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Abstract. We consider a Cauchy problem for a semilinear differential inclusion involving a non-
convex set-valued map and we prove that the set of selections corresponding to the solutions of the
problem considered is a retract of the space of integrable functions on unbounded interval. A similar
result is provided for a class of second-order differential inclusions.
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1. INTRODUCTION

This paper is concerned with the following semilinear differential inclusion
¥ € Az + F(t,z), z(0)= zo, (1.1)

where X is a real separable Banach space, P(X) is the family of all subsets of X,
F(.,.):[0,00) x X — P(X) and A is the infinitesimal generator of a strongly contin-
uous semigroup {G(t); t > 0} on X.

Existence results and qualitative properties of the mild solutions of problem (1.1)
may be found in [5,6,9,11,13,15] etc.. In [8] we proved that the solution set of problem
(1.1) is arcwise connected when the set-valued map is Lipschitz in the second variable
and the problem is defined on a bounded interval. The aim of this paper is to establish
a more general topological property of the solution set of problem (1.1). Namely,
we prove that the set of selections of the set-valued map F' that correspond to the
solutions of problem (1.1) is a retract of L}, ([0,00),X). The result is essentially
based on Bressan and Colombo results ([3, 14]) concerning the existence of continuous
selections of lower semicontinuous set-valued maps with decomposable values.

A similar result is valid for second-order differential inclusions of the form

2’ € Az + F(t,z), z(0) =z, 2'(0)= 1o, (1.2)

where F is as above and A is the infinitesimal generator of a strongly continuous cosine
family of operators {C(t); t > 0} on X. Several qualitative properties and existence
results concerning mild solutions for the Cauchy problem (1.2) can be found in [1, 2,
7, 8, 9] etc..
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We note that in the classical case of differential inclusions topological properties of
solution set are obtained using various methods and tools ([4, 10, 16-18] etc.). The
results in the present paper extends to semilinear differential inclusions of the form
(1.1) and (1.2) the main result in [16] obtained in the case of classical differential
inclusions.

The paper is organized as follows: in Section 2 we present the notations, definitions
and the preliminary results to be used in the sequel and in Section 3 we prove our
main result.

2. PRELIMINARIES

Let T'> 0, I :=[0,T] and denote by L(I) the o-algebra of all Lebesgue measurable
subsets of I. Let X be a real separable Banach space with the norm |.|. Denote by
P(X) the family of all nonempty subsets of X and by B(X) the family of all Borel
subsets of X. If A C I then x4(.) : I — {0,1} denotes the characteristic function of
A. For any subset A C X we denote by cl(A) the closure of A.

The distance between a point x € X and a subset A C X is defined as usual by
d(z,A) = inf{|z — al;a € A}. We recall that Pompeiu-Hausdorff distance between
the closed subsets A, B C X is defined by dgy(A, B) = max{d*(A, B),d*(B,A)},
d*(A, B) = sup{d(a, B); a € A}.

As usual, we denote by C(I, X) the Banach space of all continuous functions x :
I — X endowed with the norm |z|c = sup,c;|z(t)| and by L'(I,X) the Banach
space of all (Bochner) integrable functions x : I — X endowed with the norm |z|; =
Jo Jw(t)]dt.

We recall first several preliminary results we shall use in the sequel.

A subset D C LY(I,X) is said to be decomposable if for any u,v € D and any
subset A € L(I) one has uxa +vxp € D, where B = I\ A.

We denote by D(I, X) the family of all decomposable closed subsets of L(I, X).

Next (5, d) is a separable metric space; we recall that a set-valued map G : S —
P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset C' C X, the
subset {s € S; G(s) C C} is closed.

Lemma 2.1. ([3]) Let F* : I xS — P(X) be a closed-valued L(I)® B(S)-measurable
set-valued map such that F*(t,.) is l.s.c. for anyt € I.
Then the set-valued map G : S — D(I, X) defined by

G(s)={ve LY(I,X); wv(t)€ F*(t,s) ae. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
p:S — LY(I,X) such that

d(0, F*(t,s)) < p(s)(t) a.e. (I), Vs S.

Lemma 2.2. ([3]) Let G : S — D(I,X) be a l.s.c. set-valued map with closed
decomposable values and let ¢ : S — LY(I,X), ¢ : S — LY (I,R) be continuous such
that the set-valued map H : S — D(I, X) defined by

H(s) = cl{v(.) € G(s);  [v(t) — d(s)()] < ¥(s)(t) a-e (1)}
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has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous mapping h : S —
LY(I,X) such that h(s) € H(s) Vs € S.

In what follows X is a real separable Banach space with norm |.|, and with the
corresponding metric d(.,.). We consider {G(t)}:>0 C L(X, X) a strongly continuous
semigroup of bounded linear operators from X to X having the infinitesimal generator
A and a set valued map F(.,.) defined on [0,00) x X with nonempty closed subsets
of X, which define the following differential inclusion

2 € Az + F(t,z) z(0) = xo. (2.1)
It is well known that, in general, the Cauchy problem
¥ =Ax+ f(t,z), z(0)=xg (2.2)

may not have a classical solution and that a way to overcome this difficulty is to look
for continuous solutions of the integral equation

x(t) = G(t)zo + /0 G(t —u) f(u, z(u))du

This is why the concept of the mild solution is convenient for solving (2.1).
A continuous mapping z(.) € C([0, 00), X) is called a mild solution of (2.1) if there
exists a (Bochner) integrable function f(.) € L, .([0,00), X) such that

f(t) € F(t,x(t)) a.e.[0,00), (2.3)
x(t) = G(t)zo —|—/ G(t —u)f(u)du Vit € [0,00), (2.4)
0

ie., f(.) is a (Bochner) integrable selection of the set-valued map F'(.,z(.)) and z(.)
is the mild solution of the initial value problem

¥ =Ax+ f(t) z(0) = xo. (2.5)
We shall use the following notations
S*(z0) = {=(.); z(.)is a mild solution of (1.1)}, (2.6)

TH(x0) = {f € Ly ([0,00), X); f(t) € F(t, G(t)zo+ 27)
—l—fg G(t —u)f(u)du) a.e. [0,00)}. '

Denote by B(X) the Banach space of bounded linear operators from X into X.
We recall that a family {C(t); t € R} of operators in B(X) is a strongly continuous
cosine family if the following conditions are satisfied

(i) C(0) = I, where T is the identity operator in X,

(i) C(t+s) + C(t — s) = 2C(t)C(s) Vt,s € R,

(iii) the map t — C(¢)x is strongly continuous Vz € X.

The strongly continuous sine family {S(¢); t € R} associated to a strongly contin-
uous cosine family {C(t); t € R} is defined by

t
S(t)x :z/ C(s)xds, x€ X,t€R.
0
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The infinitesimal generator A : X — X of a cosine family {C(t); t € R} is defined

by
2

Az = (S)C(0almo.

Fore more details on strongly continuous cosine and sine family of operators we
refer to [12, 19].

In what follows A is infinitesimal generator of a cosine family {C(¢); ¢ € R} and
F(.,.): IxX — P(X) is a set-valued map with nonempty closed values, which define
the following Cauchy problem associated to a second-order differential inclusion

2" € Az + F(t,x), z(0)=uz9, 2'(0)=ux;.
A continuous mapping z(.) € C([0,00), X) is called a mild solution of problem (2.8)
if there exists a (Bochner) integrable function f(.) € L}, .([0,0), X) such that

loc

f(t) € F(t,x(t)) a.e.[0,00) (2.9)

x(t) = C(t)zo + S(t)z1 +/0 St —u)f(u)du Vte|0,00), (2.10)

i.e., f(.) is a (Bochner) integrable selection of the set-valued map F(.,z(.)) and z(.)
is the mild solution of the Cauchy problem

2" = Az + f(t) z(0)==z9, 2'(0)=m. (2.11)
We make the following notations
S?(zo,71) = {x(.); () is a mild solution of (1.2)}, (2.12)

T%(wg,x1) = {f € L} ([0,00),X); f(t) € F(t,C(t)xo + S(t)z1+

loc

+ [y S(t—w) f(u)du) a.e. [0,00)}. (2.13)

3. THE MAIN RESULTS

In order to prove our topological properties of the solution set of problems (1.1)
and (1.2) we need the following hypotheses.

Hypothesis 3.1. i) F(.,.) : [0,00) x X — P(X) has nonempty compact values and
is £([0,00)) ® B(X) measurable.
ii) There exists L € L}, .([0,00), R) such that, for almost all ¢ € [0, ),
F(t,.) is L(t)-Lipschitz in the sense that
du(F(t,2), F(t,y)) < L)z —y| Yo,y e X.
iii) There exists p € L}, .([0,00), R) such that

dH({O}aF(tao)) < p(t) a.e. [0,00)

We consider first the semilinear differential inclusion (1.1). Let M > 1 be such
that |G(t)| < MVt € [0,00).
Take I = [0,7] and we make the notations

a(t) = G(t)zo + /Ot G(t — s)u(s)ds, we L'(I,X) (3.1)
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and
po(u)(t) = [u(t)| +p(t) + LB)|a(t)], tel (3-2)
Let us note that
d(u(t), F(t, a(t)) < po(u)(t) a.e. (I) (3-3)
and, since for any uy,us € L*(I, X)

T
[po(u1) — po(uz) < (1 +M/0 L(s)ds|)|u1 — ualy

the mapping po : L'(I, X) — L(I, X) is continuous.
Also define

Ti(zo) = {f € LI, X); f(t)eF(uG(t)xo—i—/O G(t - s)f(s)ds) a.e. (I)}.

Proposition 3.2. Assume that Hypothesis 3.1 is satisfied and let ¢ : L*(I,X) —
LY(I, X) be a continuous map such that ¢(u) = u for allu € Tr(zo). Foru € L*(I, X),
we define

U(u) ={uec L'(I,X); u(t) € F(t,¢(u)(t) ae. (I)},
B(u) = { {u}  ifu e Tr(xo),

U(u) otherwise.
Then the set-valued map ® : L' (I, X) — P(L (I, X)) is lower semicontinuous with
closed decomposable and nonempty values.

Proof. According to (3.3), Lemma 2.1 and the continuity of py we obtain that ¥ has
closed decomposable and nonempty values and the same holds for the set-valued map
P.

Let C C LY(I, X) be a closed subset, let {t,, }men converges to some ug € L1(1, X)
and ®(u,,) C C, for any m € N. Let vy € ®(up) and for every m € N consider

a measurable selection v, from the set-valued map t — F(t, &(um)(t)) such that
U, = Uy 1 U, € Tr(20) and

—_~—

[um (t) — vo(t)| = d(vo (1), F'(t, ¢(um)(t)) a.e. (I)
otherwise. One has
[um () —vo(t)| <

< dp (F(t, ¢(um) (1)), F (¢, d(uo)(t))) < L(1)|¢(um)(t) — ¢(uo) (1)

hence

T
o — vols < M / L(5)ds.|6(tim) — $(u0)1.

Since ¢ : L'(I,X) — LY(I,X) is continuous, it follows that v,, converges to vy in
LY(I,X). On the other hand, v,, € ®(u,,) C C Vm € N and since C is closed we
infer that vy € C. Hence ®(ug) C C and @ is lower semicontinuous.
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In what follows we shall use the following notations

Li=[0k, k>1, |u

k
1$:/|MMﬁ,ueL%mX)
0
We are able now to prove the main result of this paper.

Theorem 3.3. Consider A the infinitesimal generator of a strongly continuous semi-
group of bounded linear operators {G(t)}1>0 on the real separable Banach space X,
assume that Hypothesis 5.1 is satisfied, let zo € X and let T*(z0) be the selection set
defined in (2.7).

Then there exists a continuous mapping G : L}, .([0,00), X) — L}, .
that

(i) G(u) € T (zo), Vue€ L}, .([0,00),X),

(ii) G(u) = u, Yu € T'(xo).

([0,00), X) such

Proof. We shall prove that for every k > 1 there exists a continuous mapping g¢* :
LY(I}, X) — L'(I}, X) with the following properties

(I) g*(u) =u, Vu € T, (x0)

(I1) g*(u) € 1, (x0), Vu € L'(I}, X)

(TI1) g*(u)(t) = ¢" (ulr, ,)(t), Vt€ Iy

If the sequence {g*}1>1 is constructed, we define G : L}, ([0,00), X) — L}, ([0,
00), X) by

G(u)(t) = ¢*(uls) (), Vh=1

From (IIT) and the continuity of each g*(.) it follows that G(.) is well defined and

continuous. Moreover, for each u € L}, .([0,00), X), according to (II) we have

G(w)|r,(t) = ¢" (uln)(t), g (ulr) € Tr(z0), Yk =1

and thus G(u) € T (zo).
Fix ¢ > 0 and for m > 0 set &, = 2%FLe. For w € L'(I;,X) and m > 0 define

m+2
m(t) = fot L(s)ds,

po(u)(t) = [u(®)| + p(t) + L(t)|a(t)|, te
and
—m(s)™

P (W) (t) = Mm+1/0 pé(u)(s)L

m!

£))™
dS+Mm4(m( 3) Em+1-
m:

By the continuity of the map p§(.) = po(.), already proved, we obtain that pl :
LY(I,X) — LY(I;, X) is continuous.

We define g (u) = u and we shall prove that for any m > 1 there exists a continuous
map gL : LY(I1, X) — L'(I, X) that satisfies

((11) g}n(u) =u, Yu € 7-11 (1'0)7
(br) gL (w)(t) € Pt gl (w)(1) ace. (L),

(c1) |91 (w)(8) = go(u) ()] < po(u)(t) + &0 ace. (I1),
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(d1) 19 (W) (X) = 1 (D) < L)1 (W) (1) ace. (1), m>2.
For u € LY(I1, X), we define
Ul(u) = {ve LY (I, X); v(t) € F(t,u(t)) a.e.()},
18| {u} if u € Tr, (x0),
1 (u) = { Ul(u) otherwise.
and by Proposition 3.2 (with ¢(u) = u) we obtain that ®1 : L'(I;, X) — D(I1, X) is
lower semicontinuous. Moreover, due to (3.3) the set
Hi(u) = cl{v € ®(u); |o(t) —u(t)] < pi(u)(t) +eo ae. (I1)}
is not empty for any v € L'(I;,X). So applying Lemma 2.2, we find a continuous
selection gi of H{ that satisfies (a;)-(c1).

Suppose we have already constructed g} (.), i = 1,...m satisfying (a1)-(d1). Then
from (b1), (d1) and Hypothesis 3.1 we get

e~ ——

d(gk(u)(t) F(t, gm(u)( )) < L(t)(Igp—1 () (t) — gh (u)(t)] < (3.4)
L(t) Jy ML(s)pl, (u)(s)ds = L(£)(Ph, 41 (w)(£) = 1, (£)) < L{)ph, 41 () (2),
where rl (t) := M™ (m(t D™ eyt — Em) > 0.

For u € L'(I1, X), we define

—_~—

Uy (u) = {v € LI, X); o(t) € F(t,gh(w)(t)  ace (1)},
{u} if w € Tr, (o),
Py (0) = { Wl (u) otherwiée. ’

We apply Proposition 3.2 (with ¢(u) = g, (u)) and obtain that ®} ., (.) is lower
semicontinuous with closed decomposable and nonempty values. Moreover, by (3.4),
the set

Hyy iy (u) = cl{v € @py g (u); [0() = gryr (W) ()] < L{E)ppy g2 (W) (t) ace. (1)}
15 nonempty for any u € L*(I;, X). With Lemma 2.2, we find a continuous selection
gm+1 of Hm-i—lv satistying (0’1) ( )
Therefore we obtain that

o< O b+ o)

g1 (u) — g (w)

and this implies that the sequence {g., (u)}men is a Cauchy sequence in the Banach
space L'(I1,X). Let g'(u) € L'(I1,X) be its limit. The function s — |p}(u)|1.1
is continuous, hence it is locally bounded and the Cauchy condition is satisfied
by {gt (u)}men locally uniformly with respect to u. Hence the mapping g'(.) :
LY(I1,X) — LY(I;, X) is continuous.

From (aq) it follows that g (u) = u, Vu € Tz, (z0) and from (b1) and the fact that
F has closed values we obtain that

g (u)(t) € F(t,g'(u)(t)), ae. (I;) Yue LI, X).
In the next step of the proof we suppose that we have already constructed the
mappings ¢*(.) : L'(I;, X) — L'(I;, X), i = 2,....,k — 1 with the properties (I)-(III)
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and we shall construct a continuous map ¢*(.) : L'(Iy, X) — L'(Ix, X) satisfying

(I)-(I10).
Let g& : LY (Iy, X) — L'(Ix, X) be defined by

gg(u)(t) = gk_l(u‘fk—1)(t)xfk—1 + u(t)xlk\lk—l(ﬁ) (35)

Let us note, first, that g¥(.) is continuous. Indeed, if ug,u € L' (I}, X) one has

|g€(u) - g(];(uo)'l:k < |gk_1(u|1k—1) - gk_l(u()'bc—l)

k
1,k—1 +/k |u(t) — uo(t)|dt

-1
So, using the continuity of g*~1(.) we get the continuity of g&(.).
On the other hand, since g¥~1(u) = u, Yu € Tz, _, (7o) from (3.5) it follows that
gt (u) =u, Yu € T (o).

For u € L'(Ix, X), we define

W) = {w € L0 X); w(t) = 9l (Oxn () + 0Oty 1, 1),

u(t) € F(t,g5(u)(t) ae. ([k—1k])},

Bk (u) = { {u} if u € Tz, (z0),

Uk (u) otherwise.

We apply Proposition 3.2 (with ¢(u) = g&(u)) and we obtain that ®¥(.) : L1 (I, X)
— D(Iy, X) is lower semicontinuous. Moreover, for any u € L!(Iy, X) one has

d(go (1), F(t, g6 (u)(8)) = d(u(t), F(t, g§ (w)())xran_, < po()(t)  ae.(l), (3.6)

where

—~

po(u)(t) = [u(t)] + p(t) + L(£)lg§ (u) (t)]-
Obviously, p§ : LY (I, X) — L'(I;, X) is continuous. For m > 0 set

hoatw) =27 [ (o) PO gy g O

and by the continuity of pf(.) we infer that p¥, : L(I}, X) — L'(I}, X) is continuous.
We shall prove, next, that for any m > 1 there exists a continuous map gF, :
LY(I}, X) — L'(I}, X) such that

(ax) gh(W)(t) = ¢ Mulp)() VEE L,

(b) gE(w)=u Vu e T, (x0),

(cr) gE.(w)(t) € Ft, b, (w)(t) ae. (I),

(d) g5 ()(t) — g (O] < Ph(u)(t) + 20 ace. (1),

() lgh()(®) - g (O] < LOph 1 ()(1) ace. (1), m>2.
Define

HY (u) = cl{v € @} (u);  |v(t) — g5 (w)(t)] < ps(w)(t) + 20 a.e. (Ti)}-
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From (3.6), H¥(u) # 0 Vu € L'(I;,X). Using the continuity of g§,pk and Lemma
2.2, we obtain a continuous selection gf of HF that satisfies (a)-(dy).

Assume we have constructed gF(.), i = 1,...m satisfying (ax)-(ex). Then from
(ex) we have

A )10, <t gm<u><t>> L(t) (k1 () (1) — g () ()] < 57
5= L) (k1 (1) (1) = 75, (1)) < L(0)py 42 () (1),

L) [ ML)k, () ()4
where 7% (t) .= M™ (m(t))m (Em+1 —€m) > 0.
For u € L' (I}, X), we define
Uy (w) = {w € LIk, X); w(t) = g° (ulr,_ ) Oxn, (8) + 00Xz 1., (1),
o(t) € F(t, gk, (w)(t) ae. ([k—1,k])},
(u) = { {u} if u € T, (z0),

Pk
WF ., (u) otherwise.

m+1

With Proposition 3.2 we infer that ®F _(.) : L'(I, X) — P(L*(I, X)) is lower
semicontinuous with closed decomposable and nonempty values. By (3.7) the set

Hy, o (w) = clfv € @54 (w); [0(t) = gpa (W) (O] < LDy, 1 (W) (1) ace. (1)}

is nonempty for any u € LY(I}, X). So, applying Lemma 2.2, we deduce a continuous
selection g¥ ., of HE | satisfying (ar)-(ex).
By (ex) one has
Mm(k))™
1082 () — g @lp < PLED™ gy + ],
Therefore, with a similar proof as in the case k = 1, we find that the sequence
{gk (u)}men converges to some g*(u) € L' (I, X) and the map ¢*(.) : L' (I}, X) —
L(I}, X) is continuous.
By (a) we have that

g (W) (t) = ¢" H(ulr,_)(t) VteE L,

by (b) ¢*(u) =u, Yu € T, (x0) and from (c;) and the fact that F has closed values
we obtain that

" (u)(t) € F(t,gk(u)(t)), ae. (I) Yue L'(Ii, X).
Therefore g”(.) satisfies the properties (I), (II) and (III).

Next we consider the second-order semilinear differential inclusion (1.2).

Theorem 3.4. Consider A the infinitesimal generator of a strongly continuous cosine
family {C(t)}:er on the real separable Banach space X, assume that Hypothesis 3.1
is satisfied, let xg,x1 € X and let T?(wo,21) be the selection set defined in (2.13).

Then there exists a continuous mapping G : L}, .([0,00), X) — L}, .([0,00), X) such
that

(i) G(u) € T*(z9,21), Yu € L, ([0,00),X),

(ii) G(u) = u, Yu € T*(zq,1).
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The proof of Theorem 3.4 is similar to the one of Theorem 3.3.

Remark 3.5. We recall that if Y is a Hausdorff topological space, a subspace X of
Y is called retract of Y if there is a continuous map h : ¥ — X such that h(z) =
z, Ve e X.

Therefore, by Theorem 3.3, for any xo € X, the set T'(xg) of selections that

correspond to solutions of (1.1) is a retract of the Banach space L}, .([0,00), X) and

by Theorem 3.4 for any zg, 21 € X, the set T2(zg,21) of selections that correspond
to solutions of (1.2) is a retract of L, ([0, 00), X).

loc
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