PICARD OPERATORS ON ORDERED METRIC SPACES

M. DERAFSHPOUR AND SH. REZAPOUR

Department of Mathematics
Azarbaijan Shahid Madani University
Azarshahr, Tabriz, Iran
E-mail: sh.rezapour@azaruniv.edu, rezapourshahram@yahoo.ca

Abstract

In this paper, we shall give some results about Picard operators on ordered metric spaces. In fact, we shall prove that some contractive-like mappings satisfying some conditions on ordered metric spaces are Picard operators. We shall also present an application of our results. Key Words and Phrases: Fixed point, Picard operator, orbitally continuous. 2010 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

As we know, there are many papers on fixed points of contractive mappings which introduced in 1962 ([7, 18]). In 1997, Runge introduced the notion of Picard modular forms [22]. By using this notion, Weikard introduced the notion of Picard operators in 1998 [27]. Also, Rus and Muresan reviewed data dependence of the fixed points set of weakly Picard operators in 1998 [23]. Later, Rus provided some results about fiber Picard operators [24]. In 2003 by using a distinct view, Rus defined the concept of Picard operators ([25]) and we use the notion of Picard operators in the sense of Rus. For applications of the Picard operators technique see [26]. There are many works on fixed point theory in partially ordered metric spaces (for example, $[1,2,3$, $4,5,6,8,9,12,13,14,15,16,17,19,20])$. Note that, not only a contractive map in ordered metric spaces is not continuous necessarily but also it is not a contraction map necessarily ($[11,21]$). In this paper, we shall give some results about Picard operators on ordered metric spaces. In fact, we shall prove that some contractive-like mappings satisfying some conditions on ordered metric spaces are Picard operators.

Let $T: X \longrightarrow X$ be an operator. We denote the set of all non-empty invariant subsets by $I(T)$, that is $I(T)=\{Y \subset X \mid T(Y) \subseteq Y\}$. Also, we denote the fixed point set of T by $F_{T}=\{x \in X: x=T(x)\}$. Let (X, \leqslant) be a partially ordered set, that is X is a nonempty set and \leqslant is a reflexive, transitive and anti-symmetric relation on X. Denote the set of comparable elements of X by X_{\leqslant}. If $x, y \in X$ with $x \leqslant y$, then by $[x, y] \leqslant$ we shall denote the ordered segment joining x and y. For a mapping $T: X \rightarrow X$, we denote the lower fixed point set of T by $(L F)_{T}:=\{x \in X \mid x \leqslant T(x)\}$ while we denote the upper fixed point set of T by $(U F)_{T}:=\{x \in X \mid x \geqslant T(x)\}$. Also, for the mappings $T: X \rightarrow X$ and $S: Y \rightarrow Y$, the cartesian product of T and S is
denoted by $T \times S: X \times Y \rightarrow X \times Y$ and defined by $(T \times S)(x, y)=(T(x), S(x))$. We appeal next well-known relation in the following.
$(*)$ If $x_{n} \rightarrow x, z_{n} \rightarrow x$ and $x_{n} \leqslant y_{n} \leqslant z_{n}$ for all n, then $y_{n} \rightarrow x$.
In the literature, an ordered metric space is a metric space endowed with an order that, in addition, satisfy the compatibility condition $(*)$. In this paper, we use only the terminology ordered metric space and we denote it by (X, d, \leq).

Here, we recall the notion of Picard operators. Let (X, d, \leq) be an ordered metric space. An operator $T: X \rightarrow X$ is called a Picard operator (briefly PO) whenever $F_{T}=\left\{x^{*}\right\}$ and $\left(T^{n}(x)\right)_{n \geq 1} \rightarrow x^{*}$ for all $x \in X$. Also, we say that a selfmap $T: X \rightarrow X$ is orbitally continuous whenever for each $x \in X$ and sequence $\{n(i)\}_{i \geq 1}$ with $T^{n(i)} x \rightarrow a$ for some $a \in X$, we have $T^{n(i)+1} x \rightarrow T a$. Here, $T^{m+1}=T\left(T^{m}\right)$.

Let \mathcal{S} denote the class of functions $\beta:[0, \infty) \rightarrow[0,1)$ which satisfy the condition $\beta\left(t_{n}\right) \rightarrow 1$ implies that $t_{n} \rightarrow 0$. An altering function is a non-decreasing continuous function $\psi:[0, \infty) \rightarrow[0, \infty)$ such that $\psi(t)=0$ if and only if $t=0$.

2. Main Results

Now, we are ready to state and prove our main results.
Theorem 2.1. Let (X, d, \leqslant) be an ordered metric space and T an operator. Suppose that
(i) for each $x, y \in X$ with $(x, y) \notin X_{\leqslant}$there exists $z \in X$ such that $(x, z) \in X_{\leqslant}$and $(y, z) \in X_{\leqslant} ;$
(ii) $X_{\leqslant} \in I(T \times T)$;
(iii) if $(x, y) \in X_{\leqslant}$and $(y, z) \in X_{\leqslant}$, then $(x, z) \in X_{\leqslant}$;
(iv) there exists $x_{0} \in X$ such that $\left(x_{0}, T\left(x_{0}\right)\right) \in X_{\leqslant}$;
(v) T is orbitally continuous
(vi) there exists $\beta \in \mathcal{S}$ such that $d(T x, T y) \leqslant \beta(d(x, y)) d(x, y)$ for all $(x, y) \in X_{\leqslant}$;
(vii) the metric d is complete.

Then T is a $\mathbf{P O}$.
Proof. Choose $x_{0} \in X$ such that $\left(x_{0}, T\left(x_{0}\right)\right) \in X_{\leqslant}$. Suppose first that $x_{0} \neq T\left(x_{0}\right)$. By using (ii), $\left(T^{n}\left(x_{0}\right), T^{n+1}\left(x_{0}\right)\right) \in X_{\leqslant}$for all $n \geq 1$. Put $x_{n+1}=T\left(x_{n}\right)$. Since $\beta \in S$ and $\left(x_{n}, x_{n+1}\right) \in X_{\leqslant}$for all $n \geq 1$, by using (vi) we get

$$
d\left(x_{n+1}, x_{n}\right) \leqslant \beta\left(d\left(x_{n}, x_{n-1}\right)\right) d\left(x_{n}, x_{n-1}\right) \leqslant d\left(x_{n}, x_{n-1}\right)
$$

that is, for each $n \geq 1$ we have

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leqslant d\left(x_{n}, x_{n-1}\right) \tag{1}
\end{equation*}
$$

If there exists a natural number n_{0} such that $d\left(x_{n_{0}}, x_{n_{0}-1}\right)=0$, then

$$
x_{n_{0}}=T\left(x_{n_{0}-1}\right)=x_{n_{0}-1}
$$

and so $x_{n_{0}-1}$ is a fixed point of T. Suppose that $d\left(x_{n+1}, x_{n}\right) \neq 0$ for all $n \geq 1$. Then taking into account (1), the sequence $\left\{d\left(x_{n+1}, x_{n}\right)\right\}$ is decreasing and bounded below, so we can suppose that $\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=r \geqslant 0$. Assume $r>0$. Then, we have

$$
\frac{d\left(x_{n+1}, x_{n}\right)}{d\left(x_{n}, x_{n-1}\right)} \leqslant \beta\left(d\left(x_{n}, x_{n-1}\right)\right) \leqslant 1
$$

Letting $n \rightarrow \infty$ in the last inequality, we get $1 \leqslant \lim _{n \rightarrow \infty} \beta\left(d\left(x_{n}, x_{n-1}\right)\right) \leqslant 1$ and so $\lim _{n \rightarrow \infty} \beta\left(d\left(x_{n}, x_{n-1}\right)\right)=1$. Since $\beta \in S, \lim _{n \rightarrow \infty}\left(d\left(x_{n+1}, x_{n}\right)\right)=0$ which is a contradiction. Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 \tag{2}
\end{equation*}
$$

Now, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence. If $\left\{x_{n}\right\}$ is not a Cauchy sequence, then there exist $\varepsilon>0$ and subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ with $n(k)>m(k)>k$ such that

$$
\begin{equation*}
d\left(x_{n(k)}, x_{m(k)}\right) \geqslant \varepsilon . \tag{3}
\end{equation*}
$$

Further, corresponding to $m(k)$, we can choose $n(k)$ in such a way that it is the smallest integer with $n(k)>m(k)$ and satisfying (3). Thus,

$$
\begin{equation*}
d\left(x_{n(k)-1}, x_{m(k)}\right)<\varepsilon . \tag{4}
\end{equation*}
$$

Now, by using (3), (4) and triangular inequality, we get

$$
\varepsilon \leqslant d\left(x_{n(k)}, x_{m(k)}\right) \leqslant d\left(x_{n(k)-1}, x_{m(k)}\right)+d\left(x_{n(k)-1}, x_{m(k)}\right)<d\left(x_{n(k)}, x_{n(k)-1}\right)+\varepsilon .
$$

If $k \rightarrow \infty$, then by using (2) we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n(k)}, x_{m(k)}\right)=\varepsilon . \tag{5}
\end{equation*}
$$

Again, the triangular inequality gives us

$$
\begin{aligned}
& \quad d\left(x_{n(k)}, x_{m(k)}\right) \leqslant d\left(x_{n(k)}, x_{n(k)-1}\right)+d\left(x_{n(k)-1}, x_{m(k)-1}\right)+d\left(x_{m(k)-1}, x_{m(k)}\right), \\
& d\left(x_{n(k)}, x_{m(k)-1}\right) \leqslant d\left(x_{n(k)}, x_{n(k)-1}\right)+d\left(x_{n(k)-1}, x_{m(k)}\right)+d\left(x_{m(k)-1}, x_{m(k)}\right) . \\
& \text { If } k \rightarrow \infty, \text { then by using (2) and (5) and above inequalities, we obtain }
\end{aligned}
$$

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)-1}\right)=\varepsilon \tag{6}
\end{equation*}
$$

Since $n(k)>m(k)$ and $\left(x_{n(k)-1}, x_{m(k)-1}\right) \in X_{\leqslant}$, we have

$$
\begin{gather*}
d\left(x_{n(k)}, x_{m(k)}\right)=d\left(T\left(x_{n(k)-1}\right), T\left(x_{m(k)-1}\right)\right) \\
\leqslant \beta\left(d\left(x_{n(k)-1}, x_{m(k)-1}\right)\right) d\left(x_{n(k)-1}, x_{m(k)-1}\right) \leqslant d\left(x_{n(k)-1}, x_{m(k)-1}\right) . \tag{7}
\end{gather*}
$$

If $k \rightarrow \infty$ in (7), then by using (5) and (6), we get

$$
\lim _{k \rightarrow \infty} \beta\left(d\left(x_{n(k)-1}, x_{m(k)-1}\right)\right)=1
$$

Since $\beta \in S$,

$$
\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)-1}\right)=0
$$

The relation (6) shows that this is a contradiction. Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is a complete metric space, there exists $x^{*} \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*}
$$

Since T is orbitally continuous, x^{*} is a fixed point of T. By using (vi), it is easy to see that x^{*} is unique. Now, let $x \in X$ be given. Then we have the following cases:
(a) If $\left(x, x_{0}\right) \in X_{\leqslant}$, then $\left(T^{n}(x), T^{n}\left(x_{0}\right)\right) \in X_{\leqslant}$and so by using (vi) we get that

$$
u_{n}=d\left(T^{n}(x), T^{n}\left(x_{0}\right)\right)
$$

is a non-negative decreasing sequence. Thus, there exists $u \geq 0$ such that $u_{n} \rightarrow u$. If $u=0$, then $T^{n}(x) \rightarrow x^{*}$ because $T^{n}\left(x_{0}\right)=x_{n} \rightarrow x^{*}$. Let $u \neq 0$. In this case, by using (vi) for each $n \geq 1$ we obtain

$$
d\left(T^{n}(x), T^{n}\left(x_{0}\right)\right) \leqslant \beta\left(d\left(T^{n-1}(x), x_{n-1}\right)\right) d\left(T^{n-1}(x), x_{n-1}\right)
$$

Therefore,

$$
\liminf _{n \rightarrow \infty} \beta\left(d\left(T^{n-1}(x), x_{n-1}\right)\right)=\limsup _{n \rightarrow \infty} \beta\left(d\left(T^{n-1}(x), x_{n-1}\right)\right)=1
$$

Hence,

$$
\lim _{n \rightarrow \infty} d\left(T^{n-1}(x), x_{n-1}\right)=\lim _{n \rightarrow \infty} d\left(T^{n-1}(x), x^{*}\right)=0
$$

because $\beta \in \mathcal{S}$. Thus, $T^{n}(x) \rightarrow x^{*}$.
(b) If $\left(x, x_{0}\right) \notin X_{\leqslant}$, then by using (i) there exists $z_{0} \in X_{\leqslant}$such that $\left(x, z_{0}\right) \in X_{\leqslant}$ and $\left(z_{0}, x_{0}\right) \in X_{\leqslant}$. By using the part (a) we know that $T^{n}\left(z_{0}\right) \rightarrow x^{*}$. Now, put $z_{n+1}=T z_{n}$ for all $n \geq 0$. Since $\left(x, z_{0}\right) \in X_{\leqslant},\left(T^{n}(x), T^{n}\left(z_{0}\right)\right) \in X_{\leqslant}$for all $n \geq 1$. Thus by using (ii) we get $w_{n}=d\left(T^{n}(x), T^{n}\left(z_{0}\right)\right) \leqslant d\left(T^{n-1}(x), T^{n-1}\left(z_{0}\right)\right)=w_{n-1}$ for all $n \geq 1$. Therefore, $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ is a non-increasing and non-negative sequence. Hence, there exists $w \geq 0$ such that $w_{n} \rightarrow w$. If $w=0$, then $T^{n}(x) \rightarrow x^{*}$. Let $w \neq 0$. In this case, by using (v) for each $n \geq 1$ we obtain
$d\left(T^{n}(x), T^{n}\left(z_{0}\right)\right)=d\left(T\left(T^{n-1}(x)\right), T\left(z_{n-1}\right)\right) \leqslant \beta\left(d\left(T^{n-1}(x), z_{n-1}\right)\right) d\left(T^{n-1}(x), z_{n-1}\right)$.
Hence,

$$
\lim _{n \rightarrow \infty} \beta\left(d\left(T^{n-1}(x), z_{n-1}\right)\right)=1
$$

Thus,

$$
\lim _{n \rightarrow \infty} d\left(T^{n-1}(x), z_{n-1}\right)=0
$$

because $\beta \in \mathcal{S}$. Since $T^{n}\left(z_{0}\right) \rightarrow x^{*}, T^{n}(x) \rightarrow x^{*}$.
Now by using Theorem 7 in [10], we can replace the following conditions instead the condition (vi) of Theorem 2.1. A similar cases hold for another results of this paper.
(a)- There exists a continuous function $\eta:[0, \infty) \rightarrow[0, \infty)$ such that $\eta^{-1}(\{0\})=\{0\}$ and $d(T x, T y) \leqslant d(x, y)-\eta(d(x, y))$ holds for all $(x, y) \in X_{\leqslant}$.
(b)- There exists a continuous and nondecreasing function $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)<t$ for all $t>0$ and $d(T x, T y) \leqslant \varphi(d(x, y))$ holds for all $(x, y) \in X_{\leqslant}$.
(c)- There exist a continuous and nondecreasing function $\psi:[0, \infty) \rightarrow[0, \infty)$ with $\psi^{-1}(\{0\})=\{0\}$ and a nondecreasing, right continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)<t$ for all $t>0$ and $\psi(d(T x, T y)) \leqslant \varphi(\psi(d(x, y)))$ holds for all $(x, y) \in X_{\leqslant}$.
(d)- There exist continuous and nondecreasing functions $\mu, \nu:[0, \infty) \rightarrow[0, \infty)$ with $\mu^{-1}(\{0\})=\{0\}, \nu^{-1}(\{0\})=\{0\}$ and $\mu(d(T x, T y)) \leqslant \mu(d(x, y))-\nu(d(x, y))$ holds for all $(x, y) \in X_{\leqslant}$.

Remark 2.1. A new theorem can be obtained replacing condition (vi) in Theorem 2.1 with the following condition:
there exists a $\beta \in \mathcal{S}$ such that $\psi(d(T x, T y)) \leqslant \beta(d(x, y)) \psi(d(x, y))$ for all $(x, y) \in X_{\leqslant}$, where ψ is an altering function.

Remark 2.2. A new theorem can be obtained replacing condition (vi) in Theorem 2.1 with the following condition:
there exists a $\beta \in \mathcal{S}$ such that $\psi(d(T x, T y)) \leqslant \beta(d(x, y)) \psi(d(x, y))$ for all $(x, y) \in X_{\leqslant}$, where ψ is an altering function.

Remark 2.3. A new theorem can be obtained replacing condition (vi) in Theorem 2.1 with the following condition:
there exists $\beta \in \mathcal{S}$ such that

$$
d(T x, T y) \leqslant \beta\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(x, T y)+d(y, T x)]\right\}\right) d(x, y)
$$

for all $(x, y) \in X_{\leqslant}$.

3. An Application

In this section, we present an application of our abstract results. We will study the existence of solution for the following first-order periodic problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(t, u(t)), \quad t \in[0, T] \tag{8}\\
u(0)=u(T),
\end{array}\right.
$$

where $T>0$ and $f: I \times \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function. Consider the complete metric space $\mathcal{C}(I)(I=[0, T])$ via the sup norm. The space $\mathcal{C}(I)$ can be equipped with the partial order $x \leq y$ whenever $x(t) \leq y(t)$ for all $t \in I$. It's easy to see that for each $x, y \in \mathcal{C}(I)$ there exists a lower bound $(\min \{x, y\})$ and an upper bound $(\max \{x, y\})$. Suppose that \mathcal{A} denotes the class of functions $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfying
(i) ϕ is nondecreasing,
(ii) $\phi(x)<x$ for $x>0$,
(iii) $\beta(x)=\frac{\phi(x)}{x} \in \mathcal{S}$.

In fact,

$$
\phi(t)=\mu \cdot t(0 \leq \mu<1), \phi(t)=\frac{t}{1+t}
$$

and $\phi(t)=\ln (1+t)$ are some examples of such functions. Recall now the following definition.

Definition 3.1. A lower solution for (8) is a function $\alpha \in \mathcal{C}^{1}(I)$ such that

$$
\left\{\begin{array}{l}
\alpha^{\prime}(t) \leq f(t, \alpha(t)), \quad(t \in I) \\
\alpha(0) \leq \alpha(T)
\end{array}\right.
$$

Similarly $\alpha \in \mathcal{C}^{1}(I)$ is an upper solution for (8) whenever

$$
\left\{\begin{array}{l}
\alpha^{\prime}(t) \geq f(t, \alpha(t)), \quad(t \in I) \\
\alpha(0) \geq \alpha(T)
\end{array}\right.
$$

Now, we present the following theorem about the existence of a solution for the problem (8) in presence of a lower or upper solution. The existence of a solution has been proved only for lower solution phase ([5]).

Theorem 3.1. Consider the problem (8) with a continuous function $f: I \times \mathbb{R} \rightarrow \mathbb{R}$. Suppose that there exist numbers λ, α such that $\alpha \leq\left(\frac{2 \lambda\left(e^{\lambda t}-1\right)}{T\left(e^{\lambda t}+1\right)}\right)^{\frac{1}{2}}$ and for each $x, y \in \mathbb{R}$ we have $f(t, y)+\lambda y-[f(t, x)+\lambda x] \leq \alpha \sqrt{|y-x| \phi(y-x)}$, where $\phi \in \mathcal{A}$. Then the existence of a lower or upper solution for (8) provides the existence of a unique solution for (8).

Proof. The problem (8) can be rewrite as

$$
\left\{\begin{array}{l}
u^{\prime}(t)+\lambda u(t)=f(t, u(t))+\lambda u(t), \quad(t \in[0, T]) \\
u(0)=u(T)
\end{array}\right.
$$

This problem is equivalent to the integral equation

$$
u(t)=\int_{0}^{T} G(t, s)[f(s, u(s))+\lambda u(s)] d s
$$

where $G(t, s)$ is a green function given by

$$
G(t, s)= \begin{cases}\frac{e^{\lambda(T+s-t)}}{\left(e^{\lambda T}-1\right)}, & 0 \leq s<t \leq T \\ \frac{e^{\lambda(s-t)}}{\left(e^{\lambda T}-1\right)} . & 0 \leq t<s \leq T\end{cases}
$$

Define $F: \mathcal{C}(I) \rightarrow \mathcal{C}(I)$ by

$$
F(u)(t)=\int_{0}^{T} G(t, s)[f(s, u(s))+\lambda u(s)] d s
$$

If $u \in \mathcal{C}(I)$ is a fixed point of F, then $u \in \mathcal{C}^{1}(I)$ is a solution for (8). We check that F satisfies the conditions of Proposition 2.1. It has been proved that for $(u, v) \in \mathcal{C}(I)_{\leq}$ we have ([5])

$$
d(F u, F v)^{2} \leq \frac{\phi(d(u, v))}{d(u, v)} \cdot d(u, v)^{2}
$$

Define

$$
\psi(x)=x^{2} \text { and } \beta=\frac{\phi(x)}{x}
$$

Since $\phi \in \mathcal{A}, \beta \in \mathcal{S}$. Also, note that ψ is an altering function. Thus,

$$
\psi(d(F u, F v)) \leq \beta(d(u, v)) \dot{\psi}(d(u, v))
$$

for all $(u, v) \in \mathcal{C}(I)_{\leq}$. It is easy to see that $\mathcal{C}(I)_{\leq} \in I(F \times F)$. Also, there exists $x_{0} \in \mathcal{C}(I)$ such that $\left(x_{0}, F\left(x_{0}\right)\right) \in \mathcal{C}(I)_{\leq}$. In fact if $\alpha(t)$ be a lower solution for (8), from [4] we know that $\alpha(t) \leq(F \alpha)(t)$ for all $t \in I$. Similarly, If $\alpha(t)$ is an upper solution for (8), then we have $\alpha(t) \geq(F \alpha)(t)$, for all $t \in I$. Therefore, F satisfies the
conditions of Proposition 2.1. Thus, F is a Picard operator and so the problem (8) has a unique solution.

Acknowledgment. The authors express their gratitude to the referees for their helpful suggestions which improved final version of this paper.

References

[1] R.P. Agarwal, M.A. El-Gebiely, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Analysis, 87(2008), 109-116.
[2] A. Amini-Harandi, H. Emami, A fixed point theorem for contractions in partially ordered metric spaces and application to ordinary differantial equations, Nonlinear Anal., 72(2010), 2238-2242.
[3] T.G. Bhashkar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), 1379-1393.
[4] D. Burgec, S. Kalabusic, M.R.S. Kulanovic, Global attractivity results for mixed monotone mappings in partially ordered copmlete metric spaces, Fixed Point Theory and Appl., 2009, Article ID 762478.
[5] J. Caballero, J. Harjani, K. Sadarngani, Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory and Appl., 2010, Article ID 916064.
[6] L. Ciric, N. Cakid, M. Rjovi, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Appl., 2008, Article ID 131294.
[7] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37(1962), 74-79.
[8] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71(2009), 3403-3410.
[9] J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72 (2010), 1188-1197.
[10] J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Analysis, 74(2011), 768-774.
[11] Z. Kadelburg, M. Pavlovic, S. Radenovic, Common fixed point theorems for ordered contractions and quasi-contractions in ordered cone metric spaces, Comput. Math. Appl., 59(2010), No. 9, 3148-3159.
[12] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(2009), 4341-4349.
[13] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-239.
[14] J.J. Nieto, R.L. Pous, R. Rodriguez-Lopez, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., 135(2007), 2505-2517.
[15] J.J. Nieto, R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica, 23(2007), 2205-2212.
[16] D. O'Regan, A. Petrusel, Fixed point theorems for generalized contractions on ordered metric spaces, J. Math. Anal. Appl., 341(2008), 1241-1252.
[17] A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134(2006), 411-418.
[18] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13(1962), 459-465.
[19] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.
[20] Sh. Rezapour, P. Amiri, Fixed point of multivalued operators on ordered generalized metric spaces, Fixed Point Theory, 13(2012), 173-179.
[21] Sh. Rezapour, M. Derafshpour, N. Shahzad, Best proximity points of cyclic φ-contractions in ordered metric spaces, Topol. Methods Nonlinear Analysis, 37(2011), 193-202.
[22] B. Runge, On Picard Modular Forms, Math. Nachr., 184(1997), 259-273.

23] I.A. Rus, S. Muresan, Data dependence of the fixed points set of weakly Picard operators, Studia Univ. Babes-Bolyai Math., 43(1998), No. 1, 79-83.
[24] I.A. Rus, Fiber Picard operators theorem and applications, Studia Univ. Babes-Bolyai Math., 44(1999), No. 3, 89-97.
[25] I.A. Rus, Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219
[26] I.A. Rus, Some nonlinear functional differential and integral equations via weakly Picard operator theory: A survey, Carpathian J. Math., 26(2010), 230-258.
[27] R. Weikard, Picard operators, Math. Nachr., 195(1998), 251-266.
Received: May 3, 2012; Accepted: June 21, 2012.

