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Abstract. In this paper, we shall give some results about Picard operators on ordered metric spaces.
In fact, we shall prove that some contractive-like mappings satisfying some conditions on ordered
metric spaces are Picard operators. We shall also present an application of our results.
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1. INTRODUCTION

As we know, there are many papers on fixed points of contractive mappings which
introduced in 1962 ([7, 18]). In 1997, Runge introduced the notion of Picard modular
forms [22]. By using this notion, Weikard introduced the notion of Picard operators
in 1998 [27]. Also, Rus and Muresan reviewed data dependence of the fixed points
set of weakly Picard operators in 1998 [23]. Later, Rus provided some results about
fiber Picard operators [24]. In 2003 by using a distinct view, Rus defined the concept
of Picard operators ([25]) and we use the notion of Picard operators in the sense of
Rus. For applications of the Picard operators technique see [26]. There are many
works on fixed point theory in partially ordered metric spaces (for example, [1, 2, 3,
4,5, 6, 8,9, 12, 13, 14, 15, 16, 17, 19, 20]). Note that, not only a contractive map
in ordered metric spaces is not continuous necessarily but also it is not a contraction
map necessarily ([11, 21]). In this paper, we shall give some results about Picard
operators on ordered metric spaces. In fact, we shall prove that some contractive-like
mappings satisfying some conditions on ordered metric spaces are Picard operators.

Let T : X — X be an operator. We denote the set of all non-empty invariant
subsets by I(T), that is I(T) = {Y C X|T(Y) C Y'}. Also, we denote the fixed point
set of T by Fr = {z € X : 2 = T(x)}. Let (X,<) be a partially ordered set, that
is X is a nonempty set and < is a reflexive, transitive and anti-symmetric relation
on X. Denote the set of comparable elements of X by X¢. If z,y € X with z < y,
then by [z, y]< we shall denote the ordered segment joining x and y. For a mapping
T:X — X, we denote the lower fixed point set of T' by (LF)r :={z € X|z < T(z)}
while we denote the upper fixed point set of T' by (UF)p := {a € X|x > T(z)}. Also,
for the mappings 7' : X — X and S : Y — Y, the cartesian product of T" and S is
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denoted by T'x S : X xY — X xY and defined by (T x S)(z,y) = (T(x), S(x)). We
appeal next well-known relation in the following.

(x) If 2, > x, 2z, = x and z,, < Yyp, < 2z, for all n, then y,, — .

In the literature, an ordered metric space is a metric space endowed with an order
that, in addition, satisfy the compatibility condition (x). In this paper, we use only
the terminology ordered metric space and we denote it by (X, d, <).

Here, we recall the notion of Picard operators. Let (X, d, <) be an ordered metric
space. An operator T : X — X is called a Picard operator (briefly PO) whenever
Fr = {z*} and (T"(z))n>1 — a* for all x € X. Also, we say that a selfmap
T : X — X is orbitally continuous whenever for each x € X and sequence {n(i)};>1
with 7"z — @ for some a € X, we have TV 1z — Ta. Here, T™! = T(T™).

Let S denote the class of functions j : [0,00) — [0,1) which satisfy the condition
B(tn) — 1 implies that ¢, — 0. An altering function is a non-decreasing continuous
function ¥ : [0, 00) — [0, 00) such that ¥ (¢) = 0 if and only if ¢ = 0.

2. MAIN RESULTS
Now, we are ready to state and prove our main results.

Theorem 2.1. Let (X,d, <) be an ordered metric space and T an operator. Suppose
that

(i) for each z,y € X with (z,y) ¢ X< there exists z € X such that (z,z) € X< and
(yv Z) € X< ;

(ii) X< € I(T x T);

(i) if (z,y) € X< and (y,2) € Xg, then (z,2) € X;

(iv) there exists xo € X such that (xo,T(x0)) € X<;

(v) T is orbitally continuous

(vi) there exists 8 € S such that d(Tx,Ty) < B(d(z,y))d(z,y) for all (x,y) € X<;
(vii) the metric d is complete.

Then T is a PO.

Proof. Choose xy € X such that (z,T(z0)) € X<. Suppose first that zo # T'(zg).
By using (i), (T"(z0), T (z0)) € X< for alln > 1. Put x,,41 = T(x,). Since 8 € S
and (2, Tp+1) € X< for all n > 1, by using (vi) we get

d($n+la an) < B(d<xnaxn71))d($nyxn71) < d(xnaxnfl)a

that is, for each n > 1 we have

d<xn+1a$n) < d(xnzxnfl) (1>

If there exists a natural number ng such that d(z,,, Zn,—1) = 0, then

:I:’I’LO = T(x’ﬂo*l) = ‘rnofl
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and so Tp,—1 is a fixed point of T'. Suppose that d(x,41,x,) # 0 for all n > 1. Then
taking into account (1), the sequence {d(x,11,x,)} is decreasing and bounded below,
so we can suppose that lim, o d(2y41,2,) =7 > 0. Assume r > 0. Then, we have

d(xn+17xn)
d(mnamn—l)
Letting n — oo in the last inequality, we get 1 < lim,— o0 B(d(zpn, zn—1)) < 1 and

so limy, 00 B(d(zp, n—1)) = 1. Since g € S, lim, o (d(p+1,2,)) = 0 which is a
contradiction. Hence,

< B(d(xruxnfl)) <L

li_}In d(xpy1,Tn) = 0. (2)
Now, we show that {z,} is a Cauchy sequence. If {z,} is not a Cauchy sequence, then
there exist € > 0 and subsequences {,(x)} and {z,, i) } of {z,,} with n(k) > m(k) > k
such that
d(@n (k) Tm(k)) 2 € ®3)
Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) and satisfying (3). Thus,
d(Zr (k)15 Tm(r)) < € (4)
Now, by using (3), (4) and triangular inequality, we get
€ < A(@n(k)s Tm(k)) < ATn(k)—15 Tm(k)) + ATty -1, Tm(k)) < ATn(k)s Tnky-1) + -
If k — oo, then by using (2) we get
lim d(mn(k)v xm(k)) =¢&. (5)

k—o0

Again, the triangular inequality gives us
d(Zr (k) Tmk)) < A Znr), Tnk)—1) + ATn)—1, Tmk)—1) T AZmE) =15 Tm(k)),
ATk, Tm(k)—1) < ATn(ky Tnk)—1) + ATnk)—1, Tmk)) + ATmE)—1: Tm(k))-
If k — oo, then by using (2) and (5) and above inequalities, we obtain

lim d(xn(k)_l,xm(k)_l) =E&. (6)

k— o0
Since n(k) > m(k) and (2,)—1, Zmk)—1) € X<, we have
ATy Tmr)) = AT (@) —1), T(Tm(ry-1))
< BA(@n (k)15 Tm(k)=1)) A Tnk) =15 Tmk)=1) < AZnk)—15 Tm(k)—1)- (7)
If kK — oo in (7), then by using (5) and (6), we get
li =1.
kglgo ﬁ(d(xn(k)—l,xm(k)—l))
Since 5 € S,
Jim d(ZTn(k)=1> Tm(k)—1) = 0.

The relation (6) shows that this is a contradiction. Thus, {z,} is a Cauchy sequence.
Since (X, d) is a complete metric space, there exists * € X such that

lim z, = z*.
n—oo
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Since T is orbitally continuous, z* is a fixed point of T'. By using (vi), it is easy to
see that z* is unique. Now, let z € X be given. Then we have the following cases:

(a) If (z,20) € X, then (T"(x), T"(x0)) € X< and so by using (vi) we get that
Up = d(T™(x), T" (x0))
is a non-negative decreasing sequence. Thus, there exists « > 0 such that u,, — u.

If w = 0, then T™(z) — z* because T"(xg) = x, — z*. Let u # 0. In this case, by
using (vi) for each n > 1 we obtain

d(T" (), T"(x0)) < (T (@), 2—1))d(T"H(x), 2p—1)-
Therefore,
liminf B(d(T™ ! (x), £,,_1)) = limsup B(d(T" " (z), z,_1)) = 1.

n— oo n—oo

Hence,
lim d(T" ' (z),2p_1) = lim d(T" *(z),2*) =0

n—oo n—oo

because 8 € S. Thus, T"(z) — z*.

(b) If (z,z0) ¢ X<, then by using (i) there exists zp € X< such that (z,z0) € X<
and (zo,%0) € X<. By using the part (a) we know that T™(zy) — z*. Now, put
Znt1 = Tz, for all n > 0. Since (z,20) € X<, (T™(x),T™(20)) € X< for all n > 1.
Thus by using (ii) we get w,, = d(T™(x), T"(20)) < d(T™ *(x), T" (20)) = wy,_1 for
all n > 1. Therefore, {w,, }nen is a non-increasing and non-negative sequence. Hence,
there exists w > 0 such that w,, — w. If w =0, then T"(z) — z*. Let w # 0. In this
case, by using (v) for each n > 1 we obtain

d(T" (), T" (0)) = d(T(T" " (2)), T(20-1)) < BEAT™ (@), 201 AT (@), 201).

Hence,
lim B(d(T" (), 2,_1)) = 1.

n— oo
Thus,
: n—1 o
nl;néo AT (z),2p—1) =0
because 8 € S§. Since T"(z9) — z*, T"(x) — x*. O

Now by using Theorem 7 in [10], we can replace the following conditions instead
the condition (vi) of Theorem 2.1. A similar cases hold for another results of this

paper.
(a)- There exists a continuous function 7 : [0, 00) — [0, 00) such that n~1({0}) = {0}
and d(Tz,Ty) < d(z,y) — n(d(z,y)) holds for all (x,y) € X¢.

(b)- There exists a continuous and nondecreasing function ¢ : [0,00) — [0, 00) such
that p(t) <t for all ¢t > 0 and d(Tz,Ty) < ¢(d(z,y)) holds for all (z,y) € X<.

(c)- There exist a continuous and nondecreasing function ¢ : [0,00) — [0,00) with
¥~1({0}) = {0} and a nondecreasing, right continuous function ¢ : [0,00) — [0, 00)
such that ¢(t) < t for all ¢ > 0 and ¢(d(Tz,Ty)) < ¢(¥(d(x,y))) holds for all
(x,y) € X<.
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(d)- There exist continuous and nondecreasing functions y,v : [0,00) — [0,00) with

pt({0}) = {0}, v=H({0}) = {0} and pu(d(Tz, Ty)) < p(d(x,y)) — v(d(z,y)) holds for
all (z,y) € X<.

Remark 2.1. A new theorem can be obtained replacing condition (vi) in Theorem
2.1 with the following condition:
there ezists a € S such that Y(d(Tx,Ty)) < B(d(z,y))¥(d(z,y)) for all (x,y) € X<,
where ¥ is an altering function.

Remark 2.2. A new theorem can be obtained replacing condition (vi) in Theorem
2.1 with the following condition:
there ezists a § € S such that Y(d(Tz, Ty)) < B(d(z,y))Y(d(z,y)) for all (x,y) € X<,
where ¥ is an altering function.

Remark 2.3. A new theorem can be obtained replacing condition (vi) in Theorem
2.1 with the following condition:
there exists B € S such that

Ld(, Ty) + d(y, To) ) d(z. ),

d(Tz,Ty) < f(max{d(z,y), d(z, Tz), d(y, Ty), 5

for all (z,y) € X¢.

3. AN APPLICATION

In this section, we present an application of our abstract results. We will study
the existence of solution for the following first-order periodic problem

{ u'(t) = f(t,u(t), tel0,T]
u(0) = u(T),

where 7" > 0 and f : I x R — R is a continuous function. Consider the complete
metric space C(I) (I = [0,T]) via the sup norm. The space C(I) can be equipped with
the partial order z < y whenever z(t) < y(t) for all ¢ € I. It’s easy to see that for each
x,y € C(I) there exists a lower bound (min{x,y}) and an upper bound (max{z,y}).
Suppose that A denotes the class of functions ¢ : [0, 00) — [0, 00) satisfying

(®)

(i) ¢ is nondecreasing,
(ii) ¢(z) <z for z > 0,
(iii) B(z) = 22 € 8.

In fact,
t
o) =p-t (0<p <), 6() = 7

and ¢(t) = In(1 + t) are some examples of such functions. Recall now the following
definition.

Definition 3.1. A lower solution for (8) is a function o € C*(I) such that

{ o) < flt,alt), (tel)
a(0) < o(T).
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Similarly o € CY(I) is an upper solution for (8) whenever

a'(t) =z f(t,alt),  (tel)
a(0) > o(T).

Now, we present the following theorem about the existence of a solution for the
problem (8) in presence of a lower or upper solution. The existence of a solution has
been proved only for lower solution phase ([5]).

Theorem 3.1. Consider the problem (8) with a continuous function f: I x R — R.
At 1
Suppose that there exist numbers \, a such that o < (%)E and for each z,y € R

we have f(t,y) + Ay — [f(t,z) + Az] < a/|y — z|¢p(y — x), where ¢ € A. Then the

existence of a lower or upper solution for (8) provides the existence of a unique solution
for (8).
Proof. The problem (8) can be rewrite as
u'(t) + Au(t) = f(t,u(t)) + Mu(t), (te[0,7))
{ u(0) = u(T).

This problem is equivalent to the integral equation

T
ult) = / G(t, 5)[f (s, u(s)) + Mu(s))ds,

where G(t, s) is a green function given by

AT+s—1)

m, OSS<tST
G(t,s) = et
m. 0St<SST

Define F: C(I) — C(I) by

T
Fu)(t) = / G(t, 9)[f (5, u(s)) + Auu(s)]ds.

If u € C(I) is a fixed point of F, then u € C'(I) is a solution for (8). We check that F
satisfies the conditions of Proposition 2.1. It has been proved that for (u,v) € C(I)<

we have ([5]) o(d(u,v))

2
<
d(Fu, Fv)* < a0 )

-d(u,v)?.
Define
Y(z) = 2% and B = M
Since ¢ € A, f € S. Also, note that 1 is an altering function. Thus,
G(d(Fu, Fv)) < B(d(u, v))d(d(u, v))
for all (u,v) € C(I)<. It is easy to see that C(I)< € I(F x F). Also, there exists

zo € C(I) such that (xo, F(x0)) € C(I)<. In fact if a(t) be a lower solution for (8),
from [4] we know that a(t) < (Fa)(t) for all ¢ € I. Similarly, If a(t) is an upper

solution for (8), then we have a(t) > (Fa)(t), for all t € I. Therefore, F satisfies the
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conditions of Proposition 2.1. Thus, F' is a Picard operator and so the problem (8)
has a unique solution. O
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