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1. Introduction

Let X a Banach space, and let Xw denote the space X endowed with the weak
topology. In this paper we shall deal with fixed point theorems for upper semicon-
tinuous multimaps from X to Xw that map a weakly compact convex set into itself.
The classical Brower’s Fixed Point Theorem has been extended to multivalued maps
(multimaps) by Kakutani in 1941 ( [13]). As it is well known, in this pioneering work
Kakutani proves the existence of at least a fixed point for an upper semicontinuous
multimap that maps a closed convex bounded set K into itself in finite dimensional
Banach spaces. In the framework of more general Banach spaces, Bohnenblust-Karlin
in 1950 extend the Schauder’s fixed point theorem to multimaps ([4]).
If the set K is compact and convex, Kakutani’s result has been generalized to locally
convex topological vector spaces (LCTVS), similarly to the classical Tychonoff’s ex-
tension of Schauder’s Theorem; this was done e.g. in Gliksberg [11] and Fan [10]. One
of the main improvement, when dealing with LCTVS, lies in the possibility to assume
weak compactness of the set K instead of the strong one. The drawback however, is
that one has to deal with the regularity of the multimap with respect to the weak
topology. A more relaxed assumption is the upper semicontinuity from X to Xw.
On the other hand, an upper semicontinuous multimap from X to Xw that maps a
weakly compact set K into itself may not have a fixed point, as shown, for instance,
by the classical example of Kakutani (1941) of a fixed point free map on the unit ball
of `2.
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In order to obtain a fixed point theorem for an upper semicontinuous multimap F
from X to Xw we propose an extension of the concept of midpoint linearity intro-
duced in [8]. The idea came from the very proof of Ky Fan’s Theorem in [10], where
the convexity of the fixed point set for the multimap G(x) = F (x) + V , (where V is
any weak neighborhood of the origin) is needed.
Our extension of midpoint linearity is twofold: first we provide a suitable multivalued
version, and we also extend the original definition (for both single-valued and multi-
valued maps) to the weak topology of X.
Actually, to state our fixed point theorem we need something weaker than midpoint
linearity; more precisely it is enough to require a form of piecewise midpoint linearity.
Indeed, we obtain two different fixed point theorems: a fixed point theorem for α-
nonexpansive strongly midpoint linear multimaps (Theorem 4.2) which is an extension
to the multivalued case and to general Banach spaces of Theorem 4.5 in [8] and which
is based on the classical generalization to multimaps of Darbo’s fixed point Theorem
(see e.g. Corollary 3.3.1. in [12]). Then we obtain a second fixed point theorem for
weakly midpoint linear multimaps, which are assumed to be simply X to Xw upper
semicontinuous (see Theorem 4.3).
The midpoint linearity is a generalization of the convexity for multimaps introduced
by Nikodem in [15]. More precisely in Corollary 3.1 we prove that a closed-valued
midpoint convex multimap, which is upper semicontinuous from X to Xw is both
strongly and weakly midpoint linear.
Finally, this last result, together with the “weak” fixed point theorem (Theorem 4.3),
find an application in the last section, where we prove the existence of a Debreu’s
social equilibrium for a game with n players. The idea of deducing the existence of
social equilibria from fixed point theorems is widely spread in the literature. Several
authors have given contributions in this direction after Debreu’s initial result. See for
instance [16] and [1] where social equilibria are obtained under different assumptions.

2. Midpoint linearity

In the sequel we recall some definitions and results from multivalued analysis which
will be used later. For what concerns standard definitions about maps and multimaps
we refer to [2].
In the whole paper (X, ‖ · ‖) is a Banach space, X∗ its dual space. Xw denotes the
space X endowed with the weak topology; X1 and X∗1 denote the closed unit ball of
X and of X∗ respectively, K ⊆ X denotes a convex subset of X and F : K ( K will
be a proper multimap with convex values. Finally we denote with B a fundamental
system of neighborhoods of the null element 0 in X with respect to the weak topology
of X, defined by

V = V (x∗1, . . . , x
∗
n, ε) = {x ∈ X : |x∗i (x)| < ε, i = 1, . . . , n}

and

V = {x ∈ X : |x∗i (x)| ≤ ε, i = 1, . . . , n}.

Definition 2.1. A map f : K → R is said to be quasiconvex if the set

L−α = {x ∈ K : f(x) ≤ α} (2.1)



FIXED POINT THEOREMS WITHOUT STRONG COMPACTNESS 5

is convex.

Let A ⊂ X, with the symbol d(x,A) we denote the usual distance from a set

d(x,A) = inf{‖x− y‖; y ∈ A}.

Definition 2.2. A set A ⊂ X is said to be proximinal if for any x ∈ X \A, it holds

PA(x) = {y ∈ A : ‖x− y‖ = d(x,A)} 6= ∅.

In [8] for a map f : K → X the following definition has been proposed.

Definition 2.3. A continuous map f : K → X is said midpoint linear if for every
positive number r > 0 the following property holds

f

(
x+ y

2

)
∈ x+ y

2
+ rX1,

whenever x, y ∈ K, f(x) ∈ x+ rX1, f(y) ∈ y + rX1.

Observe that this is equivalent to saying that for any r > 0 the set

Φr = {x ∈ K : x ∈ f(x) + rX1}
is convex.
This suggests in the multivalued case the following two concepts.

Definition 2.4. A multimap F : K ( X is said to be strongly midpoint linear if for
any r > 0 the set

Fr = {x ∈ K : x ∈ F (x) + rX1}
is convex.

Definition 2.5. A multimap F : K ( X is said to be weakly midpoint linear if for
any V ∈ B the set

FV = {x ∈ K : x ∈ F (x) + V }
is convex.

Remark 2.1. A single valued map f : K → X is then strongly midpoint linear if and
only if the multimap F = {f} is strongly midpoint linear in the sense of Definition
2.4.
In analogy we shall say that f is weakly midpoint linear provided the multimap F =
{f} is weakly midpoint linear.

In order to compare these two concepts we shall introduce the map d : K → R defined
as

d(x) = inf
y∈F (x)

‖x− y‖ (2.2)

and for x∗ ∈ X∗ the map dx∗ : K → R defined as

dx∗(x) = inf
z∈F (x)

|x∗(z − x)|. (2.3)

Proposition 2.1. If a multimap F : K ( X is strongly midpoint linear then the
map d : K → R defined in (2.2) is quasiconvex.
Moreover if F has proximinal values the converse implication holds.
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Proof. Assume F strongly midpoint linear. Let x1, x2 be such that d(x1) ≤ α and
d(x2) ≤ α. Then inf

yi∈F (xi)
‖xi − yi‖ ≤ α, i = 1, 2. Hence for any ε > 0 there exists

y1 ∈ F (x1) and y2 ∈ F (x2) such that ‖xi − yi‖ < α+ ε, i = 1, 2. Then for any ε > 0
x1, x2 ∈ Fα+ε. Since F is strongly midpoint linear the set Fα+ε is convex and then
xλ = λx1 + (1 − λ)x2 ∈ Fα+ε for all λ ∈ [0, 1]. Then yλ ∈ F (xλ) exists such that
‖xλ − yλ‖ < α+ ε, and hence d(xλ) < α+ ε, for any ε > 0, so d(xλ) ≤ α.
Assume now that d is quasiconvex. Let α > 0 and x1, x2 ∈ Fα. Then d(xi) ≤ α,
i = 1, 2 and x1, x2 ∈ L−α (with L−α defined in (2.1)).
From the convexity of L−α we have xλ = λx1 +(1−λ)x2 ∈ L−α for all λ ∈ [0, 1]. Hence,
since F has proximinal values, there exists yλ ∈ F (xλ) such that ‖xλ− yλ‖ ≤ α; then
xλ ∈ Fα, for all λ ∈ [0, 1]. Therefore F is strongly midpoint linear. �

Then for single valued maps we have the following characterization.

Corollary 2.1. A map f : K → X is strongly midpoint linear if and only if the map
d : K → R defined in (2.2) is a quasiconvex map.

On the contrary in the multivalued case the quasiconvexity of the map d implies the
midpoint linearity only with extra assumptions as the following example shows.

Example 2.1. Consider the multimap F : R( R defined as

F (x) =

{
[x+ 1,+∞) x ∈ R \Q
]x+ 1,+∞) x ∈ Q

.

We observe that, since d(x) ≡ 1 for any x ∈ R, d is a quasiconvex map. On the other
hand the multimap F is not strongly midpoint linear, indeed the set

F1 = {x ∈ R : [x− 1, x+ 1] ∩ F (x) 6= ∅} = R \Q

is not a convex set.

In analogy with Proposition 2.1 for the weak midpoint linearity we have the following
relation.

Proposition 2.2. If the multimap F : K ( X is weakly midpoint linear, then for
all x∗ ∈ X∗ the map dx∗ : K → R defined in (2.3) is quasiconvex.

The proof is substantially analogous to that of Proposition 2.1.
As for the strong midpoint linearity, in the single valued case the implication can be
reversed.

Corollary 2.2. A map f : K → X is weakly midpoint linear if and only if for any
x∗ ∈ X∗ the map dx∗ is quasiconvex.

Something stricter can be said if the multimap F : K ( X has convex values.

Proposition 2.3. Let F : K ( X be a weakly midpoint linear multimap with convex
values, then the map d defined in (2.2) is quasiconvex.
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Proof. From Proposition 2.2 there follows that the map dx∗ is quasiconvex for all
x∗ ∈ X∗. Moreover

d(x) = inf
y∈F (x)

‖x− y‖ = inf
y∈F (x)

sup
x∗∈X∗

1

|x∗(x− y)|.

Let x ∈ X and consider the map (y, x∗) 7→ x∗(x − y), which is concave-convex and
continuous with respect to (‖ · ‖, w∗) topologies. Then, when F (x) is equipped with
the norm topology, and X∗1 with the weak∗-topology, the following minimax equality
holds (see e.g. Theorem 3.1 of [17])

inf
y∈F (x)

sup
x∗∈X∗

1

x∗(x− y) = sup
x∗∈X∗

1

inf
y∈F (x)

x∗(x− y).

Moreover, easily
sup
x∗∈X∗

1

x∗(x− y) = sup
x∗∈X∗

1

|x∗(x− y)|.

So

inf
y∈F (x)

sup
x∗∈X∗

1

|x∗(x− y)| = inf
y∈F (x)

sup
x∗∈X∗

1

x∗(x− y) = sup
x∗∈X∗

1

inf
y∈F (x)

x∗(x− y)

≤ sup
x∗∈X∗

1

inf
y∈F (x)

|x∗(x− y)|

≤ inf
y∈F (x)

sup
x∗∈X∗

1

|x∗(x− y)|,

where the last inequality is always trivially true. Thus

inf
y∈F (x)

sup
x∗∈X∗

1

|x∗(x− y)| = sup
x∗∈X∗

1

inf
y∈F (x)

|x∗(x− y)|

Therefore
d(x) = sup

x∗∈X∗
1

dx∗(x)

Since , according to Proposition 2.2, each dx∗ is quasiconvex, d is quasiconvex too. �

The following example proves that the converse implication fails to be true.

Example 2.2. Let I = [0, 1], X = C(I) and let H be a closed non proximinal
subspace of X of finite codimension with

H⊥ = span{x1
∗, . . . , x

n
∗},

with x∗i determined by a probability measure (this is always possible see [6], [7], [18]).
Let X+ be the usual order cone of X, and D = {x ∈ X+ : min

0≤t≤1
|x(t)| = 0}.

Fix any x0 ∈ X such that PH(x0) = ∅ and u ∈ H with ‖u‖ = 1. Let r = d(x0, H),
and define F : X+ ( X+ as follows

F (x) =

{
x+ ru if x ∈ D
x− x0 +H if x /∈ D

Easily we prove that d(x) = r, for x ∈ X+. Hence d is quasiconvex.
However F is not weakly midpoint linear.
In fact if x1, x2 ∈ D are such that Z(x1) ∩ Z(x2) = ∅, where

Z(x) = {t ∈ I : x(t) = 0},
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then xλ = λx1 + (1− λ)x2 /∈ D for every λ ∈]0, 1[ (recall that x1 ≥ 0 and x2 ≥ 0).
Take any x∗ ∈ H⊥; then

dx∗(xi) = rx∗(u) = 0 (for u ∈ H and x∗ ∈ H⊥),

whence xi ∈ FV , where V = V (x∗, ε), ε > 0.
On the other side

dx∗(xλ) = inf
η∈H
| − x∗(x0) + x∗(η)| = |x∗(x0)|.

As x0 /∈ H necessarily x∗i (x0) 6= 0 for at least one index i = {1, . . . , n}.
Let ε < |x∗i (x0)| and V = V (x∗, ε). Then x1, x2 ∈ FV while xλ /∈ FV .

As an immediate consequence of Proposition 2.3 we have the following result.

Theorem 2.1. Let F : K ( X be a multimap with convex and proximinal values.
Then the weak midpoint linearity of F implies the strong midpoint linearity of F .

Consequently, for single valued maps, the weak midpoint linearity always implies the
strong midpoint linearity. On the other hand, the converse may fail to be true, as the
following example shows.

Example 2.3. Let f : L1([0, 1];R) → L1([0, 1];R) be a map defined as f(x) =
ϕ(‖x‖)x, where ϕ : [0,∞)→ [0, 1],

ϕ(t) =

{
1− t t ≤ 1
0 t > 1

The map f is strongly midpoint linear (compare with [8]).
Let 1D denote the indicator map of set D ⊂ R and x∗ be the continuous linear
functional in L∞([0, 1]) determined by 2 1[0, 12 ].

Let V = V (x∗, ε), with 0 < ε <
1

2
and consider x = 2ε1[0, 12 ]. Then

‖x‖1 =

∫ 1/2

0

2ε dt = ε < 1 and |x∗(x)| =
∫ 1/2

0

4ε dt = 2ε.

Hence

|x∗ [x− f(x)]| = |x∗ [x− (1− ‖x‖)x]| = ‖x‖ · |x∗(x)| = 2ε2 < ε

then x ∈ ΦV = {x ∈ L1([0, 1];R) : x ∈ f(x) + V }.
Let now y = 9 1[ 1

2 ,1]
then both x∗(y) = 0 and x∗ [y − f(y)] = 0 (since x∗ and y have

essentially disjoint supports), so y ∈ ΦV . Consider ξ =
2

3
x+

1

3
y; since both x and y

are non-negative, we have

‖ξ‖1 =
2

3
‖x‖1 +

1

3
‖y‖1 =

2

3
ε+

3

2
> 1

Therefore f(ξ) = 0; hence

x∗(ξ − f(ξ)) = x∗(ξ) =
2

3
x∗(x) +

1

3
x∗(y) =

2

3
2ε =

4

3
ε > ε.

Thus x, y ∈ ΦV , while ξ /∈ ΦV .
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3. Midpoint convexity versus midpoint linearity

The concept of midpoint convexity for multimaps has been introduced by Nikodem
in [15] and furtherly investigated in [5].

Definition 3.1. A multimap F : K ( X is said to be convex if for any x, y ∈ K

λF (x) + (1− λ)F (y) ⊆ F (λx+ (1− λ) y) . (3.1)

If (3.1) holds only with λ =
1

2
, F is said to be midpoint convex.

In order to compare these concepts with the midpoint linearities introduced in Section
2, we shall need some preliminary results.

Proposition 3.1 ([5]). Let A ⊂ Y be a midpoint convex subset of a topological vector

space Y (namely if x, y ∈ A, then
x+ y

2
∈ A); then A is a convex set.

Proposition 3.2. Let F : K ( X be a midpoint convex multimap with closed values.
Then F has convex values.

Proof. The midpoint convexity of F immediately implies that F has midpoint convex
values.
Then the assertion follows from Proposition 3.1. �

It is obvious that each convex multimap is midpoint convex. The next proposition
states the converse implication under suitable conditions.

Proposition 3.3. Let F : K ( X be a midpoint convex multimap with closed values.
If F is upper semicontinuous from X to Xw, then F is convex.

Proof. Let tx ∈ F (x), ty ∈ F (y) and λ ∈]0, 1[; we have to prove that λtx+ (1−λ)ty ∈
F (xλ), where xλ = λx+ (1− λ)y.
We denote with Q2 the set of rational dyadic numbers. It is well known that if
λ ∈]0, 1[∩Q2 the midpoint convexity of F implies

λF (x) + (1− λ)F (y) ⊆ F (xλ). (3.2)

Let {λk} ⊆]0, 1[∩Q2 be a sequence converging to λ and set

ξk = λkx+ (1− λk)y,

tk = λktx + (1− λk)ty,

tλ = λtx + (1− λ)ty.

Trivially ξk → xλ and tk → tλ.
By the upper semicontinuity of F , for all V ∈ B there exists δV > 0 such that for all
x ∈ xλ + δVX1, it follows F (x) ⊂ F (xλ) + V .
Since λk ∈ Q2 for any k > 0, by (3.2), we have that

tk ∈ λkF (x) + (1− λk)F (y) ⊆ F (ξk).

Moreover there exists k0 > 0 such that ξk ∈ xλ + δVX1 for all k ≥ k0; hence

tk ∈ F (ξk) ⊂ F (xλ) + V for any k ≥ k0.
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Then by the convergence of {tk} to tλ, we have that tλ ∈ F (xλ) + V .
Now a standard Hahn-Banach argument proves that tλ ∈ F (xλ). �

Corollary 3.1. Let F : K ( X be a midpoint convex multimap with closed values. If
F is upper semicontinuous from X to Xw, then it is both strongly and weakly midpoint
linear.

The converse implication may fail to hold as the following example shows.

Example 3.1. Let ϕ : [0,∞)→ [0, 1] be any continuous non increasing map. Then,
as shown in ([8]), the map T : X → X defined by T (x) = ϕ(‖x‖)x is strongly midpoint
linear.
Observe that any continuous map f : K → X is midpoint convex if and only if it is
affine.
Then the map T is not midpoint convex, since it is not affine.

4. Fixed point theorems

In this section we shall obtain fixed point theorems for multivalued maps defined on
a weakly compact domain. More precisely we shall prove two theorems: the first
one (Theorem 4.2) gives the existence of fixed points, for upper semicontinuous α-
nonexpansive maps, in the framework of Darbo’s approach, while the second one
(Theorem 4.3) follows the line of the classical Ky-Fan’s Fixed Point Theorem, and
applies when the domain is equipped with the weak topology and the target with the
norm topology. In both theorems the suitable midpoint linearity holds in a weaker
sense, stated in the following definition.

Definition 4.1. A multimap F : K ( X is said to be piecewise strongly midpoint
linear if for any r > 0 there exists s(r) ∈]0, r] and a finite decomposition of K, say
Dr = {D1, . . . , Dn}, such that the sets Fs(r) ∩Di are convex for any i = 1, . . . , n.
Analogously we shall say that F is piecewise weakly midpoint linear provided for any
U ∈ B there exists V ∈ B, V ⊆ U and a finite decomposition of K, say DV =
{D1, . . . , Dn}, such that the sets FV (U) ∩Di are convex for any i = 1, . . . , n.

Remark 4.1. Note that the piecewise assumption may significantly increase the
class of functions satisfying the previous definition (w.r.t. the mere strong or weak
midpoint linearity).
For instance, whenever X = R, every single valued continuous map on a convex set
I ⊂ R admitting finitely many oscillations is piecewise midpoint linear. In fact, the
map g(x) = |x − f(x)| will also admit finitely many oscillations and hence we can
decompose the domain into finitely many subintervals, say D1, . . . , Dn so that g is
monotone in each Dj . Then one can take D = {D1, . . . , Dn} for every ε > 0, (i.e. the
choice of D does not depend upon ε) as in each Di the restriction fbDi is midpoint
linear, because g is quasi convex in Di (see [8] Proposition 3.7).

Remark 4.2. Observe that we only require the existence of a suitable decomposition
of K, depending upon a subfamily of weak neighborhoods of zero. For instance, when
X is a Banach lattice, one can check only those weak neighborhoods determined by
positive functionals.
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Throughout the remaining of this section, K will be a convex weakly compact subset
of X and F : K ( K will be a proper multimap with closed and convex values.
We begin with a necessary and sufficient condition.

Lemma 4.1. Let F be piecewise strongly midpoint linear and upper semicontinuous
from X to Xw. Then the following conditions are equivalent

(a) for any r > 0

Fr = {x ∈ K : x ∈ F (x) + rX1} 6= ∅; (4.1)

(b) F admits a fixed point.

Proof. The converse being trivial, we only need to prove that (a) implies (b).
Since r1 < r2 implies that Fr1 ⊆ Fr2 , the family {F s(r), r > 0} has the finite
intersection property.
Let r > 0, by the piecewise strong midpoint linearity condition, there exists a finite
decomposition, Dr = {D1, . . . , Dn}, such that the sets Fs(r) ∩Di are convex for any
i = 1, . . . , n.
As

F s(r) =

n⋃
i=1

[Fs(r) ∩Di] ⊂
n⋃
i=1

[Fs(r) ∩Di] ⊂ F s(r),

we have

F s(r) =

n⋃
i=1

[Fs(r) ∩Di].

Now each Fs(r) ∩Di is closed and convex, and therefore weakly closed; this implies

that F s(r) is weakly closed too.

Therefore, K being weakly compact,
⋂
r>0

F s(r) 6= ∅. Obviously, as s(r) ≤ r,

∅ 6=
⋂
r>0

F s(r) ⊂
⋂
r>0

F r

and so we conclude that
⋂
r>0

F r 6= ∅.

Let x0 ∈
⋂
r>0

F r. We claim that x0 ∈ F (x0).

Fix V ∈ B, V = V (x∗1, . . . , x
∗
n, ε), and let W = V

(
x∗1, . . . , x

∗
n,
ε

4

)
.

There exists r > 0 such that rX1 ⊂ W ; since x0 ∈ Fr and Fr ⊂ FW , it follows
x0 ∈ FW .
Hence, there should exist a sequence {xn} ⊂ FW converging to x0.
By the upper semicontinuity of F , F (xn) ⊂ F (x0) +W , for n ∈ N suitably large and
hence, as xn ∈ FW , that is xn ∈ F (xn)+W , we have that xn ∈ F (x0)+2W for n ∈ N
suitably large.

Thus x0 ∈ F (x0) +W , and, by the weak compactness of F (x0), there follows that
x0 ∈ F (x0) + 2W .
In conclusion, x0 ∈ F (x0)+V for any V ∈ B, which in turns implies that x0 ∈ F (x0).�
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Let α denote the usual Kuratovski measure of non compactness of X; namely for a
bounded set E ⊂ X, α(E) is the infimum of all ε > 0 such that E admits a finite
covering consisting of subsets with diameter less than ε. We refer to [3] for the
properties of α.

Definition 4.2. A multimap F : K ( X is said to be α-nonexpansive provided, for
every bounded E ⊂ K,α(F (E)) ≤ α(E).
If α(F (E)) ≤ λα(E) with λ ∈ [0, 1[, F is said to be α-contractive.

Theorem 4.1 ([12] Corollary 3.3.1.). Let K ⊂ X be a convex, closed and bounded
set, let F : K ( K be an upper semicontinuous, α-contractive multimap, with closed
and convex values. Then F admits a fixed point.

Theorem 4.2. Let F be piecewise strongly midpoint linear, upper semicontinuous
and α-nonexpansive; then F admits a fixed point.

Proof. We shall show that Fr 6= ∅ for any r > 0.
Note first that K is bounded : hence K ⊂ RX1 for some R > 0. Let x0 ∈ K be fixed,
λ ∈ [0, 1[ and define the multimap

Fλ(x) = (1− λ)x0 + λF (x) = {(1− λ)x0 + λy , y ∈ F (x)}.

Let E ⊂ K and consider Fλ(E) :=
⋃
x∈E

Fλ(x).

Clearly Fλ(E) = (1− λ)x0 + λF (E).
Thus

α(Fλ(E)) = α(λF (E)) = λα(F (E)) ≤ λα(E)

and since λ < 1 this means that Fλ is α-contractive. By Theorem 4.1, then, Fλ
admits a fixed point xλ ∈ K.
Let x ∈ K and consider the usual Hausdorff distance

h(Fλ(x), F (x)) = sup{e{Fλ(x), F (x)}, e{F (x), Fλ(x)}},
where

e{F (x), Fλ(x)} = sup
y∈F (x)

d(y, Fλ(x)),

e{Fλ(x), F (x)} = sup
y∈Fλ(x)

d(y, F (x)).

Let us observe that for y ∈ F (x),

d(y, Fλ(x)) = inf
z∈Fλ(x)

‖y − z‖ = inf
w∈F (x)

‖y − (1− λ)x0 − λw‖

≤ ‖y − (1− λ)x0 − λy‖
= (1− λ)‖y − x0‖ ≤ (1− λ)(R+ ‖x0‖)

Then
e{F (x), Fλ(x)} ≤ (1− λ)(R+ ‖x0‖).

Now let y ∈ Fλ(x), say y = (1− λ)x0 + λz, with z ∈ F (x). Then

d(y, F (x)) ≤ ‖y − z‖ = ‖(1− λ)x0 + (λ− 1)z‖
= (1− λ)‖x0 − z‖ ≤ (1− λ)(R+ ‖x0‖)
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Then

e{Fλ(x), F (x)} ≤ (1− λ)(R+ ‖x0‖).
Hence

lim
λ→1

h(F (x), Fλ(x)) ≤ lim
λ→1

(1− λ)(R+ ‖x0‖) = 0.

Moreover, since d(xλ, F (xλ)) ≤ h(Fλ(xλ), F (xλ)), one finds

lim
λ→1

d(xλ, F (xλ)) = 0,

and so

inf{d(x, F (x)) : x ∈ K} = 0.

Therefore Fr 6= ∅ for any r > 0.
Also it is clear that if F is upper semicontinuous, then it is upper semicontinuous also
when the target is equipped with the weak topology. Therefore we can apply Lemma
4.1, and obtain the claimed result. �

The single valued version of Theorem 4.2 reads as follows.

Corollary 4.1. A α-nonexpansive, continuous, piecewise strongly midpoint linear
map f : K → K admits at least a fixed point.

The previous corollary slightly generalizes Theorem 4.5 of [8].
In the next result we obtain the existence of fixed points when the target space is
equipped with the weak topology.

Theorem 4.3. Let F be piecewise weakly midpoint linear and upper semicontinuous
from X to Xw; then F admits a fixed point.

Proof. We shall prove that ⋂
U∈B

FU 6= ∅.

Clearly if V ⊂ U then FV ⊂ FU . Therefore , letting V = V (U) ∈ B be determined
by piecewise weakly midpoint linearity it is enough to prove that⋂

U∈B
FV (U) 6= ∅.

First of all we prove that for any U ∈ B the set FU 6= ∅.
For the weak compactness of the set K there exist a finite numbers of points

{z1, . . . , zn} ∈ K such that K ⊂
n⋃
i=1

(U + zi). Denote with C the closed convex

hull of {z1, . . . , zn}. Since K is convex it follows C ⊂ K. For any x ∈ C define the
map ηU : C ( C as

ηU (x) = (F (x) + U) ∩ C.
The map ηU has nonempty convex and closed values.
We prove that ηU is upper semicontinuous from X to Xw.
Let x0 ∈ C and U ∈ B be such that ηU (x0) ⊂ U .
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Since ηU (x0) is compact it follows that there exists U1 ∈ B such that U1 +ηU (x0) ⊂ U .
Moreover there exists U2 ∈ B such that

(U2 + F (x0) + U) ∩ (U2 + C) ⊂ U1 + [(F (x0) + U) ∩ C].

Then as 0 ∈ U2, one has

(U2 + F (x0) + U) ∩ C ⊂ U1 + ηU (x0) ⊂ U .
Since F is upper semicontinuous from X to Xw, there exists a r > 0 such that

F (x) ⊂ U2 + F (x0) for any x ∈ x0 + rX1 ∩K.
Then for x ∈ x0 + rX1 ∩ C we have

ηU (x) = (F (x) + U) ∩ C ⊂ (U2 + F (x0) + U) ∩ C ⊂ U .
Then ηU is upper semicontinuous.
From Kakutani’s fixed point Theorem (see [13]) there exists x0 ∈ C such that

x0 ∈ η(x0) ⊂ F (x0) + U.

Hence FU 6= ∅, for any U ∈ B.
Note that the family {FV (U), U ∈ B} has the finite intersection property. Indeed for
any pair U1, U2 ∈ B one has

FV (U1) ∩ FV (U2) ⊇ FV (U1)∩V (U2) 6= ∅,
where the last inequality follows from the previous step, since V (U1) ∩ V (U2) ∈ B.
Now we prove that for any U ∈ B the set FV (U) 6= ∅ is closed with respect to the
weak topology.
To this aim let U ∈ B be fixed; for the sake of simplicity we shall write FV instead of
FV (U).
We prove first that FV is closed with respect to the strong topology.
Let y ∈ K \ FV . Then y /∈ F (y) + V . Since F (y) + V is a weakly closed set there
exists V3 ∈ B such that

(y + V3) ∩ (F (y) + V + V3) = ∅. (4.2)

Since F is upper semicontinuous from X to Xw there exists ε > 0 such that

F (z) ⊂ F (y) + V3 for any z ∈ (y + εX1) ∩K.
We can assume εX1 ⊂ V3. Hence, from (4.2)

z /∈ F (z) + V for any z ∈ (y + εX1) ∩K.
Otherwise, one would find z ∈ F (z) + V ⊂ F (y) + V3 + V and simultaneously z ∈
(y + εX1) ⊂ y + V3, thus contradicting (4.2).
So z /∈ FV , for each z ∈ y + εX1. Hence FV is closed with respect to the strong
topology.
From the piecewise weak midpoint linearity, corresponding to V ∈ B, we can find a
finite decomposition of K, say DV = {D1, . . . , Dn} such that FV ∩Di is a convex set
for any i = 1, . . . , n. Clearly

FV =

n⋃
i=1

[FV ∩Di] ⊆
n⋃
i=1

[
FV ∩Di

]
⊆ FV = FV
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and each FV ∩Di is closed with respect to the strong topology. On the other side,
since FV ∩Di is convex, FV ∩Di is also convex and therefore weakly closed.
Hence FV is the union of finitely many weakly closed sets, and therefore itself weakly
closed.
By the weak compactness of K it follows

⋂
U∈B

FV (U) 6= ∅.

Therefore there exists q0 ∈
⋂
U∈B

FU . Then, by a standard Hahn-Banach argument,

q0 ∈ F (q0). �

Theorem 4.3 applies in cases where Theorem 4.2 cannot be used as the following
example shows.

Example 4.1. Let X = co and let {tp}p be a sequence in R, with tp ↓ t > 0 for any
p ∈ N and let

zp = tp · ep+1 ∈ co
where ep is the generic element of the standard basis of co. Thus {zp} converges to 0
only with respect to the weak topology of co.
Let τp = tp − t and K2 = co{0, zp, p ∈ N} ⊂ co.
By the Eberlein-Smulyan Theorem and Krein-Smulyan Theorem (see e.g. [9] Theorem
1 p. 430 and Theorem 4 p. 434), the setK2 is weakly compact, soK = [0, τ0]×K2 ⊂ co
is convex and weakly compact in co.
We define the multimap F : K ( K as follows:

F (x) =


x

2
if

x1 6= τp, p ∈ N,
or x1 = τp and xj > 0 for some j > 1;{(x1

2
, t
)
, t ∈ co{0, zp}

}
if x1 = τp and xj = 0, for each j > 1.

Claim 1. The multimap F is upper semicontinuous from X to Xw.
To prove it fix x̃ ∈ K and V = V (ϕ1, . . . , ϕn, ε) ∈ B, with ϕi ∈ `1, i = 1, . . . , n.

(i) Assume x̃1 6= τp, p ∈ N. Then F (x̃) =
x̃

2
.

Observe that there exists a unique p0 such that τp0+1 < x̃1 < τp0 .
Let δ1 < min{τp0 − x̃1; x̃1 − τp0+1} and x = {xn} ∈ x̃+ δ1X1. Then x1 6= τp

for any p ∈ N and, therefore, F (x) =
x

2
. Thus in x̃ + δ1X1 the map F is

strongly continuous and so it is continuous from X to Xw.

(ii) Assume now x̃1 = τp, p ∈ N and x̃j 6= 0, for some j > 1; then again F (x̃) =
x̃

2
.

Let δ2 < max
j>1

x̃j and x = {xn} ∈ x̃ + δ2X1, then xj 6= 0 for the same j and,

therefore, F (x) =
x

2
. Thus, also in x̃+δ2X1 the map F is strongly continuous

and hence continuous from X to Xw.
(iii) Assume finally x̃1 = τp, for some p ∈ N and x̃j = 0 for all j > 1; then

F (x̃) =

{(
x̃1

2
, t0

)
, t0 ∈ co{0, zp}

}
.
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Let

δ3 <
ε

max
1≤i≤n

‖ϕi‖ ∨ 1
(4.3)

and let x = {xn} ∈ x̃+ δ3X1.

If x1 6= τp, or x1 = τp and there exists j > 1 such that xj 6= 0, then F (x) =
x

2
.

Clearly, as
x̃

2
∈ F (x̃), we have∣∣∣∣ϕi(x2 − x̃

2

)∣∣∣∣ ≤ 1

2
‖ϕi‖δ3 < ε

and so F (x) ∈ F (x̃) + V .
If x1 = τp and xj = 0 for all j > 1, then

F (x) =
{(x1

2
, t
)
, t ∈ co{0, zp}

}
.

Consider then u =
(x1

2
, λzp

)
∈ F (x) with λ ∈ (0, 1], and correspondingly

v =

(
x̃1

2
, λzp

)
∈ F (x̃).

Again by (4.3)

|ϕi(u− v)| =
∣∣∣∣ϕ1
i ·

x1 − x̃1

2

∣∣∣∣ ≤ |ϕ1
i |δ3
2

< ε,

i.e. F (x) ⊂ F (x̃) + V .

Claim 2. The map F is not upper semicontinuous with respect to the strong topology
in 0.
Indeed assume F upper semicontinuous at 0. Then for any r > 0 there should exist
δ > 0 such that for any x ∈ δX1 it follows F (x) ⊂ rX1. Consider the sequence in
K defined as xp = (τp, 0, 0, . . . ). Since ‖xp‖co = τp → 0, {xp} strongly converges to

0. Moreover
(τp

2
, zp

)
∈ F (xp). But, as we have pointed out above, {zp} does not

converge to 0 in the norm topology, obtaining a contradiction.

Claim 3. The map F is piecewise weakly midpoint linear.
Again, fix V = V (ϕ1, . . . , ϕn, ε) with ϕi ∈ `1. As observed in Remark 4.2 w.l.o.g. we
can suppose ϕi ∈ `1+, i = 1, . . . , n.
Since zp weakly converges to 0 and τp → 0, p̄ ∈ N exists so that ϕj(zp) < ε, j =

1, . . . , n and τp <
ε

max
1≤i≤n

‖ϕi‖ ∨ 1
for p ≥ p̄.

We shall define the decomposition DV .
Let first D1 = [0, τp̄] × V . Observe that D1 is a convex set. We shall prove that
D1 ∩ FV is convex.
Consider any x ∈ D1 ∩K, say x = {xn}.
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If x1 6= τp, for any p ∈ N, or if x1 = τp and there exists j > 1 such that xj 6= 0, as

x− F (x) =
x

2
, we have

ϕi[x− F (x)] = ϕi

(x
2

)
= ϕ1

i ·
x1

2
+

∞∑
k=2

ϕki ·
xk
2
≤ 1

2

(
ϕ1
i τp̄ +

∞∑
k=2

ϕki · xk

)
≤ ε,

(remember that if x = (x1, x2, . . . ) ∈ D1, by definition (x2, . . . ) ∈ V ). Thus x ∈ FV .
In the case x = (τp, 0, 0, . . . ) ∈ D1 ∩K, clearly p ≥ p̄ (for τp ∈ [0, τp̄]). Since

F (x) =
{(τp

2
, t
)
, t ∈ co{0, zp}

}
we can choose

(τp
2
, 0, 0, . . .

)
∈ F (x) obtaining

ϕi

(
x− x

2

)
≤ 1

2
ϕ1
i τp < ε

and in conclusion x ∈ F (x) + V .
Hence we have that D1 ∩ K ⊂ FV ⊂ K and so FV ∩ D1 = D1 ∩ K, therefore it is
convex.

For j = 1, . . . , n, let now Vj = V (ϕj , ε) and Dj+1 = [0, τp̄]× (K2 \ Vj).
Then each Dj+1 is a convex set.
Note also that if x = {xn} ∈ Dj+1, for some j, then xk 6= 0 for some k > 1. Therefore

F (x) =
x

2
for every x ∈ Dj+1, j = 1, . . . , n.

Fix i and consider x′, x′′ ∈ Di+1 ∩ FV ; we have then

F

(
x′ + x′′

2

)
=
x′ + x′′

4
=
F (x′) + F (x′′)

2
; (4.4)

hence
x′ + x′′

2
− F

(
x′ + x′′

2

)
=

1

2
{[x′ − F (x′)] + [x′′ − F (x′′)]} ∈ V. (4.5)

Therefore Dj+1 ∩ FV is a convex set, for each j = 1, . . . , n.

Now for i = 1, . . . p̄− 1 consider the three convex sets

D′i =]τi+1, τi[×K2,

D′′i = {τi} × (K2 \ {0}),
and

D′′′i = {(τi, 0, . . . , 0)},
(note that K2 \ {0} remains a convex set).

If x ∈ D′i, F (x) =
x

2
, then one obtains (4.4) and therefore (4.5) also in this case, thus

proving that the set FV ∩D′i is a convex set for any i, . . . , p̄− 1.

Let now x′, x′′ ∈ FV ∩D′′i , then F (x′) =
x′

2
and F (x′′) =

x′′

2
. Moreover, since 0 is an

extremal point for K,
x′ + x′′

2
6= 0, namely, there exists j > 1 such that

x′j + x′′j
2

6= 0.

Then F

(
x′ + x′′

2

)
=

x′ + x′′

4
and again by (4.4) and (4.5), we have that the set

FV ∩D′′i is a convex set for any i, . . . , p̄− 1.
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Finally D′′′i ∩FV is either empty or it reduces to the singleton {(τi, 0, . . . , 0)}, in both
cases it is a convex set.
In conclusion DV = {D1, D2, . . . , Dn, D

′
i, D

′′
i , , D

′′′
i i = 1, . . . , p̄ − 1} is the required

decomposition of K.

5. Applications

In the whole section we denote with Xn = X × · · ·×X n-times and with Xj
1 the unit

ball of the space Xj , j = 1, . . . , n.
We will apply the fixed point Theorem 4.3 to obtain the existence of a social equilib-
rium in a game with n players.
We briefly remind the usual Debreu model for the game.
Assume that there are n players (or agents) and that each player i chooses strategies
from a set Ai. Let A = A1 × · · · × An be the product of all the possible strate-
gies. Let Ai denote the residual product Ai = A1 × · · · × Ai−1 ×Ai+1 × · · ·An. For
any a ∈ A, a = (a1, . . . , an), let āi denote the corresponding element in Ai, namely
āi = (a1, . . . , ai−1, ai+1, . . . , an). To each player i, a payoff function fi : Ai ×Ai → R
is associated.
Given āi, the response of the i-th player to āi is bounded to lie in a subset Ci(āi) ⊂ Ai.
Therefore players want to maximize their payoff functions fi(āi, x) on the set Ci(āi),
that is player i wants to choose among the possible strategies Ci(āi) those x’s that
maximize the payoff fi.
This leads immediately to the following classical definition of social equilibrium.

Definition 5.1. A vector a∗ ∈ A is a social equilibrium point if for any i = 1, . . . , n

a∗i ∈ Ci(ā∗i ) and fi(a
∗) = max

x∈Ci(ā∗i )
fi(ā

∗
i , x).

To obtain a social equilibrium point we need the following result.

Theorem 5.1 (Corollary 9.2.6 [14]). Let X and Y be topological spaces, F : X ( Y
be a lower semicontinuous multimap with compact values, and ψ : X × Y → R be a
continuous map. Then the multimap m′ : X ( Y defined as

m′(x) = {ȳ ∈ F (x) : ψ(x, ȳ) = max
y∈F (x)

ψ(x, y)}

is an upper semicontinuous compact valued multimap.

We state now the main result in this section.

Theorem 5.2. Let A be a convex and (Xw)n-compact set. Assume that

(A1) Ci : Ai( Ai is a midpoint convex lower semicontinuous from (X)n−1 to Xw

multimap with closed values;
(A2) fi : Ai ×Ai → R is midpoint concave and (Xn−1, Xw)−continuous;

(A3) for each a ∈ Ai, a = (a1, . . . , an) the map f̂i(āi) = sup
η∈Ci(āi)

fi(āi, η) is mid-

point convex, namely for every a, b ∈ A the following relationship holds:

f̂i

(
ai + bi

2

)
=

1

2

(
f̂i(ai) + f̂i(bi)

)
.
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Then there exists a social equilibrium point.

Proof. We shall divide the proof in several steps.
Step 1. The multimap Mi : Ai( Ai defined as

Mi(āi) =
{
x ∈ Ci(āi) : fi(āi, x) = f̂i(āi)

}
has non empty values.
Indeed, by Proposition 3.2, Ci(x) is convex for any x ∈ Ai, and hence weakly closed
in Ai; thus Ci(x) is weakly compact.
From the weak compactness of A in Xn, by the Eberlain-Smulyan Theorem and by
the Mazur convexity Theorem it is easy to show that fi is a bounded map and that
the Weierstrass Theorem holds.

Step 2. Mi is a midpoint convex multimap.
We have to prove that for any i = 1, . . . , n, ai ∈ Ai, bi ∈ Ai Mi satisfies the following
inclusion:

1

2
[Mi(ai) +Mi(bi)] ⊆Mi

(
ai + bi

2

)
.

Let ci ∈Mi(ai), di ∈Mi(bi) and xi =
ci + di

2
.

We have that ci ∈ Ci(ai) di ∈ Ci(bi); then by (A1)

xi ∈
1

2
[Ci(ai) + Ci(bi)] ⊆ Ci

(
ai + bi

2

)
.

Moreover
fi(ai, ci) = max

t∈Ci(ai)
fi(ai, t)

fi(bi, di) = max
t∈Ci(bi)

fi(bi, z)

By (A2) and (A3) we obtain

fi

(
ai + bi

2
, xi

)
≥ fi(ai, ci) + fi(bi, di)

2
= max

η∈Ci

ai + bi
2


fi

(
ai + bi

2
, η

)
.

Step 3. Mi is upper semicontinuous from Xn−1 to Xw with convex and closed values.
In fact by Step 1 Ci(x) is weakly compact for any x ∈ Ai; hence we can apply Theorem
5.1 with E = Xn−1 and Y = Xw obtaining that Mi is upper semicontinuous from
Xn−1 to Xw with weakly compact, hence closed, values. Moreover by Step 2 and
Proposition 3.2 Mi(x) is convex for any x ∈ Ai.

Step 4. The multimap Φ : A( A defined as

Φ(a) = M1(ā1)×M2(ā2)× · · · ×Mn(ān).

is (Xn, (Xw)n)-upper semicontinuous.
Fix V = V1 × · · · × Vn a basic neighbourhood of 0 in (Xw)n. From Step 3 the
multimaps Mi are (Xn−1, Xw)-upper semicontinuous for any i = 1, . . . , n. Hence



20 IRENE BENEDETTI, STELLA BOLOGNINI AND ANNA MARTELLOTTI

for any Vi ∈ B there exists r > 0 such that for any āi ∈ Āi ∩ (āi0 + rXn−1
1 ) it holds

Mi(āi) ⊆Mi(ā
i
0) + Vi. If a ∈ A ∩ (a0 + rXn

1 ) then āi ∈ Ā ∩ (āi0 + rXn−1
1 ). Hence

Φ(a) = M1(ā1)×M2(ā2)× · · · ×Mn(ān) ⊆
n∏
i=1

(Mi(ā
i
0) + Vi) ⊆ Φ(a0) + V.

Step 5. The multimap Φ is midpoint convex.

Let u ∈ Φ(a) + Φ(b)

2
. Hence u =

u1 + u2

2
with u1 ∈ Φ(a), u2 ∈ Φ(b), that is

u1 = (u1
1, . . . , u

1
n) and u2 = (u2

1, . . . , u
2
n) with u1

i ∈ Mi(āi) and u2
i ∈ Mi(b̄i). By the

midpoint convexity of the multimaps Mi, i = 1, . . . , n, proved in Step 2 we obtain

u =

(
u1

1 + u2
1

2
, . . . ,

u1
n + u2

n

2

)
∈
[
M1(ā1) +M1(b̄1)

2

]
× · · · ×

[
Mn(ān) +Mn(b̄n)

2

]
⊆M1

[
ā1 + b̄1

2

]
× · · · ×Mn

[
ān + b̄n

2

]
= Φ

(
a+ b

2

)
.

Step 6. The multimap Φ is midpoint linear.
Indeed by Step 3 Φ(a) is the product of a finite number of weakly compact sets;
therefore Φ(a) is (Xw)n-compact, hence (Xw)n-closed, so Xn-closed. The result then
follows by Steps 4, 5 and Corollary 3.1.

Hence we can apply Theorem 4.3 obtaining a fixed point ā ∈ Φ(ā). Finally a standard
argument shows that ā is a social equilibrium point. �

Remark 5.1. We observe that the hypothesis of lower semicontinuity of the multimap
Ci can be assumed only on the boundary of the sets Āi. Indeed the midpoint convexity
implies the lower semicontinuity from Xn−1 to Xw of the multimaps Ci in the interior
of Āi for any i = 1, . . . , n ( see [5] (Theorem 3.2)).

Corollary 5.1. Let A be a convex and (Xw)n-compact set. Assume that Ci : Ai( Ai
is an additive lower semicontinuous from Xn−1 to Xw multimap with closed values
and fi : Ai × Ai → R is a linear on convex combinations and continuous function.
Then there exists an equilibrium point.

Proof. Observe that conditions (A1) and (A2) of the previous Theorem are trivially
fulfilled.
Let a, b ∈ A and ci ∈ Ci(āi), di ∈ Ci(b̄i) be such that

fi(āi, ci) = max
t∈Ci(āi)

fi(āi, t)

fi(āi, di) = max
z∈Ci(b̄i)

fi(b̄i, z).



FIXED POINT THEOREMS WITHOUT STRONG COMPACTNESS 21

Let xi =
ci + di

2
∈ Ci(āi) + Ci(b̄i)

2
= Ci

(
āi + b̄i

2

)
. We have

fi

(
āi + b̄i

2
, xi

)
= fi

(
āi + b̄i

2
,
ci + di

2

)
= fi

[
(āi, ci) + (b̄i, di)

2

]
=

1

2

[
fi((āi, ci) + fi(b̄i, di)

]
≥ 1

2

[
fi((āi, t) + fi(b̄i, z)

] (5.1)

for any t ∈ Ci(āi) and z ∈ Ci(b̄i). Moreover

t+ z

2
∈ Ci(āi) + Ci(b̄i)

2
= Ci

[
āi + b̄i

2

]
,

and for any h ∈ Ci
[
āi + b̄i

2

]
there exist t ∈ Ci(āi), z ∈ Ci(b̄i) such that h =

t+ z

2
.

From (5.1) it follows then

fi

(
āi + b̄i

2
, xi

)
≥ fi

(
āi + b̄i

2
, h

)
,

for any h ∈ Ci
[
āi + b̄i

2

]
. Hence

max

h∈Ci

 āi + b̄i
2


fi

(
āi + b̄i

2
, h

)
= fi

(
āi + b̄i

2
, xi

)

=
fi(āi, ci) + fi(b̄i, di)

2
=

max
t∈Ci(āi)

fi(āi, t) + max
z∈Ci(b̄i)

fi(āi, z)

2
,

that is condition (A3) of the previous theorem. �
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