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Abstract. In this paper, we shall give some results about Picard operators on ordered metric spaces.

In fact, we shall prove that some contractive-like mappings satisfying some conditions on ordered
metric spaces are Picard operators. We shall also present an application of our results.
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1. Introduction

As we know, there are many papers on fixed points of contractive mappings which
introduced in 1962 ([7, 18]). In 1997, Runge introduced the notion of Picard modular
forms [22]. By using this notion, Weikard introduced the notion of Picard operators
in 1998 [27]. Also, Rus and Muresan reviewed data dependence of the fixed points
set of weakly Picard operators in 1998 [23]. Later, Rus provided some results about
fiber Picard operators [24]. In 2003 by using a distinct view, Rus defined the concept
of Picard operators ([25]) and we use the notion of Picard operators in the sense of
Rus. For applications of the Picard operators technique see [26]. There are many
works on fixed point theory in partially ordered metric spaces (for example, [1, 2, 3,
4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20]). Note that, not only a contractive map
in ordered metric spaces is not continuous necessarily but also it is not a contraction
map necessarily ([11, 21]). In this paper, we shall give some results about Picard
operators on ordered metric spaces. In fact, we shall prove that some contractive-like
mappings satisfying some conditions on ordered metric spaces are Picard operators.

Let T : X −→ X be an operator. We denote the set of all non-empty invariant
subsets by I(T ), that is I(T ) = {Y ⊂ X|T (Y ) ⊆ Y }. Also, we denote the fixed point
set of T by FT = {x ∈ X : x = T (x)}. Let (X,6) be a partially ordered set, that
is X is a nonempty set and 6 is a reflexive, transitive and anti-symmetric relation
on X. Denote the set of comparable elements of X by X6. If x, y ∈ X with x 6 y,
then by [x, y]6 we shall denote the ordered segment joining x and y. For a mapping
T : X → X, we denote the lower fixed point set of T by (LF )T := {x ∈ X|x 6 T (x)}
while we denote the upper fixed point set of T by (UF )T := {x ∈ X|x > T (x)}. Also,
for the mappings T : X → X and S : Y → Y , the cartesian product of T and S is
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denoted by T ×S : X ×Y → X ×Y and defined by (T ×S)(x, y) = (T (x), S(x)). We
appeal next well-known relation in the following.

(∗) If xn → x, zn → x and xn 6 yn 6 zn for all n, then yn → x.

In the literature, an ordered metric space is a metric space endowed with an order
that, in addition, satisfy the compatibility condition (∗). In this paper, we use only
the terminology ordered metric space and we denote it by (X, d,≤).

Here, we recall the notion of Picard operators. Let (X, d,≤) be an ordered metric
space. An operator T : X → X is called a Picard operator (briefly PO) whenever
FT = {x∗} and (Tn(x))n≥1 → x∗ for all x ∈ X. Also, we say that a selfmap
T : X → X is orbitally continuous whenever for each x ∈ X and sequence {n(i)}i≥1
with Tn(i)x→ a for some a ∈ X, we have Tn(i)+1x→ Ta. Here, Tm+1 = T (Tm).

Let S denote the class of functions β : [0,∞) → [0, 1) which satisfy the condition
β(tn) → 1 implies that tn → 0. An altering function is a non-decreasing continuous
function ψ : [0,∞)→ [0,∞) such that ψ(t) = 0 if and only if t = 0.

2. Main results

Now, we are ready to state and prove our main results.

Theorem 2.1. Let (X, d,6) be an ordered metric space and T an operator. Suppose
that

(i) for each x, y ∈ X with (x, y) /∈ X6 there exists z ∈ X such that (x, z) ∈ X6 and
(y, z) ∈ X6;

(ii) X6 ∈ I(T × T );

(iii) if (x, y) ∈ X6 and (y, z) ∈ X6, then (x, z) ∈ X6;

(iv) there exists x0 ∈ X such that (x0, T (x0)) ∈ X6;

(v) T is orbitally continuous

(vi) there exists β ∈ S such that d(Tx, Ty) 6 β(d(x, y))d(x, y) for all (x, y) ∈ X6;

(vii) the metric d is complete.

Then T is a PO.

Proof. Choose x0 ∈ X such that (x0, T (x0)) ∈ X6. Suppose first that x0 6= T (x0).
By using (ii), (Tn(x0), Tn+1(x0)) ∈ X6 for all n ≥ 1. Put xn+1 = T (xn). Since β ∈ S
and (xn, xn+1) ∈ X6 for all n ≥ 1, by using (vi) we get

d(xn+1, xn) 6 β(d(xn, xn−1))d(xn, xn−1) 6 d(xn, xn−1),

that is, for each n ≥ 1 we have

d(xn+1, xn) 6 d(xn, xn−1). (1)

If there exists a natural number n0 such that d(xn0
, xn0−1) = 0, then

xn0
= T (xn0−1) = xn0−1



PICARD OPERATORS ON ORDERED METRIC SPACES 61

and so xn0−1 is a fixed point of T . Suppose that d(xn+1, xn) 6= 0 for all n ≥ 1. Then
taking into account (1), the sequence {d(xn+1, xn)} is decreasing and bounded below,
so we can suppose that limn→∞ d(xn+1, xn) = r > 0. Assume r > 0. Then, we have

d(xn+1, xn)

d(xn, xn−1)
6 β(d(xn, xn−1)) 6 1.

Letting n → ∞ in the last inequality, we get 1 6 limn→∞ β(d(xn, xn−1)) 6 1 and
so limn→∞ β(d(xn, xn−1)) = 1. Since β ∈ S, limn→∞(d(xn+1, xn)) = 0 which is a
contradiction. Hence,

lim
n→∞

d(xn+1, xn) = 0. (2)

Now, we show that {xn} is a Cauchy sequence. If {xn} is not a Cauchy sequence, then
there exist ε > 0 and subsequences {xm(k)} and {xn(k)} of {xn} with n(k) > m(k) > k
such that

d(xn(k), xm(k)) > ε. (3)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) and satisfying (3). Thus,

d(xn(k)−1, xm(k)) < ε. (4)

Now, by using (3), (4) and triangular inequality, we get

ε 6 d(xn(k), xm(k)) 6 d(xn(k)−1, xm(k)) + d(xn(k)−1, xm(k)) < d(xn(k), xn(k)−1) + ε.

If k →∞, then by using (2) we get

lim
k→∞

d(xn(k), xm(k)) = ε. (5)

Again, the triangular inequality gives us

d(xn(k), xm(k)) 6 d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, xm(k)),

d(xn(k), xm(k)−1) 6 d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)) + d(xm(k)−1, xm(k)).

If k →∞, then by using (2) and (5) and above inequalities, we obtain

lim
k→∞

d(xn(k)−1, xm(k)−1) = ε. (6)

Since n(k) > m(k) and (xn(k)−1, xm(k)−1) ∈ X6, we have

d(xn(k), xm(k)) = d(T (xn(k)−1), T (xm(k)−1))

6 β(d(xn(k)−1, xm(k)−1))d(xn(k)−1, xm(k)−1) 6 d(xn(k)−1, xm(k)−1). (7)

If k →∞ in (7), then by using (5) and (6), we get

lim
k→∞

β(d(xn(k)−1, xm(k)−1)) = 1.

Since β ∈ S,

lim
k→∞

d(xn(k)−1, xm(k)−1) = 0.

The relation (6) shows that this is a contradiction. Thus, {xn} is a Cauchy sequence.
Since (X, d) is a complete metric space, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗.
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Since T is orbitally continuous, x∗ is a fixed point of T . By using (vi), it is easy to
see that x∗ is unique. Now, let x ∈ X be given. Then we have the following cases:

(a) If (x, x0) ∈ X6, then (Tn(x), Tn(x0)) ∈ X6 and so by using (vi) we get that

un = d(Tn(x), Tn(x0))

is a non-negative decreasing sequence. Thus, there exists u ≥ 0 such that un → u.
If u = 0, then Tn(x) → x∗ because Tn(x0) = xn → x∗. Let u 6= 0. In this case, by
using (vi) for each n ≥ 1 we obtain

d(Tn(x), Tn(x0)) 6 β(d(Tn−1(x), xn−1))d(Tn−1(x), xn−1).

Therefore,

lim inf
n→∞

β(d(Tn−1(x), xn−1)) = lim sup
n→∞

β(d(Tn−1(x), xn−1)) = 1.

Hence,

lim
n→∞

d(Tn−1(x), xn−1) = lim
n→∞

d(Tn−1(x), x∗) = 0

because β ∈ S. Thus, Tn(x)→ x∗.

(b) If (x, x0) /∈ X6, then by using (i) there exists z0 ∈ X6 such that (x, z0) ∈ X6

and (z0, x0) ∈ X6. By using the part (a) we know that Tn(z0) → x∗. Now, put
zn+1 = Tzn for all n ≥ 0. Since (x, z0) ∈ X6, (Tn(x), Tn(z0)) ∈ X6 for all n ≥ 1.
Thus by using (ii) we get wn = d(Tn(x), Tn(z0)) 6 d(Tn−1(x), Tn−1(z0)) = wn−1 for
all n ≥ 1. Therefore, {wn}n∈N is a non-increasing and non-negative sequence. Hence,
there exists w ≥ 0 such that wn → w. If w = 0, then Tn(x)→ x∗. Let w 6= 0. In this
case, by using (v) for each n ≥ 1 we obtain

d(Tn(x), Tn(z0)) = d(T (Tn−1(x)), T (zn−1)) 6 β(d(Tn−1(x), zn−1))d(Tn−1(x), zn−1).

Hence,

lim
n→∞

β(d(Tn−1(x), zn−1)) = 1.

Thus,

lim
n→∞

d(Tn−1(x), zn−1) = 0

because β ∈ S. Since Tn(z0)→ x∗, Tn(x)→ x∗. �

Now by using Theorem 7 in [10], we can replace the following conditions instead
the condition (vi) of Theorem 2.1. A similar cases hold for another results of this
paper.

(a)- There exists a continuous function η : [0,∞)→ [0,∞) such that η−1({0}) = {0}
and d(Tx, Ty) 6 d(x, y)− η(d(x, y)) holds for all (x, y) ∈ X6.

(b)- There exists a continuous and nondecreasing function ϕ : [0,∞) → [0,∞) such
that ϕ(t) < t for all t > 0 and d(Tx, Ty) 6 ϕ(d(x, y)) holds for all (x, y) ∈ X6.

(c)- There exist a continuous and nondecreasing function ψ : [0,∞) → [0,∞) with
ψ−1({0}) = {0} and a nondecreasing, right continuous function ϕ : [0,∞) → [0,∞)
such that ϕ(t) < t for all t > 0 and ψ(d(Tx, Ty)) 6 ϕ(ψ(d(x, y))) holds for all
(x, y) ∈ X6.
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(d)- There exist continuous and nondecreasing functions µ, ν : [0,∞) → [0,∞) with
µ−1({0}) = {0}, ν−1({0}) = {0} and µ(d(Tx, Ty)) 6 µ(d(x, y))− ν(d(x, y)) holds for
all (x, y) ∈ X6.

Remark 2.1. A new theorem can be obtained replacing condition (vi) in Theorem
2.1 with the following condition:
there exists a β ∈ S such that ψ(d(Tx, Ty)) 6 β(d(x, y))ψ(d(x, y)) for all (x, y) ∈ X6,
where ψ is an altering function.

Remark 2.2. A new theorem can be obtained replacing condition (vi) in Theorem
2.1 with the following condition:
there exists a β ∈ S such that ψ(d(Tx, Ty)) 6 β(d(x, y))ψ(d(x, y)) for all (x, y) ∈ X6,
where ψ is an altering function.

Remark 2.3. A new theorem can be obtained replacing condition (vi) in Theorem
2.1 with the following condition:
there exists β ∈ S such that

d(Tx, Ty) 6 β(max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]})d(x, y),

for all (x, y) ∈ X6.

3. An Application

In this section, we present an application of our abstract results. We will study
the existence of solution for the following first-order periodic problem{

u′(t) = f(t, u(t)), t ∈ [0, T ]

u(0) = u(T ),
(8)

where T > 0 and f : I × R −→ R is a continuous function. Consider the complete
metric space C(I) (I = [0, T ]) via the sup norm. The space C(I) can be equipped with
the partial order x ≤ y whenever x(t) ≤ y(t) for all t ∈ I. It’s easy to see that for each
x, y ∈ C(I) there exists a lower bound (min{x, y}) and an upper bound (max{x, y}).
Suppose that A denotes the class of functions φ : [0,∞)→ [0,∞) satisfying

(i) φ is nondecreasing,

(ii) φ(x) < x for x > 0,

(iii) β(x) = φ(x)
x ∈ S.

In fact,

φ(t) = µ · t (0 ≤ µ < 1), φ(t) =
t

1 + t
and φ(t) = ln(1 + t) are some examples of such functions. Recall now the following
definition.

Definition 3.1. A lower solution for (8) is a function α ∈ C1(I) such that{
α′(t) ≤ f(t, α(t)), (t ∈ I)

α(0) ≤ α(T ).
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Similarly α ∈ C1(I) is an upper solution for (8) whenever{
α′(t) ≥ f(t, α(t)), (t ∈ I)

α(0) ≥ α(T ).

Now, we present the following theorem about the existence of a solution for the
problem (8) in presence of a lower or upper solution. The existence of a solution has
been proved only for lower solution phase ([5]).

Theorem 3.1. Consider the problem (8) with a continuous function f : I × R→ R.
Suppose that there exist numbers λ, α such that α ≤ ( 2λ(eλt−1)

T (eλt+1)
)

1
2 and for each x, y ∈ R

we have f(t, y) + λy − [f(t, x) + λx] ≤ α
√
|y − x|φ(y − x), where φ ∈ A. Then the

existence of a lower or upper solution for (8) provides the existence of a unique solution
for (8).

Proof. The problem (8) can be rewrite as{
u′(t) + λu(t) = f(t, u(t)) + λu(t), (t ∈ [0, T ])

u(0) = u(T ).

This problem is equivalent to the integral equation

u(t) =

∫ T

0

G(t, s)[f(s, u(s)) + λu(s)]ds,

where G(t, s) is a green function given by

G(t, s) =


eλ(T+s−t)

(eλT−1) , 0 ≤ s < t ≤ T
eλ(s−t)

(eλT−1) . 0 ≤ t < s ≤ T

Define F : C(I)→ C(I) by

F (u)(t) =

∫ T

0

G(t, s)[f(s, u(s)) + λu(s)]ds.

If u ∈ C(I) is a fixed point of F , then u ∈ C1(I) is a solution for (8). We check that F
satisfies the conditions of Proposition 2.1. It has been proved that for (u, v) ∈ C(I)≤
we have ([5])

d(Fu, Fv)2 ≤ φ(d(u, v))

d(u, v)
· d(u, v)2.

Define

ψ(x) = x2 and β =
φ(x)

x
.

Since φ ∈ A, β ∈ S. Also, note that ψ is an altering function. Thus,

ψ(d(Fu, Fv)) ≤ β(d(u, v))ψ̇(d(u, v))

for all (u, v) ∈ C(I)≤. It is easy to see that C(I)≤ ∈ I(F × F ). Also, there exists
x0 ∈ C(I) such that (x0, F (x0)) ∈ C(I)≤. In fact if α(t) be a lower solution for (8),
from [4] we know that α(t) ≤ (Fα)(t) for all t ∈ I. Similarly, If α(t) is an upper
solution for (8), then we have α(t) ≥ (Fα)(t), for all t ∈ I. Therefore, F satisfies the
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conditions of Proposition 2.1. Thus, F is a Picard operator and so the problem (8)
has a unique solution. �
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