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Abstract. The Meir-Keeler contraction, an important generalization of the classical Banach con-

traction has received enormous attention during the last four decades. In this paper, we present a

review of Meir-Keeler type fixed point theorems and obtain some results using general Meir-Keeler
type conditions for a sequence of maps in a metric space. Further, a recent result of Meir-Keeler type

common fixed point theorem due to M. Kikkawa and T. Suzuki is generalized under tight minimal

conditions. Applications regarding the existence of common solutions of certain functional equations
are also discussed.

Key Words and Phrases: Coincidence point, fixed point, Meir-Keeler contraction, functional

equation, dynamic programming.
2010 Mathematics Subject Classification: 47H10, 54H25, 49L20.

1. Introduction

One of the most fascinating and classical result of the last century in the field of
nonlinear analysis is the celebrated Banach contraction principle (Bcp) which provides
a powerful technique for solving a variety of problems in mathematical sciences and
engineering. The Bcp states that a selfmap A of complete metric space (X, d) admits
a unique fixed point if A is a Banach contraction, i.e. if A satisfies

d(Ax, Ay) ≤ kd(x, y), x, y ∈ X, (1.1)
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where 0 ≤ k < 1. For some fundamental generalizations of the condition (1.1) and
their comparison, one may refer to Boyd and Wong [1], Jachymski [2]-[4], Matkowski
[5], Rakotch [6] , Rhoades [7, 8], Suzuki [9] and references thereof.

Rakotch [6] generalized the Bcp by replacing the constant k in (1.1) by a real-valued
function. Indeed, he considered

d(Ax, Ay) ≤ φ(d(x, y))d(x, y) , x, y ∈ X, (1.2)

where φ : R+ → [0, 1) is a monotonically decreasing function, and R+ denotes the
set of non-negative real numbers.

Given a function φ : R+ → R+ such that φ(t) < t for t > 0, and a self map A
of X. Then we say that A is φ contractive (see, for example, Jachymski [4]) if

d(Ax, Ay) ≤ φ(d(x, y)), x, y ∈ X. (1.3)

In general, φ is called a contractive gauge function (see [10], [11], [12], [13] and [14]).
Various classes of gauge functions have been considered to generalize the result of
Rakotch [6]. Browder [15] obtained a result for a complete bounded metric space
satisfying the condition (1.3) where φ : R+ → R+ is nondecreasing and continuous
from the right. Browder’s result was immediately generalized by Boyd and Wong [1].
They relaxed the requirement of boundedness of the space and, instead, assumed φ :
R+ → R+ to be upper-semi continuous from the right (not necessarily nondecreasing)
such that A is φ-contractive (see also Kirk and Sims [16] and Lim [17]). On the other
hand, Matkowski [5] generalized Browder’s result by taking φ to be nondecreasing
(not necessarily upper semicontinuous) such that (1.3) and the following condition
(1.4) are satisfied:

lim
n→∞

φn(t) = 0, t ∈ R+. (1.4)

We remark that the classes of contractive gauge functions studied by Boyd and Wong
[1] and Matkowski [5] are independent (see Jachymski [3, p. 2328, 2334] and Jachymski
[4, p. 151].

A somewhat different approach to generalize the Bcp which received substantial
attention was adopted by Meir-Keeler [18]. Precisely, they obtained the following
impressive result.

Theorem MK. Assume that a selfmap A of X satisfies the condition:
for a given ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ d(x, y) < ε + δ implies d(Ax, Ay) < ε. (1.5)

Then A possesses a unique fixed point provided that X is complete.

We remark that Theorem MK significantly generalizes the results of Browder
[15] and Boyd and Wong [1]. However, it is interesting to note that the result of
Matkowski [5, Th. 1.2] is independent of Theorem MK (see [13]). Further, the Meir-
Keeler contraction (1.5) is equivalent to the contractive gauge function φ defined as
φ(d(Ax, Ay)) ≤ d(x, y) for all x, y ∈ X, where φ is lower semicontinuous from the
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right on [0,∞) such that φ(t) > t for t > 0 (see Wong [19] and Jachymski [13]). The
condition (1.5) implies that for all x, y ∈ Xwith x 6= y ,

d(Ax, Ay) < d(x, y). (1.6)

Edelstein [20] (see also Agarwal et al. [21]) has shown that the map A satisfying
the contractive condition (1.6) has a unique fixed point provided that the space X is
compact. Meir and Keeler [18] observed that, if X is compact, then (1.5) and (1.6)
are equivalent. Notice that A is continuous if it satisfies one of (1.1) or (1.5) or (1.6).

Theorem MK was subsequently generalized, among others, by Bari et al. [22],
Chung [23], Ciric [24], [25], Hegedus and Sizilagyi [26], Jachymski [2], [12], [13],
Karpagam and Agarwal [27], Leader [28], Maiti and Pal [29], Matkowski [30],
Matkowski and Wegrzyk [31], Rao and Rao [32], Suzuki [9], [33], [34], Tan and Minh
[35], Tomar [36] and Wlodarczyk et al. [37] for a selfmap. For the comparison of vari-
ous Meir-Keeler type conditions, one may refer to Jachymski [2] (see also Liu [38] and
Park [39]). Some interesting variants of the condition (1.5) have also been discussed
by Jachymski [2]. For a detailed study of Meir-Keeler multivalued contractions, one
may refer to [40].

The following theorem is due to Ciric [25].

Theorem C. Let A be a contractive selfmap of a complete metric space (X, d)
satisfying the condition:

for a given ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε < d(x, y) < ε + δ implies d(Ax, Ay) ≤ ε. (1.7)

Then A has a unique fixed point.

We remark that (1.7) is a weaker condition than the condition (1.5). Further,
the contractive requirement (viz. (1.6)) in Theorem C is essential (see Proinov [41]
and Suzuki [42]). However, in metrically convex spaces conditions (1.5) and (1.7) are
equivalent (see [31]).

Motivated by a novel idea of Goebel [43] and Jungck [44], Park and Bae [45] ex-
tended the condition (1.5) to a pair of commuting selfmaps and obtained the following
result.

Theorem PB. [45]. Let A and S be commuting selfmaps of a metric space X such
that AX ⊂ SXand, for any ε > 0, there exists a δ > 0 such that, for all x, y ∈ X,

ε ≤ d(Sx, Sy) < ε + δ implies d(Ax, Ay) < ε, (1.8)

and Ax = Ay whenever Sx = Sy. (1.9)

If S is continuous and X is complete, then A and S have a unique common fixed
point.

The condition (1.8) was generalized by Park and Rhoades [46]. They obtained
a fixed point theorem for a pair of continuous and commuting self-maps A and S
satisfying the following condition:



120 A. KUMAR, S.L. SINGH, S.N. MISHRA AND M.M. MILOVANOVIC-ARANDJELOVIC

For any ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ max

{
d(Sx, Sy), d(Ax, Sx), d(Ay, Sy),

d(Ax, Sy) + d(Ay, Sx)

2

}
< ε

implies d(Ax, Ay) < ε. (1.10)

In [47], Pant considered R-weakly commuting maps and obtained a fixed point theo-
rem analogous to the result of Park and Bae [45]. Pathak et al. [48] obtained a similar
result for R-weakly commuting maps of type (Ag) or type (Af ). For a comprehensive
comparison of various weaker forms of commuting maps, one may refer to Singh and
Tomar [49] (see also [50] and [51]).

In due course of time a number of Meir-Keeler type fixed point theorems for three
maps, four maps and a sequence of maps have been obtained with various weaker
forms of commuting maps (see [36], [40] and [52]-[68]). The most general Meir-Keeler
type condition, involving four maps, which has been studied extensively during the
last two decades, is as follows.

For any ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ M(x, y) < ε + δ implies d(Ax, By) < ε, (1.11)

where

M(x, y) = max

{
d(Sx, Ty), d(Ax, Sx), d(By, Ty),

d(Ax, Ty) + d(By, Sx)

2

}
.

The φ−contractive condition analogous to (1.11) is:

d(Ax, Ay) ≤ φM(x, y), x, y ∈ X. (1.12)

It is worthwhile to note that conditions (1.11) and (1.12) are independent of each
other (see Pant [60]). Moreover, the existence of a common fixed point is not ensured
by either of the conditions (1.11) and (1.12) (see Pant [60], [62] and Rao and Rao [64]).
The existence of a common fixed point under the condition (1.11) is guaranteed with
some additional hypotheses on δ such as δ is lower semi-continuous or nondecreasing.
Similarly the existence of a common fixed point under the condition (1.12) is ensured
with some extra conditions on φ, e.g., φ is nondecreasing and continuous from the
right; or φ is upper semicontinuous and φ(t) < t for each t > 0 ; or φ(t) is non-
decreasing and (1.4) is satisfied; or φ(t) is nondecreasing and t

t−φ(t) is nonincreasing

(see also [60, 62]).

Notice that the condition (1.11) with nondecreasing δ implies condition (1.12).
This implication is true even if δ is lower semi-continuous in the condition (1.11) (see
[12], [62]). This is important to note that the condition (1.12) with any of the above
extra conditions on φ implies the condition (1.11) (see [12], [62]).

Pant et al. [62] obtained the following fixed point theorem using Meir-Keeler type
condition (1.11) without assuming δ to be nondecreasing or lower semi-continuous
but required an additional contractive condition with continuity of one of the maps
along with the completeness of the space and compatibility of the pair of maps.
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Let

M1i(x, y) := max

{
d(Sx, Ty), d(A1x, Sx), d(Aiy, Ty),

d(A1x, Ty) + d(Aiy, Sx)

2

}
,

where S, T, Ai : X → X, i = 1, 2, ... .

Theorem P. Let {Ai, i = 1, 2, ...}, S and T be selfmaps of a complete metric space
(X, d) such that

(i): A1X ⊂ TX, AiX ⊂ SX, i > 1;
(ii): for a given ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ M12(x, y) < ε + δ implies d(A1x, A2y) < ε;

(iii): d(A1x, Aiy) ≤ φi (M1i(x, y)), i > 2,
where φi : R+ → R+is such that φi(t) < t for each t > 0.

Let A1 and S be compatible and T compatible with Ak for each k > 1. If one of the
maps is continuous then the maps S, T and Ai, (i = 1, 2, . . .) have a unique common
fixed point.

We summarize the above discussion by pointing out that generally, there are three
ways of obtaining a common fixed point theorem using a Meir-Keeler type condition
(1.11). In first of these approaches the condition (1.11) is used with some additional
hypotheses on δ, e. g. Jungck [56], Jungck and Pathak [55] and Jungck et al. [57]
required δ to be lower semicontinuous, while Pant [58]-[59] required δ to be non-
decreasing. The second approach of obtaining a common fixed point theorem with
condition (1.11) involves the assumption of continuity of the maps under consideration
(see [56, Cor. 3.1]). The third approach pertaining to the existence of a common fixed
point of the maps satisfying the condition (1.11) consists of the use of (1.11) along
with an additional contractive condition, without requiring δ to be lower semicon-
tinuous or nondecreasing (see, for instance, [53], [54] and [60]-[62]). However, using
entirely a different approach, recently Kikkawa and Suzuki [69] obtained the following
important result which is indeed an extension of a recent generalization of the Bcp
by Suzuki [9], Theorem MK and Jungck [44].

Theorem KS. Let A and S be commuting selfmaps of a metric space X such that
AX ⊂ SX and the following conditions are satisfied

1

2
d(Ax, Sx) < d(Sx, Sy) implies d(Ax, Ay) < d(Sx, Sy) for all x, y ∈ X; (1.13)

and for any ε > 0, there exists a δ(ε) > 0 such that, for all x, y ∈ X,

1

2
d(Ax, Sx) < d(Sx, Sy) and d(Sx, Sy) < ε+ δ(ε) together imply d(Ax, Ay) ≤ ε.

(1.14)
If S is continuous and X is complete then A and S have a unique common fixed point.

The conditions (1.13) and (1.14) were immediately generalized by Popescu [70].
He used the following conditions to obtain a common fixed point theorem for a pair
of commuting self-maps on a complete metric space.

1

2
d(Ax, Sx) < d(Sx, Sy) implies
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d(Ax, Ay) < max{ d(Sx, Sy), [d(Ax, Sx) + d(Ay, Sy)]/2} (1.15)

for all x, y ∈ X; and, for any ε > 0, there exists a δ(ε) > 0 such that, for all
x, y ∈ X,

1

2
d(Ax, Sx) < d(Sx, Sy)

max{d(Sx, Sy), [d(Ax, Sx) + d(Ay, Sy)]/2} < ε+ δ(ε)

together imply

d(Ax, Ay) ≤ ε. (1.16)

In this paper, we obtain a coincidence theorem (Theorem 2.1 below) for a sequence of
maps on a metric space along with two other maps under tight minimal conditions and,
using the commuting property of the maps only at their coincidence points, we obtain
results guaranteeing the existence of common fixed points of the maps. The condition
(2.3) of Theorem 2.1 is very general and includes numerous contractive conditions
(cf. [53], [54], [60]-[62] and [64]). Further, we notice a substantial improvement in
Theorem 2.1 when the sequence of maps consists of only two maps. This is achieved in
the subsequent result (Theorem 2.3 below). Variants of Theorem 2.3 are obtained in
Theorems 2.6 & 2.7. Further, we obtain a considerably improved version of Theorem
KS. As an application, we show the existence of a common solution of functional
equations arising in dynamic programming.

2. Main Results

Throughout this paper, consistent with [71] let C(A, S) = {u : Au = Su} denote
the collection of all coincidence points of selfmaps A and S of a metric space X.

The following is our main result for a sequence of maps in a metric space.

Theorem 2.1. Let {Ai}, i = 1, 2, . . ., S and T be selfmaps of a metric space (X, d)
such that

A1X ⊆ TX and AiX ⊆ SX, i > 1; (2.1)

given ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ M12(x, y) < ε + δ implies d(A1x, A2y) < ε; (2.2)

d(A1x, Aiy) < kd(Sx, Ty) + α[d(A1x, Sx) + d(Aiy, Ty) + d(A1x, Ty) + d(Aiy, Sx)],
(2.3)

whenever the right-hand side is non-zero, where k ≥ 0, α < 1
2 .

If one of AiX, SX or TX is a complete subspace of X then:
(I) C(A1, S) and C(Ai, T ), i > 1, are nonempty.
Indeed, if u1, u2, ..., un ∈ C(A1, S), and v1, v2, ..., vn ∈ C(Ai, T ), i > 1,

then A1uj = Suj = Ai vj = Tvj , i > 1, j = 1, ..., n.
Further,

(II) A1and S have a common fixed point provided that they commute at some
u ∈ C(A1, S);
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(III) Aiand T have a common fixed point provided that Ai and T commute at some
v ∈ C(Ai, T ), i > 1, and one of the following holds:

d(Aix,A
2
ix)

6= max{d(Tx, TAix), d(Aix, Tx), d(A2
ix, TAix), d(Aix, TAix), d(Tx,A2

ix)}, (2.4)

whenever the right-hand side of (2.4) is nonzero for x ∈ C(Ai, T );

d(Tx, T 2x)

6= max{d(Aix,AiTx), d(Tx,Aix), d(T 2x,AiTx), d(Tx,AiTx), d(Aix, T
2x)}, (2.5)

whenever the right-hand side of (2.5) is nonzero for x ∈ C(Ai, T );
(IV) Ai, Sand T , for each i, have a common fixed point provided (II) and (III)

are true.

Proof. Pick x0 ∈ X. Construct two sequences {xn} and {yn} in X in the following
manner:

y2n = A1x2n = Tx2n+1, y2n+1 = Aix2n+1 = Sx2n+2, i > 1, n = 0, 1, 2, ....

This can be done by the virtue of (2.1). In view of Jachymski [12, Lemma 2.2] (see
also [62, p. 781]), the sequence {yn} is Cauchy. Let TX be complete. The sequence
{y2n} is contained in TX, and has a limit in TX. Call it w. Let v ∈ T−1w. Then
Tv = w. The subsequence {y2n+1} also converges to w.

Now, we show that Aiv = Tv = w. For some i > 1, by (2.3),

d(y2n, Aiv) = d(A1x2n, Aiv)

< kd(Sx2n, T v)

+ α[d(A1x2n, Sx2n) + d(Aiv, Tv) + d(A1x2n, T v) + d(Aiv, Sx2n)].

Making n→∞,

d(Tv,Aiv) ≤ kd(Tv, Tv) + α[d(Tv, Tv) + d(Aiv, Tv) + d(Tv, Tv) + d(Aiv, Tv)]

= 2αd(Aiv, Tv) < d(Aiv, Tv),

a contradiction. Hence Aiv = Tv = w, proving that C(Ai, T ), i > 1, is nonempty.

Since AiX ⊂ SX, we can choose a point u in X such that w = Aiv = Su. Now we
show that Aiu = Su. By (2.3),

d(A1u, Aix2n+1) < kd(Su, Tx2n+1)

+ α [d(A1u, Su)

+ d(Aix2n+1, Tx2n+1) + d(A1u, Tx2n+1) + d(Aix2n+1, Su )].

Making n→∞,

d(A1u, Su) ≤ kd(Su, Su) + α[d(A1u, Su) + d(Su, Su) + d(A1u, Su) + d(Su, Su)].

= 2αd(A1u, Su) < d(A1u, Su),

a contradiction. Hence A1u = Su = w. So that Aiv = Tv = w = A1u = Su, i > 1.
Therefore C(A1, S) is nonempty. If SX is complete then an analogous argument
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establishes that C(A1, S) is nonempty. Further, if AiX (i > 1) is complete then by
(2.1), the limit w belongs to SX. This completes the proof of (I).

By the commutativity of A1 and S at u,

A1w = A1Su = SA1u = SSu = A1A1u = Sw. If w 6= A1w.

Then by (2.2),

d(w, A1w) = d(A1A1u, A2v)

< max{d(SA1u, Tv), d(A1A1u, SA1u), d(A2v, Tv), [d(A1A1u, Tv)+d(A2v, SA1u)]/2}
= d(w, A1w),

a contradiction. Therefore w = A1w or A1u = A1A1u = SA1u. Hence A1u is a
common fixed point of A1 and S. This proves (II). Similarly, by the commutativity
of Ai and T at v, Aiw = AiTv = TAiv = AiAiv = TTv = Tw, i > 1. Taking
x = v in (2.4) or (2.5), we immediately see that Aiv is a common fixed point of Ai
and T . This proves (III), and (IV) is immediate. �

Recently Jha [53] (see also [54]) obtained a Meir-Keeler type common fixed point
theorem for the maps {Ai, i = 1, 2, ...}, S and T in a metric space X satisfying the
following additional condition:

d(A1x,Aiy) < α[d(Sx, Ty) + d(A1x, Sx) + d(Aiy, Ty) + d(A1x, Ty) + d(Aiy, Sx)],
(2.6)

0 ≤ α ≤ 1
3 . The following example demonstrates the generality of Theorem 2.1 over

the results of Jha [53], Jungck et al. [57], Pant et al. [62] and Rhoades et al. [66].

Example 2.2. Let X = [2, 15] be endowed with the usual metric and consider the
following discontinuous maps on X:

A1x =

{
2 if x < 10,

10 + x

8
if x ≥ 10;

Sx =

 2 if x ≤ 4,
x if 4 < x ≤ 10,
8 if x > 10;

Tx =


2 if x = 2,

11 + x if 2 < x < 5,
11 if 5 ≤ x ≤ 10,
x+ 1

5
if x > 10;

A2x =

{
2 if x < 4 or x ≥ 5,

2 + x if 4 ≤ x < 5;

and, for each i > 2,

Aix =


2 if x = 2

30 + x

4
if x < 2 < 4,

10 if 4 ≤ x ≤ 15.

Notice that {Ai}, S and T have a common fixed point at x = 2. It can be verified
that the conditions (2.1) and (2.3) are satisfied. Further, maps A1, A2, S and T
satisfy the condition (2.2) when δ(ε) = 14− ε if ε ≥ 5 and, δ(ε) = 5− ε if ε < 5.
Now, it is easy to see that δ(ε) is neither nondecreasing nor lower semicontinuous.
Moreover, the condition (2.6) is not satisfied for x = 2 and y ∈ (10, 15].
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The following common fixed point theorem for four maps in a metric space gener-
alizes, among others, the results of Jha et al. [54], Jungck and Pathak [55], Jungck
[56], Pant [60]-[61], Rao and Rao [64] and others. Indeed, if {Ai} = {A, B}, the
requirements (2.4) and (2.5) of Theorem 2.1 are not needed. We do this below and
give only a sketch of the proof.

Theorem 2.3. Let A,B,S and T be selfmaps of a metric space (X, d) such that

AX ⊆ TX and BX ⊆ SX. (2.7)

Given ε > 0, there exists a δ > 0 such that for all x, y ∈ X;

ε ≤ M(x, y) < ε + δ implies d(Ax, By) < ε; (2.8)

d(Ax, By) < k d(Sx, Ty) + α[d(Ax, Sx) + d(By, Ty) + d(Ax, Ty) + d(By, Sx)],
(2.9)

whenever the right-hand side of (2.9) is nonzero, where k ≥ 0, α < 1
2 .

If one of AX, BX, SX or TX is a complete subspace of X then:
(I) C(A, S) and C(B, T ), are nonempty. Indeed, if u1, u2, ... , un ∈ C(A, S),

and v1, v2, ..., vn ∈ C(B, T ), then Auj = Suj = B vj = Tvj , j = 1, ..., n.
Further,
(II) Aand S have a common fixed point provided that they commute at some u ∈

C(A, S) ;
(III) Band T have a common fixed point provided that Band T commute at some

v ∈ C(B, T );
(IV) A, B, Sand Thave a unique common fixed point provided (II) and (III) are

true.

Proof. Pick x0 ∈ X. Construct two sequences {xn} and {yn} in X in the following
manner:

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2, n = 0, 1, 2, ....

Following the proof of Theorem 2.1, it can be seen that the maps A and S have a
coincidence at u, and B and T have a coincidence at v. This proves (I).

Further, commutativity of A, S and B, T at their coincidences implies AAu = ASu =
SAu = SSu and BTv = TBv = TTv = BBv. By (2.8), we have

d(Au, AAu) = d(AAu, Bv) < max{ d(SAu, Tv), d(AAu, SAu), d(Bv, Tv),

[d(AAu, Tv) + d(Bv, SAu)]/2 } = d(AAu, Bv),

a contradiction. This proves (II). Similarly, using (2.8), we have

d(Bv, BBv) = d(Au, BBv) < max{ d(Su, TBv), d(Au, Su), d(BBv, TBv),

[d(Au, TBv) + d(BBv, Su)]/2 } = d(Au, BBv),

a contradiction, proving (III), now (IV) is immediate. �

For a variant of Theorem 2.3, refer to Singh and Kumar [72, Theorem 1]. The
following example shows that the maps A, B, S and T of Theorem 2.3 need not have
a common coincidence.
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Example 2.4. Let X = [0, ∞) be endowed with the usual metric and

AX = x2 + 4/9, BX = x3 + 4/9, SX = 5x2, TX = 5x3, x ∈ X.

Then

d(Ax, By) =
∣∣x2 − y3∣∣ < 5

∣∣x2 − y3∣∣ = d(Sx, Ty) for all x, y ∈ X.

So, (2.9) and other hypotheses of Theorem 2.3 are satisfied. We see that A(1/3) =
S(1/3) = 5/9 and B(1/9)1/3 = T (1/9)1/3 = 5/9, that is, A and S have a coincidence
at x = 1/3 and B and T have a (different) coincidence at x = (1/9)1/3.

Now a natural question is that if A = B in Theorem 2.3, can we have a common
coincidence point of the maps A, S and T under the hypotheses of Theorem 2.3. The
following example answers it negatively.

Example 2.5. Let X = {1, 2, 3} with the usual metric and A1 = A2 = A3 = 1,
S1 = 2, S2 = 3, S3 = 1 and T1 = 3, T2 = 1, T3 = 2. It is easy to see that A, S and
T satisfy all the conditions of Theorem 2.3 with A = B. Notice that A3 = S3 = 1 =
A2 = T2, that is, A and S have a coincidence at x = 3 and A and T have a (different)
coincidence at x = 2.

In case S = T in Theorem 2.3, we obtain a slightly improved version which we state
below. Indeed, a slight modification in the proof of Theorem 2.3 yields the following
result.

Theorem 2.6. Let A, B and S be selfmaps of a metric space (X, d) such that (2.8)
and (2.9) with S = T , and AX ∪ BX ⊂ SX . If one of AX, BX or SX is a
complete subspace of X. Then, A, B and S have a common coincidence. Further,
if S commutes with each of A and B at their coincidences, then A, B and S have a
unique common fixed point.

As an immediate consequence of Theorem 2.3, we have the following result under
a slightly weaker condition than (2.9).

Theorem 2.7. Let A, B, S and T be selfmaps of a metric space (X, d) such that
conditions (2.7) and (2.8) of Theorem 2.3 and the following are satisfied:

d(Ax, By) ≤ k d(Sx, Ty) + α [d(Ax, Sx) + d(By, Ty) + d(Ax, Ty) + d(By, Sx)],
(2.10)

where k ≥ 0, α < 1
2 . If one of AX, BX, SX or TX is a complete subspace of X.

Then all the conclusions of the Theorem 2.3 are true.

Proof. It follows from the proof of Theorem 2.3 by noting that (2.9) implies (2.10). �

Substituting α = 0 in the Theorem 2.7 we have the following result.

Corollary 2.8. [61, Theorem 1] Let A, B, S and T be selfmaps of a metric space
(X, d) such that conditions (2.7) and (2.8) of Theorem 2.3 and the following are
satisfied:

d(Ax, By) ≤ kd(Sx, Ty).

If one of AX, BX, SX or TX is a complete subspace of X then all the conclusions
of Theorem 2.3 are true.
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In case A = B and S = T = IX(identity map) in Theorem 2.3, we obtain the
following result which generalizes, among others, the results of Jachymski [2], Pant
et al. [62] and Rao and Rao [32].

Corollary 2.9. Let A be a self map of a metric space (X, d) such that given ε > 0,
there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ max

{
d(x, y), d(x, Ax), d(y, Ay),

d(x, Ay) + d(y, Ax)

2

}
< ε+ δ

implies d(Ax,Ay) < ε, and

d(Ax,Ay) < k d(x, y) + α [d(x, Ax) + d(y, Ay) + d(x, Ay) + d(y, Ax)],

whenever the right-hand side is non-zero, where k ≥ 0, α < 1
2 . If X is complete or

AX is a complete subspace of X, then A has a unique fixed point.

Now, we present a variant and a generalization of Theorems MK & KS (see also [40]).

Theorem 2.10. Let A and S be selfmaps of a metric space X such that

AX ⊂ SX; (2.11)

1

2
d(Ax, Sx) < d(Sx, Sy) implies d(Ax, Ay) < d(Sx, Sy) for all x, y ∈ X;

(2.12)
for any ε > 0, there exists a δ(ε) > 0 such that for all x, y ∈ X,

1

2
d(Ax, Sx) < d(Sx, Sy) and d(Sx, Sy) < ε + δ(ε) imply d(Ax, Ay) ≤ ε.

(2.13)
If one of AX or SX is a complete subspace of X then C(A, S) is nonempty. Further,
A and S have a unique common fixed point provided that A and S commute at a point
u ∈ C(A, S) .

Proof. Pick x0 ∈ X. Construct two sequences {xn} and {yn} in X in the following
manner:

yn+1 = Axn = Sxn+1, n = 0, 1, 2, ....

This can be done by the virtue of (2.11). Kikkawa and Suzuki [69] have shown that the
sequence {Sxn} is Cauchy. Let SX be complete. The sequence {Sxn} is contained
in SX, and has a limit in SX. Call it z. If AX is complete then, by (2.11), z ∈ SX.
Let u ∈ S−1z. Then Su = z.

Now, we show that Au = Su = z.

Define F : SX → SX by Fa = A(S−1a) for each a ∈ SX. First we show that F is
well defined. Observe by (2.11) that for x ∈ S−1a.

Fa = Ax, Fa ⊂ SX. (2.14)

Take x, y ∈ S−1a such that b = Ax, c = Ay. Then, since SX = SY , we have b = c.
Therefore F is well defined map.
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Now, for a 6= b and a, b ∈ SX, S−1a ∩ S−1b = φ. Therefore, for distinct
a, b ∈ SX, we suppose 1

2d(a, Fa) < d(a, b). Then for x ∈ S−1a, and y ∈ S−1b,
we have

1

2
d(Ax, Sx) =

1

2
d(a, Fa) < d(a, b) = d(Sx, Sy). (2.15)

From (2.12), this inequality implies that d(Ax, Ay) < d(Sx, Sy). Let x = u and y
= xn then d(Au, Axn) < d(Su, Sxn). Making n→∞,

d(Au, z) ≤ d(Su, Su), i.e., Au = Su = z.

This proves that C(A, S), is nonempty. The commutativity of A and S at u implies
AAu = ASu = SAu = SSu.

Further, 1
2d(Au, Su) = 0 < d(Su, SAu).

If Su 6= SSu = SAu, then 1
2d(Au, Su) = 0 < d(Su, SAu).

So, by (2.12),

d(Au, AAu) < d(Su, SSu) = d(Au, AAu),

a contradiction. This yields that Au is a common fixed point of A and S. The
uniqueness of the common fixed point follows easily. �

Theorem Bis. Theorem 2.10 with (2.12) replaced by (2.16):

1

2
d(Ax, Sx) < d(Sx, Sy) implies d(Ax, Ay) ≤ d(Sx, Sy) for all x, y ∈ X.

(2.16)

Proof. It may be completed following the proofs of Theorem 2.10 and Jachymski [12,
Theorem 4.3]. �

Finally, we ask whether in Theorem 2.10, one can replace the conditions (2.12)
and (2.13) respectively by (2.17) and (2.18). In particular, we have the following
conjecture:

Let A and S be selfmaps of a metric space X such that AX ⊂ SX;

1

2
d(Ax, Sx) < d(Sx, Sy)

implies

d(Ax, Ay) < max{d(Sx, Sy), [d(Ax, Sx) + d(Ay, Sy)]/2}, (2.17)

x, y ∈ X; for any ε > 0, there exists a δ(ε) > 0 such that, for all x, y ∈ X,

1

2
d(Ax, Sx) < d(Sx, Sy)

and

max{d(Sx, Sy), [d(Ax, Sx) + d(Ay, Sy)]/2} < ε + δ(ε) (2.18)

together imply d(Ax, Ay) ≤ ε. If one of AX or SX is a complete subspace of X
then C(A, S) is nonempty. Further, A and S have a unique common fixed point
provided that A and S commute at a point u ∈ C(A, S).
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3. Applications

Throughout this section, we assume that U and V are Banach spaces, W ⊆ U is
a state space, D ⊆ V is a decision space and < denote the field of real numbers. Let
τ : W × D → W, g, g′ : W × D → < and G, F : W × D × < → <.
As studied by Bellman [73], Bellman and Lee [74] (see also [75]-[79] and references
thereof), the basic form of the functional equations of the dynamic programming is
the following:

p(x) = opt
y∈D
{G(x, y, p(τ(x, y)))}, x ∈ W,

where x and y are the state and decision vectors respectively, and p(x) represents the
optimal return function with initial state x.

In this section, we study the existence and uniqueness of the common solution of the
following functional equations arising in dynamic programming.

p : = sup
y∈D
{g(x, y) + G(x, y, p(τ(x, y)))}, x ∈ W, (3.1)

q : = sup
y∈D
{g′(x, y) + F (x, y, q(τ(x, y)))}, x ∈ W. (3.2)

Let B(W ) denote the set of all bounded real-valued functions on W . For an arbitrary
h ∈ B(W ), define ‖h‖ = sup

y∈D
|h(x)| , then (B(W ), ‖ . ‖) is a Banach space. Suppose

that the following conditions hold:

G, F , g and g′ are bounded. (DP.1)

For every (x, y) ∈ W ×D, h, k ∈ B(W ) and t ∈ W (DP.2)
1

2
|Kh(t) − Jh(t)| < |Jh(t) − Jk(t)| (3.3)

implies
|G(x, y, h(t) − G(x, y, k(t)| ≤ |Jh(t) − Jk(t)| , (3.4)

where K and J are defined as follows:

Kh(x) = sup
y∈D
{g(x, y) + G(x, y, h(τ(x, y)))}, x ∈ W, h ∈ B(W ), (∗)

Jh(x) = sup
y∈D
{g′(x, y) + F (x, y, h(τ(x, y)))}, x ∈ W, h ∈ B(W ) (∗∗)

For any ε > 0, there exists a δ(ε) > 0 such that

for all (x, y) ∈ W ×D, h, k ∈ B(W ) and t ∈ W, (DP.3)

1

2
|Kh(t) − Jh(t)| < |Jh(t) − Jk(t)| (3.5)

and
|Jh(t) − Jk(t)| < ε + δ(ε) (3.6)

implies
|G(x, y, h(t) − G(x, y, k(t)| ≤ ε. (3.7)

For any h ∈ B(W ), there exists k ∈ B(W ) such that (DP.4)

Kh(x) = Jk(x), x ∈ W . (3.8)
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There exists h ∈ B(W ) such that (DP.5)

Jh(x) = Kh(x) implies JKh(x) = KJh(x). (3.9)

Theorem 3.1. Let conditions (DP.1), (DP.2), (DP.3), (DP.4) and (DP.5) be satis-
fied. If K(B(W )) or J(B(W )) is a closed convex subspace of B(W ), then the func-
tional equations (3.1) and (3.2) have a unique bounded solution.

Proof. Notice that (B(W ), d) is a complete metric space, where d is a metric induced
by supremum norm on B(W ). By (DP.1), J and K are self-maps of B(W ). The
condition (DP.4) implies that K(B(W )) ⊆ J(B(W )). It follows from (DP.5) that J
and K commute at their coincidence points.

Let λ be an arbitrary positive number and h1, h2 ∈ B(W ). Pick x ∈ W and choose
y1, y2 ∈ D such that

Khj < g(x, yj) + G(x, yj , hj(xj)) + λ, (3.10)

where xj = τ(x, yj), j = 1, 2.
Further,

Kh1(x) ≥ g(x, y2) + G(x, y2, h1(x2)) (3.11)

and
Kh2(x) ≥ g(x, y1) + G(x, y1, h2(x1)). (3.12)

Therefore, (3.3) of (DP.2) becomes

1

2
|Kh1(x) − Jh1(x)| < |Jh1(x) − Jh2(x)| , (3.13)

and this together with (3.10) and (3.12) implies

Kh1(x) − Kh2(x) < G(x, y1, h1(x1)) − G(x, y1, h2(x1)) + λ

≤ |G(x, y1, h1(x1)) − G(x, y1, h2(x1))| + λ

< d(Jh1, Jh2) + λ. (3.14)

Similarly, (3.10), (3.11) and (3.13) imply

Kh2(x) − Kh1(x) < d(Jh1, Jh2) + λ. (3.15)

So, from (3.14) and (3.15), we have

|Kh1(x) − Kh2(x)| < d(Jh1, Jh2) + λ (3.16)

Since x ∈ W, and λ > 0 is arbitrary, we find from (3.13) that

1

2
d(Kh1, Jh1) < d(Jh1, Jh2) (3.17)

implies
d(Kh1, Kh2) ≤ d(Jh1, Jh2). (3.18)

Analogously, (3.5) and (3.6) become respectively

1

2
|Kh1(x) − Jh1(x)| < |Jh1(x) − Jh2(x)| , (3.19)

and
|Jh1(x) − Jh2(x)| < ε + δ(ε). (3.20)
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These together with (3.10), (3.11) and (3.12) imply

|Kh1(x) − Kh2(x)| ≤ ε + λ. (3.21)

Since x ∈ W, and λ > 0 is arbitrary, we find from (3.19) and (3.20) that

1

2
d(Kh1, Jh1) < d(Jh1, Jh2) (3.22)

and

d(Jh1, Jh2) < ε + δ(ε). (3.23)

Together imply

d(Kh1, Kh2) ≤ ε . (3.24)

Inequalities (3.17) and (3.18) are the same as inequality (2.16) and inequalities (3.22),
(3.23) and (3.24) are the same as the inequality (2.13), wherein K and J correspond,
respectively, to the maps A and S. Therefore, by Theorem Bis, K and J have a
unique common fixed point h*, that is h*(x) is the unique bounded common solution
of functional equations (3.1) and (3.2). �

Corollary 3.2. Assume that the following conditions hold:

G and g are bounded. (I’)

For every (x, y) ∈ W ×D, h, k ∈ B(W ) and t ∈ W (II’)

1

2
|h(t) − Kh(t)| < |h(t) − k(t)| , (3.25)

implies

|G(x, y, h(t) − G(x, y, k(t)| ≤ |h(t) − k(t)| , (3.26)

where K is defined by (*)

For any ε > 0, there exists a δ(ε) > 0 such that,

for all (x, y) ∈W ×D, h, k ∈ B(W ) and t ∈W, (III’)

(3.25) and

|h(t) − k(t)| < ε + δ(ε), (3.27)

implies

|G(x, y, h(t) − G(x, y, k(t)| ≤ ε. (3.28)

where K is defined by (*). Then the functional equation (3.1) has a unique bounded
solution in W .

Proof. It comes from Theorem 3.1 where g′ = 0, τ(x, y) = x and F (x, y, t) = t as
the assumptions (DP.4) and (DP.5) become redundant. �
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