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1. Introduction

It is a well known fact that a fuzzy metric space is a generalization of the concept
of metric space that is based on the theory of fuzzy sets ([24]). Kramosil and Michalek
(see [14]) introduced the notion of a fuzzy metric space by translating the concept of
probabilistic metric space to the fuzzy environment. Further on, George and Veera-
mani ([2, 3]) modified the previous and obtained a Hausdorff topology for this specific
kind of fuzzy metric spaces. Recently, many authors observed that various contraction
mappings in metric spaces can be transferred into a fuzzy metric spaces endowed with
a special t-norm. S.B. Nadler ([19]) has proved a generalization of the well known
Banach contraction principle for a multi-valued mappings f : X → CB(X), where
(X, d) is a classical metric space and CB(X) is the family of all non-empty, closed and
bounded subsets of X. There are various extensions of the Banach contraction map-
pings for single-valued and multi-valued mappings done in the fuzzy metric spaces’
background (see [1, 4, 6, 7, 8, 9, 12, 15, 16, 17, 18]). V. Popa ([20]) introduced the
idea of implicit function to prove a common fixed point theorem in metric spaces.
B. Singh and S. Jain ([23]) extended the result of Popa to the fuzzy metric spaces.
Many authors (see [11], [21], [23], [25]) proved a common fixed point theorem for a
single-valued mappings in the fuzzy metric spaces using implicit relations. S. Sedghi
et al. ([22]) proved a common fixed point theorem for a multi-valued mappings that
satisfies an implicit relation on a fuzzy metric spaces for a specific t-norm.
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The focus of this paper is on a coincidence point theorem for three mappings for
the fuzzy Nadler type of contraction mappings. Presented result is a generalization
of the Theorem 4.13 from [6]. A probabilistic version of the presented result can be
found in [26]. Also, a coincidence point theorem for three mappings in a fuzzy metric
space with an implicit relation is given.

A short overview of some well-known definitions and facts that are the core of the
presented results follows (see [2, 4, 6, 13]).

1.1. Preliminaries - t-norms.
Definition 1.1 A mapping T : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (a
t-norm) if the following conditions are satisfied:

• T (a, 1) = a for all a ∈ [0, 1];
• T (a, b) = T (b, a) for all a, b ∈ [0, 1];
• a ≥ b, c ≥ d⇒ T (a, c) ≥ T (b, d) (a, b, c, d ∈ [0, 1]);
• T (a, T (b, c)) = T (T (a, b), c) (a, b, c ∈ [0, 1]).

The following are the four basic t-norms ([13]):

TM (x, y) = min(x, y), TP (x, y) = x · y, TL(x, y) = max(x+ y − 1, 0)

TD(x, y) =

{
min(x, y) if max(x, y) = 1,
0 otherwise.

Some important families of t-norms are given in the following example ([13]):
Example 1.2

(i) The Dombi family of t-norms (TDλ )λ∈[0,∞], which is defined by

TDλ (x, y) =


TD(x, y), λ = 0
TM (x, y), λ =∞

1

1+

((
1−x
x

)λ
+

(
1−y
y

)λ)1/λ , λ ∈ (0, ∞).

(ii) The Aczél-Alsina family of t-norms (TAAλ )λ∈[0,∞], which is defined by

TAAλ (x, y) =


TD(x, y), λ = 0
TM (x, y), λ =∞
e−((− log x)λ+(− log y)λ)1/λ , λ ∈ (0, ∞).

(iii) Sugeno-Weber family of t-norms (TSWλ )λ∈[−1,∞], which is defined by

TSWλ (x, y) =


TD(x, y), λ = −1
TP (x, y), λ =∞
max(0, x+y−1+λxy

1+λ ), λ ∈ (−1, ∞).

The following class of t-norms, that has proved itself as a highly useful tool in the
fixed point theory, was introduced in [4].
Definition 1.3 [4] Let T be a t-norm and let (Tn)n∈N be a sequence of t-norms given
by the following:

T1(x) = T (x, x) and Tn+1(x) = T (Tn(x), x).
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A t-norm T is of the H-type if T is continuous and the sequence {Tn(x)}n∈N is
equicontinuous at x = 1.
Remark 1.4 The family {Tn(x)}n∈N of t-norms is equicontinuous at x = 1, if for all
λ ∈ (0, 1) there exists δ(λ) ∈ (0, 1) such that the following implication holds:

x > 1− δ(λ)⇒ Tn(x) > 1− λ for all n ∈ N.
(see [4]). A trivial example of a t-norm of H-type is T = TM . A nontrivial example
can be found in [4].

An arbitrary t-norm T can be extended, due to the associativity, to an n-ary
operation on [0, 1]n (see [13]):

T (x1, x2, . . . , xn) = Tn
i=1xi = T (Tn−1

i=1 xi, xn) and T1
i=1xi = x1.

Now, the four basic t-norms are extended in the following manner

TL(x1, x2, . . . , xn) = max{
n∑
i=1

xi − (n− 1), 0},

TM (x1, x2, . . . , xn) = min{x1, x2, . . . , xn},

TP (x1, x2, . . . , xn) = x1 · x2 · · · · xn
and

TD(x1, x2, . . . , xn) =

{
xi if xj = 1 for all j 6= i,
0 otherwise.

Also, a t-norm T can be extend to a countable case as follows:

T∞i=1xi = lim
n→∞

Tn
i=1xi,

where (xn)n∈N is an arbitrary sequence from [0, 1]. The limit on the right-hand side
exists since the sequence (Tn

i=1xi)n∈N is nonincreasing and bounded from below.
The following equivalences and proposition that will be used further on can be

found in [6]:

• If T = TL or T = TP , then

lim
n→∞

T∞i=nxi = 1⇐⇒
∞∑
i=1

(1− xi) <∞.

• If (T ∗λ )λ∈(0,∞) is the Dombi family of t-norms or the Aczél-Alsina family
of t-norms and if (xn)n∈N is a sequence of elements from (0, 1] such that
lim
n→∞

xn = 1, then

lim
n→∞

(T∗λ)∞i=nxi = 1⇐⇒
∞∑
i=1

(1− xi)λ <∞. (1.1)

• If (TSWλ )λ∈(−1,∞] is the Sugeno-Weber family of t-norms and (xn)n∈N is a
sequence of elements from (0, 1] such that lim

n→∞
xn = 1, then

lim
n→∞

(TSW
λ )∞i=nxi = 1⇐⇒

∞∑
i=1

(1− xi) <∞. (1.2)
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Proposition 1.5 [6] Let (xn)n∈N be a sequence of numbers from [0, 1] such that
lim
n→∞

xn = 1 and t-norm T is of the H-type. Then,

lim
n→∞

T∞i=nxi = lim
n→∞

T∞i=nxn+i = 1.

1.2. Preliminaries - fuzzy metric spaces.
Definition 1.6 [2] The 3-tuple (X, M, T ) is a fuzzy metric space if X is an arbitrary
set, T is a continuous t-norm and M is a fuzzy set on X2 × (0, ∞) satisfying the
following conditions:

• M(x, y, t) > 0, for all x, y ∈ X, t > 0,
• M(x, y, t) = 1 for all t > 0⇔ x = y,
• M(x, y, t) = M(y, x, t), for all x, y ∈ X, t > 0,
• T (M(x, y, t), M(y, z, s)) ≤M(x, z, t+ s), for all x, y, z ∈ X, t, s > 0,
• M(x, y, ·) : (0, ∞)→ [0, 1] is continuous for all x, y ∈ X.

If (X, M, T ) is a fuzzy metric space, then M generates the Hausdorff topology on
X with base of open sets {U(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0}, where

U(x, r, t) = {y : y ∈ X, M(x, y, t) > 1− r}
(see [2]).

Since the focus is on the complete fuzzy metric spaces, the following definition is
needed.
Definition 1.7 [2]

(a) A sequence {xn}n∈N in a fuzzy metric space (X, M, T ) is a Cauchy sequence
if for all ε ∈ (0, 1), t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1− ε
for all n, m ≥ n0.

(b) A sequence {xn}n∈N in a fuzzy metric space (X, M, T ) converges to x if for
all ε ∈ (0, 1), t > 0 there exists n0 ∈ N such that M(xn, x, t) > 1− ε for all
n ≥ n0.

(c) A fuzzy metric space in which every Cauchy sequence is convergent is com-
plete.

Additionally, through this paper let us assume that lim
t→∞

M(x, y, t) = 1.

2. Main results

Let X be an arbitrary nonempty set, CB(X) the family of all non-empty, closed
and bounded subsets of X, and C(X) the family of all nonempty and closed subsets
of X.

Let (X, M, T ) be a fuzzy metric space.

2.1. Fuzzy Nadler q-contraction. S.B. Nadler ([19]) proved on a metric space
(X, d) generalization of the Banach contraction principle for multi-valued mappings
f : X → CB(X) of the form

D(fx, fy) ≤ qd(x, y),

where D is the Hausdorff metric and q ∈ (0, 1).
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A generalization of the Nadler contraction principle in a fuzzy metric space
(X, M, T ) follows.
Definition 2.1 [6] Let (X, M, T ) be a fuzzy metric space, A nonempty subset of X
and F : A → C(A). Mapping F is the fuzzy Nadler q-contraction, where q ∈ (0, 1),
if the following condition is satisfied:

for all u, v ∈ A, all x ∈ Fu and all δ > 0 there exists y ∈ Fv such that for all
t > δ

M(x, y, t) ≥M(u, v,
t− δ
q

).

Remark 2.2

(i) Since the function M(x, y, ·) is continuous, for f being a single valued mapping
the fuzzy Nadler q-contraction coincides with the notion of fuzzy Banach q-
contraction.

(ii) Connection of the probabilistic Nadler q-contraction with random operators is
illustrated by Example 4.10 from [6]. Connection with the fuzzy metric case
is analogous.

Definition 2.3 [10] Let (X, M, T ) be a fuzzy metric space, ∅ 6= A ⊂ X, f : A → A
and F : A → C(A). Mapping F is a f - strongly demicompact if for every sequence
(xn)n∈N from A, and every ε > 0 such that

lim
n→∞

M(fxn, yn, ε) = 1 for some sequence (yn)n∈N, yn ∈ Fxn, n ∈ N,

there exists convergent subsequences (fxnk)k∈N.
Example 2.4 Let X = D = R, M(x, y, t) = Md(x, y, t) = t

t+d(x,y) where d is

the usual metric on R and T = TP . Then (X,M, T ) is a fuzzy metric space. Let
f(x) = arctgx and F (x) = [arctgx− 1, arctgx+ 1]. Then for every sequence (xn)n∈N,
we can find a sequence (yn)n∈N such that yn ∈ F (xn), namely yn = arctgxn + 1

n , and

Md(f(xn), yn, t) = t
t+d(f(xn),yn) → 1, n→∞. Now, since the sequence (arctgxn)n∈N

is bounded and it has a monotone subsequence, there exists a convergent subsequence,
e.g., for xn = n(−1)n, the sequence f(xn) = arctg(n(−1)n) has a convergent subse-
quence obtained by selecting even members.
Definition 2.5 [5] A mapping F : X → C(X) is weakly commuting with f : X → X
if for all x ∈ X it holds

f(Fx) ⊆ F (fx).

Theorem 2.6 Let (X, M, T ) be a complete fuzzy metric space, and A nonempty and
closed subset of X. Let f : A → A be a continuous mapping and F, G : A → C(A)
such that for q ∈ (0, 1) the following holds:

For every u, v ∈ A, x ∈ Fu and δ > 0, there exist y ∈ Gv such that for all ε > δ

M(x, y, ε) ≥M(fu, fv,
ε− δ
q

). (2.1)

If F and G are weakly commuting with f and the following is satisfied
(i) F or G are f -strongly demicompact
or
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(ii) there exists x0, x1 ∈ A, fx1 ∈ Fx0 and µ ∈ (q, 1) such that for a t-norm T
holds

lim
n→∞

T∞i=nM(fx0, fx1,
1

µi
) = 1.

Then there exist x ∈ A such that fx ∈ Fx ∩Gx.
Proof. Let x0, x1 ∈ A be such that fx1 ∈ Fx0. From (2.1) for x = fx1, u = x0,
v = x1 i δ = q it follows that there exist x2 ∈ A such that fx2 ∈ Gx1 and

M(fx1, fx2, ε) ≥M(fx0, fx1,
ε− q
q

).

Continuing in this way we can construct a sequence (xn)n∈N from A such the following
conditions are satisfied

(a) fx2n+1 ∈ Fx2n and fx2n+2 ∈ Gx2n+1

(b) M(fxn, fxn+1, ε) ≥M(fxn−1, fxn,
ε−qn
q ).

From (b) it follows

M(fxn, fxn+1, ε) ≥M(fx1, fx0,
ε− nqn

qn
).

Since ε > 0, lim
n→∞

M(fx1, fx0,
ε−nqn
qn ) = 1 ( lim

n→∞
( ε−nq

n

qn ) =∞), it follows

lim
n→∞

M(fxn, fxn+1, ε) = 1. (2.2)

If we supposed that F is f -strongly demicompact, i.e., condition (i) is fulfilled,
using

lim
n→∞

M(fx2n, fx2n+1, ε) = 1 and fx2n+1 ∈ Fx2n

we conclude that there exist a convergent subsequence (fx2nk)k∈N of a sequence
(fx2n)n∈N.

It remains to be proved that the sequence (fxn)n∈N is convergent if T satisfies
condition (ii).

Let σ = q
µ . Since σ ∈ (0, 1),

∞∑
i=1

σi is convergent, there exist m0 ∈ N such that

∞∑
i=m0

σi < 1. Therefore, for all m > m0 and s ∈ N it holds

ε > ε

∞∑
i=m0

σi > ε

m+s∑
i=m

σi.



FIXED POINT THEOREMS IN FUZZY SPACES 73

Then,

M(fxm+s+1, fxm, ε) ≥M(fxm+s+1, fxm, ε

m+s∑
i=m

σi)

≥ T (T (. . . T︸ ︷︷ ︸
(s+1)−times

(M(fxm+s+1, fxm+s, εσ
m+s)

,M(fxm+s, fxm+s−1, εσ
m+s−1)), . . . ,M(fxm+1, fxm, εσ

m))

≥ T (T (. . . T︸ ︷︷ ︸
(s+1)−times

(M(fx1, fx0,
εσm+s − (m+ s)qm+s

qm+s
)

,M(fx1, fx0,
εσm+s−1 − (m+ s− 1)qm+s−1

qm+s−1
),

. . . ,M(fx1, fx0,
εσm −mqm

qm
))

= T (T (. . . T︸ ︷︷ ︸
(s+1)−times

(M(fx1, fx0,
ε

( qσ )m+s
− (m+ s))

,M(fx1, fx0,
ε

( qσ )m+s−1
− (m+ s− 1)),

. . .M(fx1, fx0,
ε

( qσ )m
−m))

= Tm+s
i=mM(fx1, fx0,

ε

µi
− i).

Since µ ∈ (q, 1), there exist m1(ε) > m0 such that ε
µm −m > ε

2µm , for every m >

m1(ε). Now, for all s ∈ N we have

M(fxm+s+1, fxm, ε) ≥ Tm+s
i=mM(fx1, fx0,

ε

2µi
)

≥ T∞i=mM(fx1, fx0,
ε

2µi
)

Since lim
m→∞

T∞i=mM(fx1, fx0,
1
µi ) = 1, it gives us lim

m→∞
T∞i=mM(fx1, fx0,

ε
2µi ) = 1,

for all ε > 0. The previous implies that for all ε > 0, λ ∈ (0, 1), there exist m2(ε, λ) >
m1(ε) such that M(fxm+s+1, fxm, ε) > 1− λ, for all m > m2(ε, λ) and all s ∈ N.

The obtained sequence (fxn)n∈N is a Cauchy sequence and, since X is complete,
the limit lim

n→∞
fxn exists.

Therefore, in both cases (i) and (ii) there exists a subsequence (fxnk)k∈N such that

x = lim
k→∞

fx2nk ∈ A.

Also, from (2.2) it follows that x = lim
k→∞

fx2nk+1.

Now, let us show that fx ∈ Fx ∩ Gx. Since Fx and Gx are closed, it should
be prove that fx ∈ Fx ∩ Gx, i.e., that for every ε > 0 and λ ∈ (0, 1) there exists
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r1(ε, λ) ∈ Fx and r2(ε, λ) ∈ Gx such that

r1(ε, λ) ∈ U(fx, ε, λ) and r2(ε, λ) ∈ U(fx, ε, λ).

Since the t-norm T is continuous, we have sup
x<1

T (x, x) = 1 and there exists δ(λ) ∈

(0, 1) such that

T (1− δ(λ), T (1− δ(λ), 1− δ(λ))) > 1− λ.
From the continuity of the mapping f and from x = lim

k→∞
fx2nk follows that there

exist k1 ∈ N such that

M(fx, ffx2nk ,
ε

3
) > 1− δ(λ), for every k ≥ k1.

Further on, condition (2.2) insures existence of k2 ∈ N such that

M(ffx2nk , ffx2nk+1,
ε

3
) > 1− δ(λ), for every k ≥ k2.

Let δ = ε
12 . Since F is weakly commuting with f then

ffx2nk+1 ∈ f(Fx2nk) ⊆ F (fx2nk),

and, due to (2.1), there exist r2(ε, λ) ∈ Gx such that

M(ffx2nk+1, r2(ε, λ),
ε

3
) ≥ M(ffx2nk , fx,

ε

4q
)

> 1− δ(λ).

Then

M(fx, r2(ε, λ), ε) ≥ T (M(fx, ffx2nk ,
ε

3
), T (M(ffx2nk , ffx2nk+1,

ε

3
),

M(ffx2nk+1, r2(ε, λ),
ε

3
))) > 1− λ.

Now we have r2(ε, λ) ∈ U(fx, ε, λ).
Similarly we can prove that r1(ε, λ) ∈ Fx ∩ U(fx, ε, λ).
Example 2.7 Let (X,M, T ) be a fuzzy metric space as in Example 2.4. Let A = [ 1

2 , 2]
and for all x ∈ A.

(a) Let f(x) = 2, F (x) = {1, 2} and G(x) = { 1
x , 1, 2}. Since

f(Fx) = {2} ⊂ F (fx) = {1, 2} and f(Gx) = {2} ⊂ G(fx) = {1

2
, 1, 2}

mappings F and G weakly commuting with f . Also, mappings F and G are f -strongly
demicompact, for every u, v ∈ A condition (2.1) is satisfied and the claim from the
previous theorem holds.

(b) Let f(x) = x, F (x) = {1} and G(x) = {1, x}. Then F and G are weakly
commuting with f , F is f -strongly demicompact, for every u, v ∈ A condition (2.1) is
satisfied and the claim from the previous theorem holds.
Remark 2.8 From Proposition 1.5 follows that the Theorem 2.6 holds if condition
(ii) is substituted with the assumption ”t-norm T is of H-type”.
Corollary 2.9 Let (X,M, T ∗) be a complete fuzzy metric space and A nonempty and
closed subset of X. Let f : A → A be a continuous mapping and F, G : A → C(A)
such that for q ∈ (0, 1) the following holds:
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For every u, v ∈ A, x ∈ Fu and δ > 0, there exist y ∈ Gv such that for all ε > δ

M(x, y, ε) ≥M(fu, fv,
ε− δ
q

).

If F and G are weakly commuting with f and the following is satisfied
(i) F or G are f -strongly demicompact
or
(ii-a) for T ∗ = TDλ or T ∗ = TAAλ , λ > 0, there exists x0, x1 ∈ A, fx1 ∈ Fx0 and

µ ∈ (q, 1)
such that

∞∑
i=1

(1−M(fx0, fx1,
1

µi
))λ <∞;

(ii-b) for T ∗ = TSWλ , λ > −1, there exists x0, x1 ∈ A, fx1 ∈ Fx0 and µ ∈ (q, 1)
such that

∞∑
i=1

(1−M(fx0, fx1,
1

µi
)) <∞.

Then, there exist x ∈ A such that fx ∈ Fx ∩Gx.
Proof. Follows directly from equivalences (1.1) and (1.2).

2.2. Implicit relation. Let Φ be the set of all continuous functions φ : [0, 1]6 → R
such that

(φ1) φ(t1, t2, t3, t4, t5, t6) is non-increasing in t6.
(φ2) φ(u, v, v, u, 1, T (u, v)) ≥ 0 imply u ≥ v.
(φ3) φ(u, 1, 1, u, 1, u) ≥ 0 imply u ≥ 1.

Example 2.10 Let T = TP and φ(t1, t2, t3, t4, t5, t6) = t1t2t4 − t3t5t6.
Theorem 2.11 Let (X,M, T ) be a complete fuzzy metric space and A nonempty and
closed subset of X. Let f : A→ A a continuous function and let F,G : X → C(A) be
a multi-valued functions such that for some φ ∈ Φ there exists a constant k ∈ (0, 1)
such that for all u, v ∈ A and every t > 0, x ∈ Fu there exists y ∈ Gv such that

φ
(
M(x, y, kt),M(fu, fv, t),M(x, fu, t),

M(y, fv, kt),M(x, fv, t),M(y, fu, (k + 1)t)
)
≥ 0 (2.3)

If F and G are weakly commuting with f and the following is satisfied
(i) F or G are f -strongly demicompact
or
(ii) there exists x0, x1 ∈ A such that for fx1 ∈ Fx0 and µ ∈ (k, 1) the following

holds:

lim
n→∞

T∞i=nM(fx0, fx1,
1

µi
) = 1.

Then there exists x ∈ A such that fx ∈ Fx ∩Gx.
Proof. Let x0 and x1 ∈ A such that fx1 ∈ Fx0. From (2.3) for x = fx1, u = x0,
v = x1 it follows that there exist x2 ∈ A such that fx2 ∈ Gx1 and

φ(M(fx1, fx2, kt),M(fx0, fx1, t),M(fx1, fx0, t),

M(fx2, fx1, kt),M(fx1, fx1, t),M(fx2, fx0, (k + 1)t)) ≥ 0.
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Since M(fx2, fx0, (k + 1)t) ≥ T (M(fx2, fx1, kt),M(fx1, fx0, t)), by applying (φ1)
and (φ2), it is obtained

φ(M(fx1, fx2, kt),M(fx0, fx1, t),M(fx1, fx0, t),

M(fx2, fx1, kt),M(fx1, fx1, t), T (M(fx2, fx1, kt),M(fx1, fx0, t))) ≥ 0

and M(fx1, fx2, kt) ≥ M(fx0, fx1, t), i.e., M(fx1, fx2, t) ≥ M(fx0, fx1,
t
k ). Con-

tinuing with the previous procedure, we can obtain a sequence {xn}n∈N from A such
that

(a) fx2n+1 ∈ Fx2n and fx2n+2 ∈ Gx2n+1

(b) M(fxn, fxn+1, t) ≥M(fxn−1, fxn,
t
k ) ≥ · · · ≥M(fx1, fx0,

t
kn ), i.e.,

lim
n→∞

M(fxn, fxn+1, t) = 1.

If F is f -strongly demicompact, from lim
n→∞

M(fx2n, fx2n+1, t) = 1 and fx2n+1 ∈
Fx2n follows existence of a convergent subsequence (fx2np)p∈N of a sequence
(fx2n)n∈N.

It remains to be proved that the sequence {fxn} is a convergent if the t-norm T
satisfies condition (ii). Let σ = k

µ . Since 0 < σ < 1 the series
∑∞
i=1 σ

i is convergent

and there exists n0 ∈ N such that
∑∞
i=n0

σi < 1. Hence, for n > n0 and all m ∈ N, it
holds

t > t

∞∑
i=n0

σi > t

n+m−1∑
i=n

σi.

Then we have,

M(fxn+m, fxn, t) ≥M(fxn+m, fxn, t

n+m−1∑
i=n

σi) ≥

≥ T (T (. . . T︸ ︷︷ ︸
m−times

(M(fxn+m, fxn+m−1, tσ
n+m−1), . . . ,M(fxn+1, fxn, tσ

n)))

≥ T (T (. . . T︸ ︷︷ ︸
m−times

(M(fx0, fx1
tσn+m−1

kn+m−1
), . . . ,M(fx0, fx1,

tσn

kn
)))

= T (T (. . . T︸ ︷︷ ︸
m−times

(M(fx0, fx1
t

µn+m−1
), . . . ,M(fx0, fx1,

t

µn
)))

= Tn+m−1
i=n M(fx0, fx1,

t

µi
) ≥ T∞i=nM(fx0, fx1,

t

µi
).

The limit lim
n→∞

T∞i=nM(fx0, fx1,
1
µi ) = 1 implies lim

n→∞
T∞i=nM(fx0, fx1,

t
µi ) = 1 for

all t > 0. Now, for every t > 0 and every λ ∈ (0, 1) there exist n1(t, λ) such that
M(fxn+m, fxn, t) > 1 − λ for every n ≥ n1(t, λ) and every m ∈ N. Therefore, the
sequence {fxn} is a Cauchy sequence and the completeness of X insures that there
exists x ∈ A such that lim

n→∞
fxn = x. Now, for both cases there exists a subsequence

(fxnp)p∈N such that x = lim
p→∞

fx2np ∈ A.
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The remaining step is to prove that fx ∈ Fx∩Gx. Since Fx and Gx are closed, it
should be proved thatfx ∈ Fx ∩Gx, i.e., that for all ε > 0 and λ ∈ (0, 1) there exist
r1(ε, λ) ∈ Fx and r2(ε, λ) ∈ Gx such that

r1(ε, λ) ∈ U(fx, ε, λ) and r2(ε, λ) ∈ U(fx, ε, λ).

From the continuity of the mapping f and x = lim
p→∞

fx2np it follows that

fx = lim
p→∞

ffx2np = lim
p→∞

ffx2np+1
.

Since F is weakly commuting with f we have ffx2np+1 ∈ f(Fx2np) ⊆ F (fx2np), and
by applying (2.3) on x = ffx2np+1

, u = fx2np , existence of r2(ε, λ) ∈ Gx such that

φ(M(ffx2np+1 , r2(ε, λ), kt),M(ffx2np , fx, t),M(ffx2np+1 , ffx2np , t),

M(r2(ε, λ), fx, kt),M(ffx2np+1 , fx, t),M(r2(ε, λ), ffx2np , (k + 1)t))) ≥ 0

is obtained. Now, (φ1) insures

φ
(
M(ffx2np+1

, r2(ε, λ), kt),M(ffx2np , fx, t),

M(ffx2np+1
, ffx2np , t),M(r2(ε, λ), fx, kt),M(ffx2np+1

, fx, t),

T (M(r2(ε, λ), fx, kt),M(fx, ffx2np , t)))
)
≥ 0.

Letting p→∞ the following is obtained

φ
(
M(fx, r2(ε, λ), kt),M(fx, fx, t),M(fx, fx, t),

M(r2(ε, λ), fx, kt),M(fx, fx, t), T (M(r2(ε, λ), fx, kt),M(fx, fx, t)))
)
≥ 0,

i.e., ϕ(M(fx, r(ε, λ), kt), 1, 1,M(r2(ε, λ), fx, kt), 1,M(r2(ε, λ), fx, kt)) ≥ 0, and from
(φ3) follows M(fx, r2(ε, λ), kt) ≥ 1. Therefore r2(ε, λ) ∈ U(fx, ε, λ). Similarly it
can prove that r1(ε, λ) ∈ Fx ∩ U(fx, ε, λ).
Example 2.12 Let X, M , T , A, f , F and G be as in Example 2.7 and let
φ(t1, t2, t3, t4, t5, t6) = t1 − t2. Then, all conditions of the previous theorem are satis-
fied and the claim holds.
Remark 2.13 Again the second condition can be substituted with assumption ”t-norm
T is of H-type”. Also, analogously to the Corollary 2.9, the previous theorem can be
reformulated for a t-norm from Dombi, Aczél-Alsina or Sugeno-Weber class.
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[26] T. Žikić, Multivalued probabilistic q-contraction, Journal of Electrical Engineering, 53(2002),

13-16.

Received: May 2, 2012; Accepted: January 24, 2013.


