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Abstract. We consider a Cauchy problem for a semilinear differential inclusion involving a non-

convex set-valued map and we prove that the set of selections corresponding to the solutions of the
problem considered is a retract of the space of integrable functions on unbounded interval. A similar

result is provided for a class of second-order differential inclusions.
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1. Introduction

This paper is concerned with the following semilinear differential inclusion

x′ ∈ Ax+ F (t, x), x(0) = x0, (1.1)

where X is a real separable Banach space, P(X) is the family of all subsets of X,
F (., .) : [0,∞)×X → P(X) and A is the infinitesimal generator of a strongly contin-
uous semigroup {G(t); t ≥ 0} on X.

Existence results and qualitative properties of the mild solutions of problem (1.1)
may be found in [5,6,9,11,13,15] etc.. In [8] we proved that the solution set of problem
(1.1) is arcwise connected when the set-valued map is Lipschitz in the second variable
and the problem is defined on a bounded interval. The aim of this paper is to establish
a more general topological property of the solution set of problem (1.1). Namely,
we prove that the set of selections of the set-valued map F that correspond to the
solutions of problem (1.1) is a retract of L1

loc([0,∞), X). The result is essentially
based on Bressan and Colombo results ([3, 14]) concerning the existence of continuous
selections of lower semicontinuous set-valued maps with decomposable values.

A similar result is valid for second-order differential inclusions of the form

x′′ ∈ Ax+ F (t, x), x(0) = x0, x′(0) = y0, (1.2)

where F is as above and A is the infinitesimal generator of a strongly continuous cosine
family of operators {C(t); t ≥ 0} on X. Several qualitative properties and existence
results concerning mild solutions for the Cauchy problem (1.2) can be found in [1, 2,
7, 8, 9] etc..
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We note that in the classical case of differential inclusions topological properties of
solution set are obtained using various methods and tools ([4, 10, 16-18] etc.). The
results in the present paper extends to semilinear differential inclusions of the form
(1.1) and (1.2) the main result in [16] obtained in the case of classical differential
inclusions.

The paper is organized as follows: in Section 2 we present the notations, definitions
and the preliminary results to be used in the sequel and in Section 3 we prove our
main result.

2. Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue measurable
subsets of I. Let X be a real separable Banach space with the norm |.|. Denote by
P(X) the family of all nonempty subsets of X and by B(X) the family of all Borel
subsets of X. If A ⊂ I then χA(.) : I → {0, 1} denotes the characteristic function of
A. For any subset A ⊂ X we denote by cl(A) the closure of A.

The distance between a point x ∈ X and a subset A ⊂ X is defined as usual by
d(x,A) = inf{|x − a|; a ∈ A}. We recall that Pompeiu-Hausdorff distance between
the closed subsets A,B ⊂ X is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)},
d∗(A,B) = sup{d(a,B); a ∈ A}.

As usual, we denote by C(I,X) the Banach space of all continuous functions x :
I → X endowed with the norm |x|C = supt∈I |x(t)| and by L1(I,X) the Banach
space of all (Bochner) integrable functions x : I → X endowed with the norm |x|1 =∫ T

0
|x(t)|dt.
We recall first several preliminary results we shall use in the sequel.
A subset D ⊂ L1(I,X) is said to be decomposable if for any u, v ∈ D and any

subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.
We denote by D(I,X) the family of all decomposable closed subsets of L1(I,X).
Next (S, d) is a separable metric space; we recall that a set-valued map G : S →

P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset C ⊂ X, the
subset {s ∈ S; G(s) ⊂ C} is closed.

Lemma 2.1. ([3]) Let F ∗ : I×S → P(X) be a closed-valued L(I)⊗B(S)-measurable
set-valued map such that F ∗(t, .) is l.s.c. for any t ∈ I.

Then the set-valued map G : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F ∗(t, s) a.e. (I)}
is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
p : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ p(s)(t) a.e. (I), ∀s ∈ S.

Lemma 2.2. ([3]) Let G : S → D(I,X) be a l.s.c. set-valued map with closed
decomposable values and let φ : S → L1(I,X), ψ : S → L1(I,R) be continuous such
that the set-valued map H : S → D(I,X) defined by

H(s) = cl{v(.) ∈ G(s); |v(t)− φ(s)(t)| < ψ(s)(t) a.e. (I)}
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has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous mapping h : S →

L1(I,X) such that h(s) ∈ H(s) ∀s ∈ S.

In what follows X is a real separable Banach space with norm |.|, and with the
corresponding metric d(., .). We consider {G(t)}t≥0 ⊂ L(X,X) a strongly continuous
semigroup of bounded linear operators from X to X having the infinitesimal generator
A and a set valued map F (., .) defined on [0,∞) ×X with nonempty closed subsets
of X, which define the following differential inclusion

x′ ∈ Ax+ F (t, x) x(0) = x0. (2.1)

It is well known that, in general, the Cauchy problem

x′ = Ax+ f(t, x), x(0) = x0 (2.2)

may not have a classical solution and that a way to overcome this difficulty is to look
for continuous solutions of the integral equation

x(t) = G(t)x0 +

∫ t

0

G(t− u)f(u, x(u))du

This is why the concept of the mild solution is convenient for solving (2.1).
A continuous mapping x(.) ∈ C([0,∞), X) is called a mild solution of (2.1) if there

exists a (Bochner) integrable function f(.) ∈ L1
loc([0,∞), X) such that

f(t) ∈ F (t, x(t)) a.e. [0,∞), (2.3)

x(t) = G(t)x0 +

∫ t

0

G(t− u)f(u)du ∀t ∈ [0,∞), (2.4)

i.e., f(.) is a (Bochner) integrable selection of the set-valued map F (., x(.)) and x(.)
is the mild solution of the initial value problem

x′ = Ax+ f(t) x(0) = x0. (2.5)

We shall use the following notations

S1(x0) = {x(.); x(.) is a mild solution of (1.1)}, (2.6)

T 1(x0) = {f ∈ L1
loc([0,∞), X); f(t) ∈ F (t, G(t)x0+

+
∫ t

0
G(t− u)f(u)du) a.e. [0,∞)}. (2.7)

Denote by B(X) the Banach space of bounded linear operators from X into X.
We recall that a family {C(t); t ∈ R} of operators in B(X) is a strongly continuous
cosine family if the following conditions are satisfied

(i) C(0) = I, where I is the identity operator in X,
(ii) C(t+ s) + C(t− s) = 2C(t)C(s) ∀t, s ∈ R,
(iii) the map t→ C(t)x is strongly continuous ∀x ∈ X.
The strongly continuous sine family {S(t); t ∈ R} associated to a strongly contin-

uous cosine family {C(t); t ∈ R} is defined by

S(t)x :=

∫ t

0

C(s)xds, x ∈ X, t ∈ R.
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The infinitesimal generator A : X → X of a cosine family {C(t); t ∈ R} is defined
by

Ax = (
d2

dt2
)C(t)x|t=0.

Fore more details on strongly continuous cosine and sine family of operators we
refer to [12, 19].

In what follows A is infinitesimal generator of a cosine family {C(t); t ∈ R} and
F (., .) : I×X → P(X) is a set-valued map with nonempty closed values, which define
the following Cauchy problem associated to a second-order differential inclusion

x′′ ∈ Ax+ F (t, x), x(0) = x0, x′(0) = x1. (2.8)

A continuous mapping x(.) ∈ C([0,∞), X) is called a mild solution of problem (2.8)
if there exists a (Bochner) integrable function f(.) ∈ L1

loc([0,∞), X) such that

f(t) ∈ F (t, x(t)) a.e. [0,∞) (2.9)

x(t) = C(t)x0 + S(t)x1 +

∫ t

0

S(t− u)f(u)du ∀t ∈ [0,∞), (2.10)

i.e., f(.) is a (Bochner) integrable selection of the set-valued map F (., x(.)) and x(.)
is the mild solution of the Cauchy problem

x′′ = Ax+ f(t) x(0) = x0, x′(0) = x1. (2.11)

We make the following notations

S2(x0, x1) = {x(.); x(.) is a mild solution of (1.2)}, (2.12)

T 2(x0, x1) = {f ∈ L1
loc([0,∞), X); f(t) ∈ F (t, C(t)x0 + S(t)x1+

+
∫ t

0
S(t− u)f(u)du) a.e. [0,∞)}. (2.13)

3. The main results

In order to prove our topological properties of the solution set of problems (1.1)
and (1.2) we need the following hypotheses.

Hypothesis 3.1. i) F (., .) : [0,∞)×X → P(X) has nonempty compact values and
is L([0,∞))⊗ B(X) measurable.

ii) There exists L ∈ L1
loc([0,∞),R) such that, for almost all t ∈ [0,∞),

F (t, .) is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀x, y ∈ X.
iii) There exists p ∈ L1

loc([0,∞),R) such that

dH({0}, F (t, 0)) ≤ p(t) a.e. [0,∞).

We consider first the semilinear differential inclusion (1.1). Let M ≥ 1 be such
that |G(t)| ≤M ∀t ∈ [0,∞).

Take I = [0, T ] and we make the notations

ũ(t) = G(t)x0 +

∫ t

0

G(t− s)u(s)ds, u ∈ L1(I,X) (3.1)
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and

p0(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I (3.2)

Let us note that

d(u(t), F (t, ũ(t)) ≤ p0(u)(t) a.e. (I) (3.3)

and, since for any u1, u2 ∈ L1(I,X)

|p0(u1)− p0(u2)|1 ≤ (1 +M

∫ T

0

L(s)ds|)|u1 − u2|1

the mapping p0 : L1(I,X)→ L1(I,X) is continuous.
Also define

TI(x0) = {f ∈ L1(I,X); f(t) ∈ F (t, G(t)x0 +

∫ t

0

G(t− s)f(s)ds) a.e. (I)}.

Proposition 3.2. Assume that Hypothesis 3.1 is satisfied and let φ : L1(I,X) →
L1(I,X) be a continuous map such that φ(u) = u for all u ∈ TI(x0). For u ∈ L1(I,X),
we define

Ψ(u) = {u ∈ L1(I,X); u(t) ∈ F (t, φ̃(u)(t)) a.e. (I)},

Φ(u) =

{
{u} if u ∈ TI(x0),
Ψ(u) otherwise.

Then the set-valued map Φ : L1(I,X)→ P(L1(I,X)) is lower semicontinuous with
closed decomposable and nonempty values.

Proof. According to (3.3), Lemma 2.1 and the continuity of p0 we obtain that Ψ has
closed decomposable and nonempty values and the same holds for the set-valued map
Φ.

Let C ⊂ L1(I,X) be a closed subset, let {um}m∈N converges to some u0 ∈ L1(I,X)
and Φ(um) ⊂ C, for any m ∈ N. Let v0 ∈ Φ(u0) and for every m ∈ N consider

a measurable selection vm from the set-valued map t → F (t, φ̃(um)(t)) such that
vm = um if um ∈ TI(x0) and

|vm(t)− v0(t)| = d(v0(t), F (t, φ̃(um)(t)) a.e. (I)

otherwise. One has

|vm(t)− v0(t)| ≤

≤ dH(F (t, φ̃(um)(t)), F (t, φ̃(u0)(t))) ≤ L(t)|φ̃(um)(t)− φ̃(u0)(t)|
hence

|vm − v0|1 ≤M
∫ T

0

L(s)ds.|φ̃(um)− φ̃(u0)|1.

Since φ : L1(I,X) → L1(I,X) is continuous, it follows that vm converges to v0 in
L1(I,X). On the other hand, vm ∈ Φ(um) ⊂ C ∀m ∈ N and since C is closed we
infer that v0 ∈ C. Hence Φ(u0) ⊂ C and Φ is lower semicontinuous.
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In what follows we shall use the following notations

Ik = [0, k], k ≥ 1, |u|1,k =

∫ k

0

|u(t)|dt, u ∈ L1(Ik, X).

We are able now to prove the main result of this paper.

Theorem 3.3. Consider A the infinitesimal generator of a strongly continuous semi-
group of bounded linear operators {G(t)}t≥0 on the real separable Banach space X,
assume that Hypothesis 3.1 is satisfied, let x0 ∈ X and let T 1(x0) be the selection set
defined in (2.7).

Then there exists a continuous mapping G : L1
loc([0,∞), X)→ L1

loc([0,∞), X) such
that

(i) G(u) ∈ T 1(x0), ∀u ∈ L1
loc([0,∞), X),

(ii) G(u) = u, ∀u ∈ T 1(x0).

Proof. We shall prove that for every k ≥ 1 there exists a continuous mapping gk :
L1(Ik, X)→ L1(Ik, X) with the following properties

(I) gk(u) = u, ∀u ∈ TIk(x0)
(II) gk(u) ∈ TIk(x0), ∀u ∈ L1(Ik, X)
(III) gk(u)(t) = gk−1(u|Ik−1

)(t), ∀t ∈ Ik−1
If the sequence {gk}k≥1 is constructed, we define G : L1

loc([0,∞), X)→ L1
loc([0,

∞), X) by

G(u)(t) = gk(u|Ik)(t), ∀k ≥ 1

From (III) and the continuity of each gk(.) it follows that G(.) is well defined and
continuous. Moreover, for each u ∈ L1

loc([0,∞), X), according to (II) we have

G(u)|Ik(t) = gk(u|Ik)(t), gk(u|Ik) ∈ TIk(x0), ∀k ≥ 1

and thus G(u) ∈ T (x0).
Fix ε > 0 and for m ≥ 0 set εm = m+1

m+2ε. For u ∈ L1(I1, X) and m ≥ 0 define

m(t) =
∫ t

0
L(s)ds,

p10(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I1
and

p1m+1(u)(t) = Mm+1

∫ t

0

p10(u)(s)
(m(t)−m(s))m

m!
ds+Mm (m(t))m

m!
εm+1.

By the continuity of the map p10(.) = p0(.), already proved, we obtain that p1m :
L1(I1, X)→ L1(I1, X) is continuous.

We define g10(u) = u and we shall prove that for any m ≥ 1 there exists a continuous
map g1m : L1(I1, X)→ L1(I1, X) that satisfies

(a1) g1m(u) = u, ∀u ∈ TI1(x0),

(b1) g1m(u)(t) ∈ F (t, ˜g1m−1(u)(t)) a.e. (I1),

(c1) |g11(u)(t)− g10(u)(t)| ≤ p10(u)(t) + ε0 a.e. (I1),
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(d1) |g1m(u)(t)− g1m−1(t)| ≤ L(t)p1m−1(u)(t) a.e. (I1), m ≥ 2.

For u ∈ L1(I1, X), we define

Ψ1
1(u) = {v ∈ L1(I1, X); v(t) ∈ F (t, ũ(t)) a.e.(I1)},

Φ1
1(u) =

{
{u} if u ∈ TI1(x0),
Ψ1

1(u) otherwise.

and by Proposition 3.2 (with φ(u) = u) we obtain that Φ1
1 : L1(I1, X)→ D(I1, X) is

lower semicontinuous. Moreover, due to (3.3) the set

H1
1 (u) = cl{v ∈ Φ1

1(u); |v(t)− u(t)| < p10(u)(t) + ε0 a.e. (I1)}
is not empty for any u ∈ L1(I1, X). So applying Lemma 2.2, we find a continuous
selection g11 of H1

1 that satisfies (a1)-(c1).
Suppose we have already constructed g1i (.), i = 1, . . .m satisfying (a1)-(d1). Then

from (b1), (d1) and Hypothesis 3.1 we get

d(g1m(u)(t), F (t, g̃1m(u)(t)) ≤ L(t)(| ˜g1m−1(u)(t)− g̃1m(u)(t)| ≤
L(t)

∫ T

0
ML(s)p1m(u)(s)ds = L(t)(p1m+1(u)(t)− r1m(t)) < L(t)p1m+1(u)(t),

(3.4)

where r1m(t) := Mm (m(t))m

m! (εm+1 − εm) > 0.

For u ∈ L1(I1, X), we define

Ψ1
m+1(u) = {v ∈ L1(I1, X); v(t) ∈ F (t, g̃1m(u)(t)) a.e. (I1)},

Φ1
m+1(u) =

{
{u} if u ∈ TI1(x0),
Ψ1

m+1(u) otherwise.

We apply Proposition 3.2 (with φ(u) = g1m(u)) and obtain that Φ1
m+1(.) is lower

semicontinuous with closed decomposable and nonempty values. Moreover, by (3.4),
the set

H1
m+1(u) = cl{v ∈ Φ1

m+1(u); |v(t)− g1m+1(u)(t)| < L(t)p1m+1(u)(t) a.e. (I1)}

is nonempty for any u ∈ L1(I1, X). With Lemma 2.2, we find a continuous selection
g1m+1 of H1

m+1, satisfying (a1)-(d1).
Therefore we obtain that

|g1m+1(u)− g1m(u)|1,1 ≤
(Mm(1))m

m!
(M |p10(u)|1,1 + ε)

and this implies that the sequence {g1m(u)}m∈N is a Cauchy sequence in the Banach
space L1(I1, X). Let g1(u) ∈ L1(I1, X) be its limit. The function s → |p10(u)|1,1
is continuous, hence it is locally bounded and the Cauchy condition is satisfied
by {g1m(u)}m∈N locally uniformly with respect to u. Hence the mapping g1(.) :
L1(I1, X)→ L1(I1, X) is continuous.

From (a1) it follows that g1(u) = u, ∀u ∈ TI1(x0) and from (b1) and the fact that
F has closed values we obtain that

g1(u)(t) ∈ F (t, g̃1(u)(t)), a.e. (I1) ∀u ∈ L1(I1, X).

In the next step of the proof we suppose that we have already constructed the
mappings gi(.) : L1(Ii, X) → L1(Ii, X), i = 2, ..., k − 1 with the properties (I)-(III)
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and we shall construct a continuous map gk(.) : L1(Ik, X) → L1(Ik, X) satisfying
(I)-(III).

Let gk0 : L1(Ik, X)→ L1(Ik, X) be defined by

gk0 (u)(t) = gk−1(u|Ik−1
)(t)χIk−1

+ u(t)χIk\Ik−1
(t) (3.5)

Let us note, first, that gk0 (.) is continuous. Indeed, if u0, u ∈ L1(Ik, X) one has

|gk0 (u)− gk0 (u0)|1,k ≤ |gk−1(u|Ik−1
)− gk−1(u0|Ik−1

)|1,k−1 +

∫ k

k−1
|u(t)− u0(t)|dt

So, using the continuity of gk−1(.) we get the continuity of gk0 (.).
On the other hand, since gk−1(u) = u, ∀u ∈ TIk−1

(x0) from (3.5) it follows that

gk0 (u) = u, ∀u ∈ TIk(x0).

For u ∈ L1(Ik, X), we define

Ψk
1(u) = {w ∈ L1(Ik, X); w(t) = gk−1(u|Ik−1

)(t)χIk−1
(t) + v(t)χIk\Ik−1

(t),

v(t) ∈ F (t, g̃k0 (u)(t)) a.e. ([k − 1, k])},

Φk
1(u) =

{
{u} if u ∈ TIk(x0),
Ψk

1(u) otherwise.

We apply Proposition 3.2 (with φ(u) = gk0 (u)) and we obtain that Φk
1(.) : L1(Ik, X)

→ D(Ik, X) is lower semicontinuous. Moreover, for any u ∈ L1(Ik, X) one has

d(gk0 (t), F (t, g̃k0 (u)(t)) = d(u(t), F (t, g̃k0 (u)(t))χIk\Ik−1
≤ pk0(u)(t) a.e.(Ik), (3.6)

where

pk0(u)(t) = |u(t)|+ p(t) + L(t)|g̃k0 (u)(t)|.
Obviously, pk0 : L1(Ik, X)→ L1(Ik, X) is continuous. For m ≥ 0 set

pkm+1(u) = Mm+1

∫ t

0

pk0(u)(s)
(m(t)−m(s))m

m!
ds+Mm (m(t))m

m!
εm+1.

and by the continuity of pk0(.) we infer that pkm : L1(Ik, X)→ L1(Ik, X) is continuous.
We shall prove, next, that for any m ≥ 1 there exists a continuous map gkm :

L1(Ik, X)→ L1(Ik, X) such that

(ak) gkm(u)(t) = gk−1(u|Ik−1
)(t) ∀t ∈ Ik−1,

(bk) gkm(u) = u ∀u ∈ TIk(x0),

(ck) gkm(u)(t) ∈ F (t, ˜gkm−1(u)(t)) a.e. (Ik),

(dk) |gk1 (u)(t)− gk0 (u)(t)| ≤ pk0(u)(t) + ε0 a.e. (Ik),

(ek) |gkm(u)(t)− gkm−1(u)(t)| ≤ L(t)pkm−1(u)(t) a.e. (Ik), m ≥ 2.

Define

Hk
1 (u) = cl{v ∈ Φk

1(u); |v(t)− gk0 (u)(t)| < pk0(u)(t) + ε0 a.e. (Ik)}.
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From (3.6), Hk
1 (u) 6= ∅ ∀u ∈ L1(I1, X). Using the continuity of gk0 , p

k
0 and Lemma

2.2, we obtain a continuous selection gk1 of Hk
1 that satisfies (ak)-(dk).

Assume we have constructed gki (.), i = 1, . . .m satisfying (ak)-(ek). Then from
(ek) we have

d(gkm(u)(t), F (t, g̃km(u)(t)) ≤ L(t)(| ˜gkm−1(u)(t)− g̃km(u)(t)| ≤
L(t)

∫ T

0
ML(s)pkm(u)(s)ds = L(t)(pkm+1(u)(t)− rkm(t)) < L(t)pkm+1(u)(t),

(3.7)

where rkm(t) := Mm (m(t))m

m! (εm+1 − εm) > 0.

For u ∈ L1(Ik, X), we define

Ψk
m+1(u) = {w ∈ L1(Ik, X); w(t) = gk−1(u|Ik−1

)(t)χIk−1
(t) + v(t)χIk\Ik−1

(t),

v(t) ∈ F (t, g̃km(u)(t)) a.e. ([k − 1, k])},

Φk
m+1(u) =

{
{u} if u ∈ TIk(x0),
Ψk

m+1(u) otherwise.

With Proposition 3.2 we infer that Φk
m+1(.) : L1(Ik, X) → P(L1(Ik, X)) is lower

semicontinuous with closed decomposable and nonempty values. By (3.7) the set

Hk
m+1(u) = cl{v ∈ Φk

m+1(u); |v(t)− gkm+1(u)(t)| < L(t)pkm+1(u)(t) a.e. (Ik)}

is nonempty for any u ∈ L1(Ik, X). So, applying Lemma 2.2, we deduce a continuous
selection gkm+1 of Hk

m+1, satisfying (ak)-(ek).
By (ek) one has

|gkm+1(u)− gkm(u)|1,k ≤
(Mm(k))m

m!
(M |pk0(u)|1,1 + ε].

Therefore, with a similar proof as in the case k = 1, we find that the sequence
{gkm(u)}m∈N converges to some gk(u) ∈ L1(Ik, X) and the map gk(.) : L1(Ik, X) →
L1(Ik, X) is continuous.

By (ak) we have that

gk(u)(t) = gk−1(u|Ik−1
)(t) ∀t ∈ Ik−1,

by (bk) gk(u) = u, ∀u ∈ TIk(x0) and from (ck) and the fact that F has closed values
we obtain that

gk(u)(t) ∈ F (t, g̃k(u)(t)), a.e. (Ik) ∀u ∈ L1(Ik, X).

Therefore gk(.) satisfies the properties (I), (II) and (III).

Next we consider the second-order semilinear differential inclusion (1.2).

Theorem 3.4. Consider A the infinitesimal generator of a strongly continuous cosine
family {C(t)}t∈R on the real separable Banach space X, assume that Hypothesis 3.1
is satisfied, let x0, x1 ∈ X and let T 2(x0, x1) be the selection set defined in (2.13).

Then there exists a continuous mapping G : L1
loc([0,∞), X)→ L1

loc([0,∞), X) such
that

(i) G(u) ∈ T 2(x0, x1), ∀u ∈ L1
loc([0,∞), X),

(ii) G(u) = u, ∀u ∈ T 2(x0, x1).
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The proof of Theorem 3.4 is similar to the one of Theorem 3.3.

Remark 3.5. We recall that if Y is a Hausdorff topological space, a subspace X of
Y is called retract of Y if there is a continuous map h : Y → X such that h(x) =
x, ∀x ∈ X.

Therefore, by Theorem 3.3, for any x0 ∈ X, the set T 1(x0) of selections that
correspond to solutions of (1.1) is a retract of the Banach space L1

loc([0,∞), X) and
by Theorem 3.4 for any x0, x1 ∈ X, the set T 2(x0, x1) of selections that correspond
to solutions of (1.2) is a retract of L1

loc([0,∞), X).
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