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Abstract. This paper deals with solvability of the following functional equation arising in dynamic
programming of multistage decision processes

f(x) = opt
y∈D

{
u(x, y)(p(x, y) + f(a(x, y))) + v(x, y) opt{q(x, y), f(b(x, y))}

}
, ∀x ∈ S.

Using the Banach fixed point theorem and new iterative techniques, we obtain the existence and
uniqueness of solutions for the above equation in the complete metric space BB(S) and the Banach

spaces BC(S) and B(S), construct some iterative methods, prove their convergence and provide

several error estimates between these iterative sequences generated by the iterative methods and
the corresponding solutions, respectively. Four nontrivial examples illustrating applications of the

results presented in this paper are provided.
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rem, nonexpansive mapping, iterative methods, error estimates.

2010 Mathematics Subject Classification: 49L20, 90C39.

1. Introduction and preliminaries

The existence problems of solutions for some classes of functional equations arising
in dynamic programming have been established in [1-12]. In 1984, Bhakta and Mitra
[6] studied the following functional equation

f(x) = sup
y∈D
{p(x, y) + f(a(x, y))}, ∀x ∈ S (1.1)
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and gave the existence, uniqueness and iterative approximation of solution for the
functional equation (1.1). In 1988, Bhakta and Choudhury [5] proved the existence
of solution for the following functional equation

f(x) = inf
y∈D

max{q(x, y), f(b(x, y))}, ∀x ∈ S. (1.2)

In 2003, Liu and Ume [9] provided sufficient conditions which ensure the existence,
uniqueness and iterative approximation of solutions for the functional equation

f(x) = opt
y∈D

{
u(p(x, y) + f(T (x, y)))

+ (1− u) opt{q(x, y), f(T (x, y))}
}
, ∀x ∈ S,

(1.3)

where u ∈ [0, 1] is a constant.
Motivated and inspired by the research work going on in this field, we introduce the

following functional equation arising in dynamic programming of multistage decision
processes

f(x) = opt
y∈D

{
u(x, y)(p(x, y) + f(a(x, y)))

+ v(x, y) opt{q(x, y), f(b(x, y))}
}
, ∀x ∈ S,

(1.4)

where x and y represent the state and decision vectors, respectively, a and b represent
the transformations of the processes, and f(x) represents the optimal return function
with initial state x, opt denotes sup or inf. It is clear that the functional equation
(1.4) includes the functional equations (1.1)-(1.3) as special cases. Utilizing new it-
erative methods and the Banach fixed point theorem, we establish these conditions
which guarantee the existence, uniqueness and iterative approximations of solutions
for the functional equation (1.4) in the complete metric space BB(S) and the Ba-
nach spaces BC(S) and B(S), and discuss the error estimates between the iterative
approximations and the solutions, respectively. Four examples are added to illustrate
the results obtained in this paper are more effective than the existing ones in the
literature.

Throughout this paper, we assume that

R = (−∞,+∞), R+ = [0,+∞), R− = (−∞, 0], N0 = N ∪ {0}

and N denotes the set of all positive integers, (X, ‖ · ‖) and (Y, ‖ · ‖′) are real Banach
spaces, S ⊆ X is the state space and D ⊆ Y is the decision space. Define

B(S) = {f : f : S → R is bounded},
BC(S) = {f : f ∈ B(S) is continuous},
BB(S) = {f : f : S → R is bounded on bounded subsets of S},

Φ =

{
(ϕ,ψ) : ϕ and ψ : R+ → R+ are nondecreasing,

∞∑
n=0

ψ(ϕn(t)) < +∞

and ψ(t) > 0 for all t > 0

}
.
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Clearly, (B(S), ‖ · ‖1) and (BC(S), ‖ · ‖1) are Banach spaces with the norm

‖f‖1 = sup
x∈S
|f(x)|.

For each k ∈ N and f, g ∈ BB(S), let

dk(f, g) = sup
{
|f(x)− g(x)| : x ∈ B(0, k)

}
,

d(f, g) =

∞∑
k=1

1

2k
· dk(f, g)

1 + dk(f, g)
,

where B(0, k) = {x : x ∈ S and ‖x‖ ≤ k}. Clearly {dk}k∈N is a countable family of
pseudometrics on BB(S). A sequence {xn}n∈N in BB(S) is said to be converge to a
point x ∈ BB(S) if for each k ∈ N, dk(xn, x) → 0 as n → ∞, and to be a Cauchy
Sequence if for each k ∈ N, dk(xn, xm) → 0 as n,m → ∞. It is easy to verify that
(BB(S), d) is a complete metric space.

Lemma 1.1. ([8]) Let a, b, c and d be in R. Then

| opt{a, b} − opt{c, d}| ≤ max{|a− c|, |b− d|}.

Lemma 1.2. ([7]) Let E be a set, p and q : E → R be mappings. If opty∈E p(y) and
opty∈E q(y) are bounded, then∣∣∣∣ opt

y∈E
p(y)− opt

y∈E
q(y)

∣∣∣∣ ≤ sup
y∈E
|p(y)− q(y)|.

2. Properties of solutions for the functional equation (1.4)

Now we study the solvability of the functional equation (1.4) in the complete metric
space BB(S).

Theorem 2.1. Let (ϕ,ψ) ∈ Φ, u, v, p, q : S × D → R and a, b : S × D → S be
mappings such that

(C1) sup(x,y)∈S×D{|u(x, y)|+ |v(x, y)|} ≤ 1;

(C2) supy∈D max{|p(x, y)|, |q(x, y)|} ≤ ψ(‖x‖), ∀x ∈ S;

(C3) supy∈D max{‖a(x, y)‖, ‖b(x, y)‖} ≤ ϕ(‖x‖), ∀x ∈ S.

Then the functional equation (1.4) possesses a solution z ∈ BB(S) such that

(C4) For each z0 ∈ BB(S) with |z0(x)| ≤ ψ(‖x‖), ∀x ∈ S, the sequence {zn}n∈N0

defined by

zn(x) = opt
y∈D

{
u(x, y)(p(x, y) + zn−1(a(x, y)))

+ v(x, y) opt{q(x, y), zn−1(b(x, y))}
}
, ∀(x, n) ∈ S × N

converges to z;

(C5) limn→∞ z(xn) = 0 for any x0 ∈ S, {yn}n∈N ⊆ D and
xn ∈ {a(xn−1, yn), b(xn−1, yn)}, ∀n ∈ N;

(C6) z is unique relative to (C5);
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(C7) If u and v are nonnegative and u(x, y)+v(x, y) = 1, ∀(x, y) ∈ S×D, then for
any ε > 0 and x0 ∈ S, there exist {yn}n∈N ⊂ D and xn ∈ {a(xn−1, yn), b(xn−1, yn)},
∀n ∈ N such that

z(x0) ≥
∞∑
n=1

u(xn, yn+1)p(xn, yn+1)− ε

provided that opt = max and

z(x0) ≤
∞∑
n=1

u(xn, yn+1)p(xn, yn+1) + ε

provided that opt = min.

Proof. For any (x, y, h) ∈ S ×D ×BB(S), put

H(x, y, h) = u(x, y)(p(x, y) + h(a(x, y))) + v(x, y) opt{q(x, y), h(b(x, y))}

and

Gh(x) = opt
y∈D

H(x, y, h).

Notice that (ϕ,ψ) ∈ Φ implies that

ϕ(t) < t, ∀t > 0. (2.1)

Firstly we assert that G : BB(S)→ BB(S) is nonexpansive.
Let (k, h) ∈ N×BB(S). It follows from (C3) and (2.1) that

sup
y∈D

max{‖a(x, y)‖, ‖b(x, y)‖} ≤ ϕ(‖x‖) ≤ ‖x‖ ≤ k, ∀x ∈ B(0, k),

which yields that there exists a constant g(k) > 0 satisfying

sup
y∈D

max{|h(a(x, y))|, |h(b(x, y))|} ≤ g(k), ∀x ∈ B(0, k).

Owing to (C1), (C2), (ϕ,ψ) ∈ Φ and Lemma 1.1, we obtain that

|H(x, y, h)| = |u(x, y)(p(x, y) + h(a(x, y))) + v(x, y) opt{q(x, y), h(b(x, y))}|
≤ |u(x, y)|(|p(x, y)|+ |h(a(x, y))|) + |v(x, y)|| opt{q(x, y), h(b(x, y))}|
≤ |u(x, y)|(|p(x, y)|+ |h(a(x, y))|) + |v(x, y)|max{|q(x, y)|, |h(b(x, y))|}
≤ |u(x, y)|(|p(x, y)|+ |h(a(x, y))|) + |v(x, y)|(|q(x, y)|+ |h(b(x, y))|)
≤ (|u(x, y)|+ |v(x, y)|)(max{|p(x, y)|, |q(x, y)|}

+ max{|h(a(x, y))|, |h(b(x, y))|})
≤ ψ(k) + g(k), ∀(x, y) ∈ B(0, k)×D,

which together with Lemma 1.2 gives that

|Gh(x)| =
∣∣∣∣ opt
y∈D

H(x, y, h)

∣∣∣∣ ≤ sup
y∈D
|H(x, y, h)| ≤ ψ(k) + g(k), ∀x ∈ B(0, k),

which means that Gh is bounded on bounded subsets of S. That is, G is a self
mapping in BB(S).
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Given ε > 0, k ∈ N, x ∈ B(0, k) and h, t ∈ BB(S). Suppose that opty∈D = infy∈D.
It follows that there exist y, s ∈ D with

Gh(x) > H(x, y, h)− ε, Gt(x) > H(x, s, t)− ε,
Gh(x) ≤ H(x, s, h), Gt(x) ≤ H(x, y, t).

(2.2)

By (C1), (C3), (2.1), (2.2) and Lemma 1.1, we have

|Gh(x)−Gt(x)|
< max

{
|H(x, y, h)−H(x, y, t)|, |H(x, s, h)−H(x, s, t)|

}
+ ε

≤ max
{
|u(x, y)||h(a(x, y))− t(a(x, y))|

+ |v(x, y)|| opt{q(x, y), h(b(x, y))} − opt{q(x, y), t(b(x, y))}|,
|u(x, s)||h(a(x, s))− t(a(x, s))|
+ |v(x, s)|| opt{q(x, s), h(b(x, s))} − opt{q(x, s), t(b(x, s))}|

}
+ ε

≤ max
{
|u(x, y)||h(a(x, y))− t(a(x, y))|+ |v(x, y)||h(b(x, y))− t(b(x, y))|,
|u(x, s)||h(a(x, s))− t(a(x, s))|+ |v(x, s)||h(b(x, s))− t(b(x, s))|

}
+ ε

≤ max
{

(|u(x, y)|+ |v(x, y)|) max{|h(a(x, y))− t(a(x, y))|, |h(b(x, y))− t(b(x, y))|},
(|u(x, s)|+ |v(x, s)|) max{|h(a(x, s))− t(a(x, s))|, |h(b(x, s))− t(b(x, s))|}

}
+ ε

≤ max
{
|h(a(x, y))− t(a(x, y))|, |h(b(x, y))− t(b(x, y))|,
|h(a(x, s))− t(a(x, s))|, |h(b(x, s))− t(b(x, s))|

}
+ ε

≤ dk(h, t) + ε,

which yields that

dk(Gh,Gt) ≤ dk(h, t) + ε.

Letting ε→ 0 in the above inequality, we deduce that

dk(Gh,Gt) ≤ dk(h, t),

which implies that

d(Gh,Gt) =

∞∑
k=1

1

2k
· dk(Gh,Gt)

1 + dk(Gh,Gt)
≤
∞∑
k=1

1

2k
· dk(h, t)

1 + dk(h, t)
= d(h, t). (2.3)

Proceeding as above, we infer that (2.3) also holds if opty∈D = supy∈D.
Secondly we claim that for each n ∈ N0

|zn(x)| ≤
n∑
i=0

ψ(ϕi(‖x‖)), ∀x ∈ S. (2.4)

In view of |z0(x)| ≤ ψ(‖x‖), ∀x ∈ S, it is clear that (2.4) holds for n = 0. Suppose
that (2.4) is true for some n ∈ N0. On the basis of (C1), (C2), (C3), Lemmas 1.1 and
1.2, we get that

|zn+1(x)| =
∣∣∣∣ opt
y∈D

{
u(x, y)(p(x, y) + zn(a(x, y))) + v(x, y) opt

y∈D
{q(x, y), zn(b(x, y))}

}∣∣∣∣
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≤ sup
y∈D
{|u(x, y)|(|p(x, y)|+ |zn(a(x, y))|) + |v(x, y)|max{|q(x, y)|, |zn(b(x, y))|}

≤ sup
y∈D
{|u(x, y)|(|p(x, y)|+ |zn(a(x, y))|) + |v(x, y)|(|q(x, y)|+ |zn(b(x, y))|)}

≤ sup
y∈D

{
|u(x, y)|

(
ψ(‖x‖) +

n∑
i=0

ψ(ϕi(‖a(x, y)‖))

)

+|v(x, y)|

(
ψ(‖x‖) +

n∑
i=0

ψ(ϕi(‖b(x, y)‖))

)}

≤ sup
y∈D

{
|u(x, y)|

(
ψ(‖x‖) +

n∑
i=0

ψ(ϕi+1(‖x‖))

)

+|v(x, y)|

(
ψ(‖x‖) +

n∑
i=0

ψ(ϕi+1(‖x‖))

)}

= sup
y∈D

{
(|u(x, y)|+ |v(x, y)|)

n+1∑
i=0

ψ(ϕi(‖x‖))

}

≤
n+1∑
i=0

ψ(ϕi(‖x‖)), ∀x ∈ S.

Hence (2.4) holds for every n ∈ N0.
Thirdly we verify that {zn}n∈N0

is a Cauchy sequence in (BB(S), d). Let k ∈ N
and x0 ∈ B(0, k). Given ε > 0 and n,m ∈ N.

Assume that opty∈D = infy∈D. Obviously there exist s, t ∈ D satisfying

zn(x0) > H(x0, s, zn−1)− 2−1ε, zn+m(x0) > H(x0, t, zn+m−1)− 2−1ε,

zn(x0) ≤ H(x0, t, zn−1), zn+m(x0) ≤ H(x0, s, zn+m−1),

which together with (C1) and Lemma 1.1 mean that there exist y1 ∈ {s, t} and
x1 ∈ {a(x0, y1), b(x0, y1)} satisfying

|zn+m(x0)− zn(x0)|
< max

{
|H(x0, s, zn+m−1)−H(x0, s, zn−1)|,

|H(x0, t, zn+m−1)−H(x0, t, zn−1)|
}

+ 2−1ε

≤ max
{
|u(x0, s)||zn+m−1(a(x0, s))− zn−1(a(x0, s))|

+|v(x0, s)|| opt{q(x0, s), zn+m−1(b(x0, s))}
− opt{q(x0, s), zn−1(b(x0, s))}|,

|u(x0, t)||zn+m−1(a(x0, t))− zn−1(a(x0, t))|
+|v(x0, t)|| opt{q(x0, t), zn+m−1(b(x0, t))}
− opt{q(x0, t), zn−1(b(x0, t))}|

}
+ 2−1ε

≤ max
{
|u(x0, s)||zn+m−1(a(x0, s))− zn−1(a(x0, s))|

+|v(x0, s)||zn+m−1(b(x0, s))− zn−1(b(x0, s))|,
|u(x0, t)||zn+m−1(a(x0, t))− zn−1(a(x0, t))|
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+|v(x0, t)||zn+m−1(b(x0, t))− zn−1(b(x0, t))|
}

+ 2−1ε

≤ max
{

(|u(x0, s)|+ |v(x0, s)|) max{|zn+m−1(a(x0, s))− zn−1(a(x0, s))|,
|zn+m−1(b(x0, s))− zn−1(b(x0, s))|},

(|u(x0, t)|+ |v(x0, t)|) max{|zn+m−1(a(x0, t))− zn−1(a(x0, t))|,
|zn+m−1(b(x0, t))− zn−1(b(x0, t))|}

}
+ 2−1ε

≤ |zn+m−1(x1)− zn−1(x1)|+ 2−1ε,

that is,
|zn+m(x0)− zn(x0)| < |zn+m−1(x1)− zn−1(x1)|+ 2−1ε. (2.5)

Similarly we deduce that (2.5) holds also for opty∈D = supy∈D. Proceeding in this
way, we infer that there exist yi ∈ D and xi ∈ {a(xi−1, yi), b(xi−1, yi)} for i ∈
{2, 3, · · · , n} satisfying

|zn+m−1(x1)− zn−1(x1)| < |zn+m−2(x2)− zn−2(x2)|+ 2−2ε,

|zn+m−2(x2)− zn−2(x2)| < |zn+m−3(x3)− zn−3(x3)|+ 2−3ε,

· · · · · ·
|zm+1(xn−1)− z1(xn−1)| < |zm(xn)− z0(xn)|+ 2−nε.

(2.6)

In view of (C3), (2.1) and (2.4)-(2.6), we conclude that

|zn+m(x0)− zn(x0)|

< |zm(xn)|+ |z0(xn)|+ ε ≤
m∑
i=0

ψ(ϕi(‖xn‖)) + ψ(‖xn‖) + ε

≤
m∑
i=0

ψ(ϕi+1(‖xn−1‖)) + ψ(ϕ(‖xn−1‖)) + ε

≤
m∑
i=0

ψ(ϕi+n(‖x0‖)) + ψ(ϕn(‖x0‖)) + ε

≤
∞∑

i=n−1
ψ(ϕi(‖x0‖)) + ε ≤

∞∑
i=n−1

ψ(ϕi(k)) + ε,

which yields that

dk(zn+m, zn) ≤
∞∑

i=n−1
ψ(ϕi(k)) + ε.

Letting ε→ 0 in the above inequality, we get that

dk(zn+m, zn) ≤
∞∑

i=n−1
ψ(ϕi(k)). (2.7)

Note that
∑∞
n=0 ψ(ϕn(t)) < +∞ for each t > 0. Hence (2.7) ensures that {zn}n∈N0 is

a Cauchy sequence in (BB(S), d) and it converges to some z ∈ BB(S). Due to (2.3),
we arrive at

d(Gz, z) ≤ d(Gz,Gzn) + d(zn+1, z)

≤ d(z, zn) + d(zn+1, z)→ 0 as n→∞,
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which means that Gz = z. Thus the functional equation (1.4) possesses a solution
z ∈ BB(S).

Given x0 ∈ S, {yn}n∈N ⊂ D and xn ∈ {a(xn−1, yn), b(xn−1, yn)} for each n ∈ N.
Put k = [‖x0‖] + 1, where [t] denotes the largest integer not exceeding t. For each
ε > 0, there exists m ∈ N such that

dk(z, zn) +

∞∑
i=n

ψ(ϕi(k)) < ε, ∀n > m. (2.8)

It is clear that (C3) implies that

‖xn‖ ≤ ϕ(‖xn−1‖) ≤ · · · ≤ ϕn(‖x0‖) ≤ ϕn(k) < k, ∀n ∈ N. (2.9)

It follows from (2.4), (2.8) and (2.9) that

|z(xn)| ≤ |z(xn)− zn(xn)|+ |zn(xn)| ≤ dk(z, zn) +

n∑
i=0

ψ(ϕi(‖xn‖))

≤ dk(z, zn) +

2n∑
i=n

ψ(ϕi(k)) < ε, ∀n > m,

which yields that limn→∞ z(xn) = 0.
Suppose that g is another solution of the functional equation (1.4) relative to

condition (C5). Given ε > 0 and x0 ∈ S. Assume that opty∈D = infy∈D. Clearly
there exist s, t ∈ D such that

z(x0) > H(x0, s, z)− 2−1ε, g(x0) > H(x0, t, g)− 2−1ε,

z(x0) ≤ H(x0, t, z), g(x0) ≤ H(x0, s, g).
(2.10)

On account of Lemma 1.1, (C1) and (2.10), we know that there exist y1 ∈ {s, t} ⊂ D
and x1 ∈ {a(x0, y1), b(x0, y1)} satisfying

|z(x0)− g(x0)|
< max

{
|H(x0, s, z)−H(x0, s, g)|, |H(x0, t, z)−H(x0, t, g)|

}
+ 2−1ε

≤ max
{
|u(x0, s)||z(a(x0, s))− g(a(x0, s))|

+ |v(x0, s)|| opt{q(x0, s), z(b(x0, s))} − opt{q(x0, s), g(b(x0, s))}|,
|u(x0, t)||z(a(x0, t))− g(a(x0, t))|
+ |v(x0, t)|| opt{q(x0, t), z(b(x0, t))} − opt{q(x0, t), g(b(x0, t))}|

}
+ 2−1ε

≤ max
{

(|u(x0, s)|+ |v(x0, s)|) max{|z(a(x0, s))− g(a(x0, s))|,
|z(b(x0, s))− g(b(x0, s))|},
(|u(x0, t)|+ |v(x0, t)|) max{|z(a(x0, t))− g(a(x0, t))|,
|z(b(x0, t))− g(b(x0, t))|}

}
+ 2−1ε

≤ |z(x1)− g(x1)|+ 2−1ε,

that is,

|z(x0)− g(x0)| < |z(x1)− g(x1)|+ 2−1ε. (2.11)
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Similarly we deduce that (2.11) holds for opty∈D = supy∈D. Proceeding in this way,
we know that there exist yi ∈ D and xi ∈ {a(xi−1, yi), b(xi−1, yi)} for i ∈ {2, 3, . . . , n}
with

|z(x1)− g(x1)| < |z(x2)− g(x2)|+ 2−2ε,

|z(x2)− g(x2)| < |z(x3)− g(x3)|+ 2−3ε,

· · · · · ·
|z(xn−1)− g(xn−1)| < |z(xn)− g(xn)|+ 2−nε.

(2.12)

It follows from (C5), (2.11) and (2.12) that

|z(x0)− g(x0)| < |z(xn)− g(xn)|+ ε→ ε as n→∞.

Since ε is arbitrary, we conclude immediately that z(x0) = g(x0).
Finally we prove that (C7) holds. Given ε > 0 and x0 ∈ S. We consider two

possible cases as follows:
Case 1. opt = max. It follows that there exist y1 ∈ D and x1 ∈ {a(x0, y1), b(x0, y1)}

with

z(x0) > u(x0, y1)(p(x0, y1) + z(a(x0, y1)))

+ v(x0, y1) max{q(x0, y1), z(b(x0, y1))} − 2−1ε

≥ u(x0, y1)p(x0, y1) + u(x0, y1)z(a(x0, y1))

+ v(x0, y1)z(b(x0, y1))− 2−1ε

≥ u(x0, y1)p(x0, y1)

+ (u(x0, y1) + v(x0, y1)) min{z(a(x0, y1)), z(b(x0, y1))} − 2−1ε

= u(x0, y1)p(x0, y1) + z(x1)− 2−1ε.

(2.13)

Similarly we conclude that for each n ∈ N and i ∈ {2, 3, . . . , n}, there exist yi ∈ D
and xi ∈ {a(xi−1, yi), b(xi−1, yi)} such that

z(x1) > u(x1, y2)p(x1, y2) + z(x2)− 2−2ε,

z(x2) > u(x2, y3)p(x2, y3) + z(x3)− 2−3ε,

· · · · · ·
z(xn−1) > u(xn−1, yn)p(xn−1, yn) + z(xn)− 2−nε.

(2.14)

It follows from (2.13) and (2.14) that

z(x0) >

n∑
i=1

u(xi−1, yi)p(xi−1, yi) + z(xn)− ε, ∀n ∈ N. (2.15)

Note that (C2) and (C3) ensure that

|u(xn−1, yn)p(xn−1, yn)| = u(xn−1, yn)|p(xn−1, yn)| ≤ ψ(‖xn−1‖)
≤ ψ(ϕ(‖xn−2‖)) ≤ · · · ≤ ψ(ϕn−1(‖x0‖)), ∀n ∈ N

and
∑∞
n=1 ψ(ϕn−1(‖x0‖)) is convergent.
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It follows that the series
∑∞
n=1 |u(xn−1, yn)p(xn−1, yn)| is convergent. Letting n→∞

in (2.15), by (C5) we get that

z(x0) ≥
∞∑
n=1

u(xn−1, yn)p(xn−1, yn)− ε;

Case 2. opt = min. Obviously there exist y1 ∈ D and x1 ∈ {a(x0, y1), b(x0, y1)}
satisfying

z(x0) < u(x0, y1)(p(x0, y1) + z(a(x0, y1)))

+ v(x0, y1) min{q(x0, y1), z(b(x0, y1))}+ 2−1ε

≤ u(x0, y1)p(x0, y1) + u(x0, y1)z(a(x0, y1))

+ v(x0, y1)z(b(x0, y1)) + 2−1ε

≤ u(x0, y1)p(x0, y1)

+ (u(x0, y1) + v(x0, y1)) max{z(a(x0, y1)), z(b(x0, y1))}+ 2−1ε

= u(x0, y1)p(x0, y1) + z(x1) + 2−1ε.

(2.16)

Similarly we know that for each n ∈ N and i ∈ {2, 3, . . . , n}, there exist yi ∈ D and
xi ∈ {a(xi−1, yi), b(xi−1, yi)} with

z(x1) < u(x1, y2)p(x1, y2) + z(x2) + 2−2ε,

z(x2) < u(x2, y3)p(x2, y3) + z(x3) + 2−3ε,

· · · · · ·
z(xn−1) < u(xn−1, yn)p(xn−1, yn) + z(xn) + 2−nε.

(2.17)

According to (2.16) and (2.17), we get that

z(x0) <

n∑
i=1

u(xi−1, yi)p(xi−1, yi) + z(xn) + ε, ∀n ∈ N.

Letting n→∞ in the above inequality, we infer that by (C5)

z(x0) ≤
∞∑
n=1

u(xn−1, yn)p(xn−1, yn) + ε.

This completes the proof.

Remark 2.2. If u(x, y) = u0, v(x, y) = v0 and a(x, y) = b(x, y) for each (x, y) ∈
S ×D, where u0 and v0 are nonnegative constants with u0 + v0 = 1, then Theorem
2.1 reduces to Theorem 3.1 in [9], which is an extension of Theorem 3.5 in [5] and
Theorem 2.4 in [6]. The following example shows that Theorem 2.1 is an indeed
generalization of the corresponding results in [5,6,9].
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Example 2.3. Consider the following functional equation

f(x) = opt
y∈R−

{
sin2

(
x3y2 −

√
|xy − 1|

)[
x2 sin(x2

√
|y + 3|)

+ f

(
x2|y|3

1 + x2 + y6

)]
+ cos2

(
x3y2 −

√
|xy − 1|

)
× opt

{
3x3y

x2 + 4y2 + 2
, f

(
x

3 + cos(x4y3)

)}}
, ∀x ∈ R+.

(2.18)

Let X = Y = R, S = R+, D = R− and define u, v, p, q : S×D → R, a, b : S×D → S
and ϕ,ψ : R+ → R+ by

u(x, y) = sin2
(
x3y2 −

√
|xy − 1|

)
,

v(x, y) = cos2
(
x3y2 −

√
|xy − 1|

)
,

p(x, y) = x2 sin(x2
√
|y + 3|),

q(x, y) =
3x3y

x2 + 4y2 + 2
,

a(x, y) =
x2|y|3

1 + x2 + y6
,

b(x, y) =
x

3 + cos(x4y3)
,

ψ(x) = x2,

ϕ(x) =
1

2
x, ∀(x, y) ∈ S ×D.

Choose z0 ∈ BB(S) with |z0(x)| ≤ ψ(‖x‖) for each x ∈ S. Obviously, the assump-
tions of Theorem 2.1 are fulfilled. Thus Theorem 2.1 guarantees that the functional
equation (2.18) possesses a solution z ∈ BB(S) satisfying (C4)-(C7). But Theorem
3.5 in [5], Theorem 2.4 in [6] and Theorem 3.1 in [9] are useless for the functional
equation (2.18).

Theorem 2.4. Let α ∈ (0, 1), u, v, p, q : S×D → R and a, b : S×D → S be mappings
such that

(C8) p and q are bounded on B(0, k)×D, ∀k ∈ N;

(C9) sup(x,y)∈B(0,k)×D max{‖a(x, y)‖, ‖b(x, y)‖} ≤ k, ∀k ∈ N;

(C10) sup(x,y)∈S×D{|u(x, y)|+ |v(x, y)|} ≤ α.

Then for each h0 ∈ BB(S), the sequence {hn}n∈N0
defined by

hn(x) = opt
y∈D

{
u(x, y)(p(x, y) + hn−1(a(x, y)))

+ v(x, y) opt{q(x, y), hn−1(b(x, y))}
}
, ∀(x, n) ∈ S × N

(2.19)
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converges to a unique solution z ∈ BB(S) of the functional equation (1.4) and has
the following error estimate:

dk(hn, z) ≤
αn

1− α
dk(h0, h1), ∀n, k ∈ N. (2.20)

Proof. Define a mapping H in BB(S) by

Hh(x) = opt
y∈D

{
u(x, y)(p(x, y) + h(a(x, y)))

+ v(x, y) opt{q(x, y), h(b(x, y))}
}
, ∀(x, h) ∈ S ×BB(S).

(2.21)

Given k ∈ N and h ∈ BB(S). It follows from (C8) and (C9) that there exist β(k) > 0
and η(k, h) > 0 satisfying

sup
(x,y)∈B(0,k)×D

{|p(x, y)|, |q(x, y)|} ≤ β(k),

sup
(x,y)∈B(0,k)×D

{|h(a(x, y))|, |h(b(x, y))|} ≤ η(k, h).
(2.22)

In view of (C10), (2.21), (2.22), Lemma 1.1 and 1.2, we have

|Hh(x)| =
∣∣∣∣ opt
y∈D
{u(x, y)(p(x, y) + h(a(x, y))) + v(x, y) opt{q(x, y), h(b(x, y))}}

∣∣∣∣
≤ sup
y∈D

∣∣u(x, y)(p(x, y) + h(a(x, y))) + v(x, y) opt{q(x, y), h(b(x, y))}
∣∣

≤ sup
y∈D

{
|u(x, y)|(|p(x, y)|+ |h(a(x, y))|) + |v(x, y)|max{|q(x, y)|, |h(b(x, y))|}

≤ sup
y∈D

{
|u(x, y)||p(x, y)|+ |u(x, y)||h(a(x, y))|+ |v(x, y)||q(x, y)|

+ |v(x, y)||h(b(x, y))|
}

≤ sup
y∈D

{
(|u(x, y)|+ |v(x, y)|) max{|p(x, y)|, |q(x, y)|}

+ (|u(x, y)|+ |v(x, y)|) max{|h(a(x, y))|, |h(b(x, y))|}
}

≤ α(β(k) + η(k, h)), ∀x ∈ B(0, k),

which gives that H is a mapping from BB(S) into itself.
Let ε > 0, (k, x) ∈ N×B(0, k) and g, h ∈ BB(S). Suppose that opty∈D = supy∈D.

It follows that there exist s, t ∈ D with

Hg(x) < u(x, s)(p(x, s) + g(a(x, s))) + v(x, s) opt{q(x, s), g(b(x, s))}+ ε,

Hh(x) < u(x, t)(p(x, t) + h(a(x, t))) + v(x, t) opt{q(x, t), h(b(x, t))}+ ε,

Hg(x) ≥ u(x, t)(p(x, t) + g(a(x, t))) + v(x, t) opt{q(x, t), g(b(x, t))},
Hh(x) ≥ u(x, s)(p(x, s) + h(a(x, s))) + v(x, s) opt{q(x, s), h(b(x, s))}.

(2.23)
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On account of (2.23), Lemma 1.1 and (C10), we get that

Hg(x)−Hh(x)

> u(x, t)(g(a(x, t))− h(a(x, t)))

+ v(x, t)(opt{q(x, t), g(b(x, t))} − opt{q(x, t), h(b(x, t))})− ε
≥ −|u(x, t)||g(a(x, t))− h(a(x, t))| − |v(x, t)||g(b(x, t))− h(b(x, t))| − ε
≥ −(|u(x, t)|+ |v(x, t)|) max{|g(a(x, t))− h(a(x, t))|, |g(b(x, t))− h(b(x, t))|} − ε
≥ −αmax{|g(a(x, t))− h(a(x, t))|, |g(b(x, t))− h(b(x, t))|} − ε

and

Hg(x)−Hh(x)

< u(x, s)(g(a(x, s))− h(a(x, s)))

+ v(x, s)(opt{q(x, s), g(b(x, s))} − opt{q(x, s), h(b(x, s))}) + ε

≤ |u(x, s)||g(a(x, s))− h(a(x, s))|+ |v(x, s)||g(b(x, s))− h(b(x, s))|+ ε

≤ (|u(x, s)|+ |v(x, s)|) max{|g(a(x, s))− h(a(x, s))|, |g(b(x, s))− h(b(x, s))|}+ ε

≤ αmax{|g(a(x, s))− h(a(x, s))|, |g(b(x, s))− h(b(x, s))|}+ ε,

which yield that

|Hg(x)−Hh(x)| < αmax{|g(a(x, t))− h(a(x, t))|, |g(b(x, t))− h(b(x, t))|,
|g(a(x, s))− h(a(x, s))|, |g(b(x, s))− h(b(x, s))|}+ ε

≤ αdk(g, h) + ε,

that is,

dk(Hg,Hh) ≤ αdk(g, h) + ε,

letting ε→ 0 in the above inequality, we deduce that

dk(Hg,Hh) ≤ αdk(g, h). (2.24)

Similarly, we infer that (2.24) holds also for opty∈D = infy∈D. On account of (2.19),
(2.21) and (2.24), we get that

dk(hn, hn+1) = dk(Hhn−1, Hhn) ≤ αdk(hn−1, hn)

≤ α2dk(hn−2, hn−1) ≤ · · · ≤ αndk(h0, h1), ∀n, k ∈ N,

which implies that

dk(hn, hn+m) ≤
n+m−1∑
i=n

dk(hi, hi+1) ≤
n+m−1∑
i=n

αidk(h0, h1)

≤ αn

1− α
dk(h0, h1), ∀n,m, k ∈ N,

(2.25)
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which yields that {hn}n∈N0 is a Cauchy sequence in BB(S). It follows that {hn}n∈N0

converges to z ∈ BB(S). In view of (2.24), we deduce that for any k ∈ N
dk(z,Hz) ≤ dk(z, hn) + dk(Hhn−1, Hz)

≤ dk(z, hn) + αdk(hn−1, z)→ 0 as n→∞,

which guarantees that

dk(z,Hz) = 0, ∀k ∈ N,
which yields that

d(z,Hz) =

∞∑
k=1

1

2k
· dk(z,Hz)

1 + dk(z,Hz)
= 0.

Hence z = Hz, that is, z ∈ BB(S) is a fixed point of H.
Suppose that H has another fixed point w ∈ BB(S). For each k ∈ N, we have

dk(z, w) = dk(Hnz,Hnw) ≤ αndk(z, w)→ 0 as n→∞,

which implies that

d(z, w) =

∞∑
k=1

1

2k
· dk(z, w)

1 + dk(z, w)
= 0,

that is, z = w. Thus z is the unique fixed point of H. Obviously z is also a unique
solution of the functional equation (1.4). (2.20) follows from (2.25) by taking m→∞.
This completes the proof.

Remark 2.5. If u(x, y) = 0 for each (x, y) ∈ S×D, opt = max and opty∈D = infy∈D,
then Theorem 2.2 reduces to Theorem 3.4 in [5]; If v(x, y) = 0 for each (x, y) ∈ S×D
and opty∈D = supy∈D, then Theorem 2.4 reduces to Theorem 2.5 in [10] and Theorem
3.3 in [12]. The following example demonstrates that Theorem 2.4 extends properly
the corresponding results in [5,10,12].

Example 2.6. Consider the following functional equation

f(x) = opt
y∈R+

{
x+ y2

1 + 3x+ 3y2
cos5

√
1 + x3y4

[
x4 sin3

(
x+ ex

2−3y2)
+ f

(
8x3y

5x4 + 4y2 + 2

)]
+

1

π
arctan

(
x+ 3x3y2

)
× opt

{
3x3y

1 + x2y2
cos
(
x2 − y2

)
, f
(
xe−5x−3y

)}}
, ∀x ∈ R+.

(2.26)

Let X = Y = R, S = D = R+ and α = 5
6 . Define u, v, p, q : S × D → R and

a, b : S ×D → S by

u(x, y) =
x+ y2

1 + 3x+ 3y2
cos5

√
1 + x3y4,

v(x, y) =
1

π
arctan

(
x+ 3x3y2

)
,

p(x, y) = x4 sin3(x+ ex
2−3y2),
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q(x, y) =
3x3y

1 + x2y2
cos
(
x2 − y2

)
,

a(x, y) =
8x3y

5x4 + 4y2 + 2
,

b(x, y) = xe−5x−3y, ∀(x, y) ∈ S ×D.
It is obvious that the assumptions of Theorem 2.4 hold. It follows from Theorem 2.4
that the functional equation (2.26) possesses a unique solution z ∈ BB(S) satisfying
(2.20). However, Theorem 3.4 in [5], Theorem 2.5 in [10] and Theorem 3.3 in [12] are
not valid for the functional equation (2.26).

Next we study the solvability of the functional equation (1.4) in the Banach spaces
BC(S) and B(S), respectively.

Theorem 2.7. Let α ∈ (0, 1), S be compact, u, v, p, q : S×D → R and a, b : S×D → S
be mappings satisfying (C10) and

(C11) p and q are bounded on S ×D;
(C12) for each x0 ∈ S and each A ∈ {u, v, p, q, a, b},

lim
x→x0

A(x, y) = A(x0, y)

uniformly for y ∈ D, respectively.
Then for any h0 ∈ BC(S), the Mann iterative sequence {hn}n∈N0

defined by

hn+1(x) = (1− λn)hn(x) + λn opt
y∈D

{
u(x, y)(p(x, y) + hn(a(x, y)))

+ v(x, y) opt{q(x, y), hn(b(x, y))}
}
, ∀(n, x) ∈ N0 × S

(2.27)

converges to a unique solution z ∈ BC(S) of the functional equation (1.4) and has
the following error estimate:

‖hn+1 − z‖1 ≤ e−(1−α)
∑n

i=0 λi‖h0 − z‖1, ∀n ∈ N0, (2.28)

where

{λn}n∈N0
∈ [0, 1] and

∞∑
n=0

λn = +∞. (2.29)

Proof. Define a mapping H in BC(S) by

Hh(x) = opt
y∈D

{
u(x, y)(p(x, y) + h(a(x, y))) + v(x, y) opt{q(x, y), h(b(x, y))}

}
,

∀(x, h) ∈ S ×BC(S).

(2.30)
Let x0 ∈ S and h ∈ BC(S). It follows from (C10) and (C11) that there exists a
constant M > 1 such that

sup
(x,y)∈S×D

max{|u(x, y)|, |v(x, y)|, |p(x, y)|, |q(x, y)|, |h(a(x, y))|,

|h(b(x, y))|} ≤M.
(2.31)
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(C12) ensures that for given ε > 0, there exists δ > 0 satisfying

max
{
|A(x, y)−A(x0, y)|, |h(B(x, y))− h(B(x0, y))| : A ∈ {u, v, p, q},

B ∈ {a, b}
}
<

ε

7M
, ∀(x, y) ∈ S ×D with ‖x− x0‖ < δ.

(2.32)

By virtue of (2.31), Lemmas 1.1 and 1.2, we have

|Hh(x)| =
∣∣∣∣ opt
y∈D

{
u(x, y)(p(x, y) + h(a(x, y))) + v(x, y) opt{q(x, y), h(b(x, y))}

}∣∣∣∣
≤ sup
y∈D

{
|u(x, y)|(|p(x, y)|+ |h(a(x, y))|) + |v(x, y)|| opt{q(x, y), h(b(x, y))}|

}
≤ sup
y∈D

{
|u(x, y)|(|p(x, y)|+ |h(a(x, y))|)

+ |v(x, y)|max{|q(x, y)|, |h(b(x, y))|}
}

≤ 3M2,

that is,

‖Hh‖1 ≤ 3M2,

which implies that Hh is bounded in S.
By (2.31), (2.32), Lemmas 1.1 and 1.2, we obtain that for all x ∈ S with ‖x−x0‖ < δ,

|Hh(x)−Hh(x0)|

=

∣∣∣∣ opt
y∈D

{
u(x, y)(p(x, y) + h(a(x, y))) + v(x, y) opt{q(x, y), h(b(x, y))}

}
− opt
y∈D

{
u(x0, y)(p(x0, y) + h(a(x0, y))) + v(x0, y) opt{q(x0, y), h(b(x0, y))}

}∣∣∣∣
≤ sup
y∈D

∣∣u(x, y)p(x, y)− u(x0, y)p(x0, y) + u(x, y)h(a(x, y))− u(x0, y)h(a(x0, y))

+ v(x, y) opt{q(x, y), h(b(x, y))} − v(x0, y) opt{q(x0, y), h(b(x0, y))}
∣∣

= sup
y∈D

∣∣u(x, y)(p(x, y)− p(x0, y)) + (u(x, y)− u(x0, y))p(x0, y)

+ u(x, y)(h(a(x, y))− h(a(x0, y))) + (u(x, y)− u(x0, y))h(a(x0, y))

+ v(x, y)(opt{q(x, y), h(b(x, y))} − opt{q(x0, y), h(b(x0, y))})
+ (v(x, y)− v(x0, y)) opt{q(x0, y), h(b(x0, y))}

∣∣
≤ sup
y∈D

{
|u(x, y)||p(x, y)− p(x0, y)|+ |u(x, y)− u(x0, y)||p(x0, y)|

+ |u(x, y)||h(a(x, y))− h(a(x0, y))|+ |u(x, y)− u(x0, y)||h(a(x0, y))|
+ |v(x, y)|max{|q(x, y)− q(x0, y)|, |h(b(x, y))− h(b(x0, y))|}
+ |v(x, y)− v(x0, y)| sup{|q(x0, y)|, |h(b(x0, y))|}

}
≤M · ε

7M
+

ε

7M
·M +M · ε

7M
+

ε

7M
·M +M · ε

7M
+

ε

7M
·M

< ε.
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Hence Hh is continuous at x0. Since x0 is arbitrary in S, it follows that Hh is
continuous in S. Thus H is a mapping from BC(S) into itself.

Let η > 0, x ∈ S and h, g ∈ BC(S). Assume that opty∈D = infy∈D. It follows
that there exist s, t ∈ D with

Hh(x) > u(x, s)(p(x, s) + h(a(x, s))) + v(x, s) opt{q(x, s), h(b(x, s))} − η,
Hg(x) > u(x, t)(p(x, t) + g(a(x, t))) + v(x, t) opt{q(x, t), g(b(x, t))} − η,
Hh(x) ≤ u(x, t)(p(x, t) + h(a(x, t))) + v(x, t) opt{q(x, t), h(b(x, t))},
Hg(x) ≤ u(x, s)(p(x, s) + g(a(x, s))) + v(x, s) opt{q(x, s), g(b(x, s))}.

(2.33)

On account of (2.33), (C10) and Lemma 1.1, we get that

Hh(x)−Hg(x)

< u(x, t)(h(a(x, t))− g(a(x, t)))

+ v(x, t)(opt{q(x, t), h(b(x, t))} − opt{q(x, t), g(b(x, t))}) + η

≤ |u(x, t)||h(a(x, t))− g(a(x, t))|+ |v(x, t)||h(b(x, t))− g(b(x, t))|+ η

≤ (|u(x, t)|+ |v(x, t)|) max{|h(a(x, t))− g(a(x, t))|, |h(b(x, t))− g(b(x, t))|}+ η

≤ α‖h− g‖1 + η

and

Hh(x)−Hg(x)

> u(x, s)(h(a(x, s))− g(a(x, s)))

+ v(x, s)(opt{q(x, s), h(b(x, s))} − opt{q(x, s), g(b(x, s))})− η
≥ −|u(x, s)||h(a(x, s))− g(a(x, s))| − |v(x, s)||h(b(x, s))− g(b(x, s))| − η
≥ −(|u(x, s)|+ |v(x, s)|) max{|h(a(x, s))− g(a(x, s))|, |h(b(x, s))− g(b(x, s))|} − η
≥ −α‖h− g‖1 − η,

which yield that

|Hh(x)−Hg(x)| < α‖h− g‖1 + η,

that is,

‖Hg −Hh‖1 ≤ α‖h− g‖1 + η.

Letting η → 0+ in the above inequality, we infer that

‖Hg −Hh‖1 ≤ α‖h− g‖1. (2.34)

Similarly, (2.34) holds also for opty∈D = supy∈D. By the Banach fixed point theorem,
we know that the contraction mappingH has a unique fixed point z ∈ BC(S). Clearly,
z is also a unique solution of the functional equation (1.4). Notice that

z(x) = (1− λn)z(x) + λn opt
y∈D

{
u(x, y)(p(x, y) + z(a(x, y)))

+ v(x, y) opt{q(x, y), z(b(x, y))}
}
, ∀(n, x) ∈ N0 × S.

(2.35)
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Due to (2.27), (2.29), (2.30), (2.34) and (2.35), we obtain that

|hn+1(x)− z(x)| ≤ (1− λn)|hn(x)− z(x)|+ λn|Hhn(x)−Hz(x)|
≤ (1− (1− α)λn)|hn(x)− z(x)|

≤ e−(1−α)λn |hn(x)− z(x)|

≤ e−(1−α)
∑n

i=0 λi |h0(x)− z(x)|

≤ e−(1−α)
∑n

i=0 λi‖h0 − z‖1, ∀(n, x) ∈ N0 × S,

which gives (2.28), which together with (2.29) implies that {hn}n∈N0
converges to z.

This completes the proof.

Example 2.8. Consider the following functional equation

f(x) = opt
y∈R+

{
1

2
sin(x+ 2y)

[
5x2

8x2 + 3y2 + 2

+ f
(√
−x2 + 10x+ | sin y2|+ 1

)]
+

x

3x+ y2
opt

{
3x2

2x2 + y
, f

(
x2 + y2

x+ y2

)}}
, ∀x ∈ [1, 10].

(2.36)

Let X = Y = R, S = [1, 10], D = R+ and α = 5
6 . Define u, v, p, q : S ×D → R and

a, b : S ×D → S by

u(x, y) =
1

2
sin(x+ 2y),

v(x, y) =
x

3x+ y2
,

p(x, y) =
5x2

8x2 + 3y2 + 2
,

q(x, y) =
3x2

2x2 + y
,

a(x, y) =
√
−x2 + 10x+ | sin y2|+ 1,

b(x, y) =
x2 + y2

x+ y2
, ∀(x, y) ∈ S ×D.

It is clear that the assumptions of Theorem 2.7 are fulfilled. Thus Theorem 2.7 yields
that the functional equation (2.36) possesses a unique solution z ∈ BC(S).

As in the proof of Theorem 2.7, we conclude similarly the following

Theorem 2.9. Let α ∈ (0, 1), u, v, p, q : S×D → R and a, b : S×D → S be mappings
satisfying (C10) and (C11). Then for any h0 ∈ B(S), the sequence {hn}n∈N0

defined
by (2.27) and (2.29) converges to a unique solution z ∈ B(S) of the functional equation
(1.4) and satisfies (2.28).

Remark 2.10. In case opty∈D = supy∈D and v(x, y) = 0 for all (x, y) ∈ S ×D, then
Theorem 2.9 reduces to Corollary 2.2.1 in [6]. The following example reveals that
Theorem 2.9 is a real generalization of the result in [6].
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Example 2.11. Consider the following functional equation

f(x) = opt
y∈R+

{
xy sin(x− y)

4x2 + y2 + 1

[
x3 + y3 − 1

x3 + y3 + 1

+ f

(
x2y2

x2y3 + (x− y)2 + 1

)]
+

x− 3y2

(x− 3y2)2 + 5

× opt
{

cos5
(
x8y3

)
, f
(

ln
(
1 + x2y2

))}}
, ∀x ∈ R+.

(2.37)

Let X = Y = R, S = D = R+ and α = 1
2 . Define u, v, p, q : S × D → R and

a, b : S ×D → S by

u(x, y) =
xy sin(x− y)

4x2 + y2 + 1
,

v(x, y) =
x− 3y2

(x− 3y2)2 + 5
,

p(x, y) =
x3 + y3 − 1

x3 + y3 + 1
,

q(x, y) = cos5
(
x8y3

)
,

a(x, y) =
x2y2

x2y3 + (x− y)2 + 1
,

b(x, y) = ln
(
1 + x2y2

)
, ∀(x, y) ∈ S ×D.

It is easy to check that the assumptions of Theorem 2.9 are fulfilled. Consequently,
Theorem 2.9 guarantees that the functional equation (2.37) has a unique solution
z ∈ B(S). But Corollary 2.2.1 in [6] is invalid for the functional equation (2.37).
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