sigma=\{(x, \lambda) \in \bar{W} \cap \operatorname{dom} \mathcal{L}: \quad L x \in N(x, \lambda)\} .
$$

Note $\partial W \cap \Sigma=\emptyset$ from (2.24) since $\Sigma \subseteq \Omega$. Now Theorem 2.6 implies that Σ contains a continuum intersecting $\Sigma_{0} \times\{0\}\left(\subseteq \Omega_{0} \times\{0\}\right)$ and $\Sigma_{1} \times\{1\}\left(\subseteq \Omega_{1} \times\{1\}\right)$ and our result follows.

Remark 2.4. From the proof above we see that that one could replace (2.19) with the assumption that $\Omega_{1} \neq \emptyset$ and $\{(x, \lambda) \in W \cap \operatorname{dom} \mathcal{L}: L x \in N(x, \lambda)\}$ is compact for open subsets W of U described in the statement of Theorem 2.4. We note also that (2.23) guarantees $\Omega_{1} \neq \emptyset$ and (2.22) guarantees (2.18) if we remove $\partial W \cap \Omega=\emptyset$ and $\bar{W} \cap(\partial U \cap \Omega)=\emptyset$ in the statement of Theorem 2.7.

In our next result $\{(x, \lambda) \in \bar{U} \cap \operatorname{dom} \mathcal{L}: \quad L x \in N(x, \lambda)\}$ is compact is not assumed. For convenience we assume E is a normed space, U is an open subset of $E \times[0,1]$ and (2.16) holds.

Theorem 2.8. Suppose $N \in A(\bar{U}, Y ; L, T)$ with

$$
\begin{equation*}
L x \notin N(x, 0) \quad \text { for } \quad(x, \lambda) \in \partial U \cap \operatorname{dom} \mathcal{L} \tag{2.25}
\end{equation*}
$$

and and

$$
\begin{equation*}
\Omega_{0} \text { is compact; } \tag{2.26}
\end{equation*}
$$

here $\Omega_{0}=\{x \in E:(x, 0) \in \Omega\}$ where $\Omega=\{(x, \lambda) \in \bar{U} \cap \operatorname{dom} \mathcal{L}: L x \in N(x, \lambda)\}$. Let $H: \bar{U} \times[0,1] \rightarrow 2^{Y \times[0,1]}$ be given by $H(x, \lambda, \mu)=(N(x, \lambda), \mu)$ for $(x, \lambda) \in \bar{U}$ and $\mu \in[0,1]$. In addition for open bounded subsets W of U with $\Omega_{0} \times\{0\} \subseteq W \subseteq U$ assume $N \in A(\bar{W}, Y ; L, T)$ and the following conditions hold:

$$
\begin{gather*}
\left\{\begin{array}{l}
\text { if } F \in A(\bar{W}, Y ; L, T), v \in \mathbf{C}(\bar{W},[0,1]) \\
\text { and if } \Phi(y)=(F(y), v(y)) \text { for } y \in \bar{W}, \\
\text { then } \Phi \in A(\bar{W}, Y \times[0,1] ; \mathcal{L}, \mathcal{T})
\end{array}\right. \tag{2.27}\\
\left\{\begin{array}{l}
H_{0} \text { is essential in } A_{\partial W}(\bar{W}, Y \times[0,1] ; \mathcal{L}, \mathcal{T}) ; \text { here } \\
H_{0}(x, \lambda)=H(x, \lambda, 0)=(N(x, \lambda), 0) \text { for }(x, \lambda) \in \bar{W}
\end{array}\right. \tag{2.28}
\end{gather*}
$$

and

$$
\begin{equation*}
\Sigma=\{(x, \lambda) \in \bar{W} \cap \operatorname{dom} \mathcal{L}: L x \in N(x, \lambda)\} \quad \text { is compact and } \Sigma_{1} \neq \emptyset ; \tag{2.29}
\end{equation*}
$$

here $\Sigma_{t}=\{x \in E:(x, t) \in \Sigma\}$ for each $t \in[0,1]$. Then Ω contains a connected component intersecting $\Omega_{0} \times\{0\}$ and which either intersects $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$ or is unbounded; here $\Omega_{t}=\{x \in E:(x, t) \in \Omega\}$ for each $t \in[0,1]$.

Proof. Since Ω_{0} is compact there exists $n_{0} \in \mathbf{N}$ with $\Omega_{0} \subseteq B\left(0, n_{0}\right)$. For $n \geq n_{0}$ let

$$
U^{n}=U \cap(B(0, n) \times[0,1]) \text { and } \Omega^{n}=\left\{(x, \lambda) \in \overline{U^{n}} \cap \operatorname{dom} \mathcal{L}: L x \in N(x, \lambda)\right\}
$$

Now $\Omega_{0} \subseteq B\left(0, n_{0}\right)$ and $\Omega_{0} \times\{0\} \subseteq U$ so $\Omega_{0} \times\{0\} \subseteq U^{n}$. For each $n \geq n_{0}$, Theorem 2.7 implies there exists $\left(x_{n}, 0\right) \in \Omega_{0} \times\{0\}$ and a connected component \mathcal{C}_{n} of Ω^{n} containing $\left(x_{n}, 0\right)$ and intersecting $\left(\partial U^{n} \cap \Omega^{n}\right) \cup\left(\Omega_{1}^{n} \times\{1\}\right.$) (here $\Omega_{1}^{n}=\{x \in E$: $\left.\left.(x, 1) \in \Omega^{n}\right\}\right)$. Since Ω_{0} is compact the sequence $\left(x_{n}\right)$ has an accumulation point $x_{0} \in \Omega_{0}$. Assume that there is NO connected component of Ω intersecting $\Omega_{0} \times\{0\}$ and $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$. Let \mathcal{C}_{0} be the connected component containing x_{0} (and not intersecting $\left.(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)\right)$. Our result follows if we show \mathcal{C}_{0} is unbounded. Assume \mathcal{C}_{0} is bounded. Note $\mathcal{C}_{0} \subseteq \bar{U}$ and $\mathcal{C}_{0} \cap \partial U=\emptyset$ (since \mathcal{C}_{0} does not intersect $\left.(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)\right)$ so $\mathcal{C}_{0} \subseteq U$, and note $\mathcal{C}_{0}, \Omega_{0} \times\{0\}$ are closed and bounded and as a result we can choose an open bounded set V with

$$
\mathcal{C}_{0} \cup\left(\Omega_{0} \times\{0\}\right) \subseteq V \subseteq U
$$

We claim $\partial V \cap \Omega \neq \emptyset$. Suppose $\partial V \cap \Omega=\emptyset$. Now Theorem 2.6 (note $\tilde{\Omega}_{0} \times\{0\} \subseteq V \subseteq U$ and $\partial V \cap \tilde{\Omega}=\emptyset$ since $\tilde{\Omega} \subseteq \Omega)$ implies that $\tilde{\Omega}=\{(x, \lambda) \in \bar{V} \cap \operatorname{dom} \mathcal{L}: L x \in N(x, \lambda)\}$ has a connected component intersecting $\tilde{\Omega}_{0} \times\{0\}\left(\subseteq \Omega_{0} \times\{0\}\right)$ and $\tilde{\Omega}_{1} \times\{1\}(\subseteq$ $\left.\Omega_{1} \times\{1\}\right)$, which contradicts the assumption that there is no connected component of Ω intersecting $\Omega_{0} \times\{0\}$ and $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$; here $\tilde{\Omega}_{t}=\{x \in E:(x, t) \in \tilde{\Omega}\}$ for $t \in[0,1]$. Thus $\partial V \cap \Omega \neq \emptyset$. Note $\left(x_{0}, 0\right) \in \Omega_{0} \times\{0\} \subseteq V$ so $\left(x_{0}, 0\right)$ and $\partial V \cap \Omega$ are closed disjoint subsets of the compact set $\tilde{\Omega}$ and the connected component of $\tilde{\Omega}$ containing $\left(x_{0}, 0\right)$ does not intersect $\partial V \cap \Omega$ (since $\left.\mathcal{C}_{0} \subseteq V\right)$. Now from Theorem 2.2 there exists an open neighborhood V_{0} of $\left(x_{0}, 0\right)$ with

$$
\left(x_{0}, 0\right) \in V_{0}, \overline{V_{0}} \cap(\Omega \cap \partial V)=\emptyset \text { and } \partial V_{0} \cap \tilde{\Omega}=\emptyset
$$

Let $W=U \cap V$ and the same reasoning as in Theorem 2.5 establishes that

$$
\begin{equation*}
\left(x_{0}, 0\right) \in W \quad \text { and } \quad \partial W \cap \Omega=\emptyset \tag{2.30}
\end{equation*}
$$

Now V is bounded and W is an open neighborhood of $\left(x_{0}, 0\right)$ so there exists a $n_{1} \geq n_{0}$ with

$$
\left(x_{n_{1}}, 0\right) \in W \quad \text { and } \quad V \subseteq B\left(0, n_{1}\right) \times[0,1]
$$

Note $\left(x_{n_{1}}, 0\right) \in W \cap \mathcal{C}_{n_{1}}$ so $W \cap \mathcal{C}_{n_{1}} \neq \emptyset$. Also note that $\mathcal{C}_{n_{1}}$ meets $(E \times[0,1]) \backslash W$ since $\mathcal{C}_{n_{1}}$ intersects $\left(\partial U^{n_{1}} \cap \Omega^{n_{1}}\right) \cup\left(\Omega_{1}^{n_{1}} \times\{1\}\right)$ (and does not intersect $(\partial U \cap \Omega) \cup\left(\Omega_{1} \times\{1\}\right)$). Now $\mathcal{C}_{n_{1}}$ is connected so $\mathcal{C}_{n_{1}} \cap \partial W \neq \emptyset$. This is a contradiction since $\mathcal{C}_{n_{1}} \cap \partial W \subseteq$ $\Omega^{n_{1}} \cap \partial W \subseteq \Omega \cap \partial W=\emptyset$ from (2.30).

References

[1] A. Granas, Sur la méthode de continuité de Poincare, C.R. Acad. Sci. Paris, 282(1976), 983-985.
[2] M. Furi, M.P. Pera, On the existence of an unbounded connected set of solutions for nonlinear equations in Banach spaces, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 67(12)(1979), 31-38.
[3] M. Martelli, Continuation principles and boundary value problems, in Topological Methods for Ordinary Differential equations, Lecture Notes in Math, Vol. 1537, Springer, Berlin, 1993, 32-73.
[4] J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations, in Topological Methods in Differential Equations and Inclusions, NATO ASI Series C, Vol. 472, Kluwer Academic Publishers, Dordrecht , 1995, 291-375.
[5] D. O'Regan, Coincidence theory for multimaps, Applied Mathematics and Computation, 219(2012), 2026-2034.
[6] D. O'Regan, J. Peran, Fixed points for better admissible multifunctions on proximity spaces, J. Math. Anal. Appl., 380(2011), 882-887.
[7] D. O'Regan, R. Precup, Theorems of Leray-Schauder type and Applications, Taylor and Francis Publishers, London, 2002.
[8] S. Park, Fixed point theorems for better admissible multimaps on almost convex spaces, J. Math. Anal. Appl., 329(2007), 690-702.

Received: August 31, 2012; Accepted: November 2, 2012.

