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Abstract. The purpose of this paper is to present some fixed point results for mappings of cyclical
type in the context of ordered metric spaces.

Our results extend the ones appearing in [A. Amini-Harandi, H. Emami, A fixed point theorem for

contraction type maps in partially ordered metric spaces and application to ordinary differential
equations, Nonlinear Anal. 72 (2010), 2238-2242].
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1. Introduction

In [2], Geraghty introduces the following class of functions = given by:

= = {β : [0,∞) → [0, 1) : β(tn) → 1 ⇒ tn → 0},
and he proves the following fixed point theorem.

Theorem 1.1. (Theorem 1.3 of [2]). Let (X, d) be a complete metric space and let
T : X → X be an operator satisfying for every x, y ∈ X,

d(Tx, Ty) ≤ β(d(x, y)).d(x, y),

where β ∈ =. Then T has a unique fixed point.

In [3], Kirk. et al. extend Theorem 1.1 for mappings of cyclical type.
Before to present this result, we need the following definition.

Definition 1.2. (see [4,5]) Let X be a nonempty set, m a positive integer and T :

X → X a mapping. X =
m⋃

i=1

Ai is said to be a cyclic representation of X with respect

to T if
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(i) Ai, i = 1, 2, . . . ,m are nonempty sets;
(ii) T (A1) ⊂ A2, . . . , T (Am−1) ⊂ Am, T (Am) ⊂ A1.

Now, we present the following result which appears in [3].

Theorem 1.3. (Theorem 2.3 of [3]). Let (X, d) be a complete metric space, m is

a positive integer, A1, A2, . . . , Am nonempty closed subsets of X, X =
m⋃

i=1

Ai and

T : X → X an operator such that

(i) X =
m⋃

i=1

Ai is a cyclic representation of X with respect to T ,

(ii) for any x ∈ Ai and y ∈ Ai+1 (i = 1, 2, . . . ,m), where Am+1 = A1

d(Tx, Ty) ≤ α(d(x, y))d(x, y),

where α ∈ =.
Then T has a unique fixed point.

Recently, in [1] the authors prove a version of Theorem 1.3 in the context of ordered
metric spaces. The main result in [1] is the following.

Theorem 1.4. Let (X,≤) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space. Let T : X → X be a
increasing operator such that there exists x0 ∈ X with x0 ≤ Tx0. Suppose that there
exists α ∈ = satisfying

d(Tx, Ty) ≤ α(d(x, y))d(x, y) for x, y ∈ X with x ≥ y.

Assume that either T is continuous or X is such that if {xn} is an increasing sequence
such that xn → x then xn ≤ x for all n.

Besides, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y,
then T has a unique fixed point.

The purpose of this paper is to present a version of Theorem 1.4 for mappings of
cyclical type.

The existence of fixed point in ordered metric spaces has its starting point in the
paper [6] where the authors apply their results to the theory of existence of solutions
of matrix equations.

Recently, a lot of papers have appeared in order to study this question (see [1,
6-11], for example).

2. Fixed point theorems: increasing case

We begin this section with the following definition.

Definition 2.1. Let (X,≤) be a partially ordered set and T : X → X an operator.
We say that T is increasing if for x, y ∈ X

x ≤ y ⇒ Tx ≤ Ty.

One of the main results of this section is the following.
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Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space.
Suppose that m is a positive integer, A1, A2, . . . , Am nonempty closed subsets of X,

X =
m⋃

i=1

Ai, T : X → X a continuous and increasing mapping satisfying:

(i) X =
m⋃

i=1

Ai is a cyclic representation of X with respect to T ,

(ii) for any x ∈ Ai and y ∈ Ai+1 (i = 1, 2, . . . ,m), where Am+1 = A1 with x ≤ y

d(Tx, Ty) ≤ α(d(x, y))d(x, y),

where α ∈ =,
(iii) there exists x0 ∈ X with x0 ≤ Tx0.

Then T has at least a fixed point.

Proof. If Tx0 = x0 then the proof is finished.
Suppose that x0 < Tx0. Since T is increasing, we have

x0 < Tx0 ≤ T 2x0 ≤ T 3x0 ≤ · · · ≤ Tnx0 ≤ Tn+1x0 ≤ . . . .

Put xn+1 = Txn, for n = 0, 1, 2, . . . .
If xn = xn+1 for some n ∈ N∗ then xn+1 = Txn = xn. Thus, xn is a fixed point of T
and the proof is finished.
Suppose that xn 6= xn+1 for any n ∈ N. By (i), for any n ≥ 1 there exists in ∈
{1, 2, . . . ,m} such that xn−1 ∈ Ain

and xn ∈ Ain+1.
Since xn−1 < xn and α ∈ =, using (ii) we have

d(xn, xn+1) = d(Txn−1, Txn) (2.1)

≤ α(d(xn−1, xn))d(xn−1, xn)

< d(xn−1, xn).

Consequently, {d(xn, xn+1)} is a nonincreasing sequence of nonnegative real numbers,
so lim

n→∞
d(xn, xn+1) = r ≥ 0 for certain r ∈ [0,∞). suppose r > 0.

From (2.1) we obtain

d(xn, xn+1)
d(xn−1, xn)

≤ α(d(xn−1, xn)) for any n ∈ N∗,

letting n →∞ in the last inequality we see that

lim
n→∞

α(d(xn−1, xn)) = 1.

Since α ∈ =, we obtain r = lim
n→∞

d(xn−1, xn) = 0 which is a contradiction. Therefore

lim
n→∞

d(xn, xn+1) = 0. (2.2)

Now, we will prove that {xn} is a Cauchy sequence.
Firstly, we show the following claim.
Claim: For every ε > 0 there exists n0 ∈ N such that if p, q ≥ n0 with p − q ≡ 1(m)
then d(xp, xq) < ε.
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In fact, in contrary case, we can find ε > 0 such that for any n ∈ N there exist
pn > qn ≥ n with pn − qn ≡ 1(m) and d(xqn

, xpn
) ≥ ε.

using the triangle inequality, we have

ε ≤ d(xqn
, xpn

) (2.3)

≤ d(xqn , xqn+1) + d(xqn+1, xpn+1) + d(xpn+1, xpn)

= d(xqn
, xqn+1) + d(Txqn

, Txpn
) + d(xpn+1, xpn

).

Since pn− qn ≡ 1(m), xqn
and xpn

lie in different adjacently labeled sets Ai and Ai+1

for certain 1 ≤ i ≤ m and using (ii) in (2.3) we get

ε ≤ d(xqn
, xpn

)

≤ d(xqn , xqn+1) + α(d(xqn , xpn))d(xqn , xpn) + d(xpn+1, xpn).

From the last inequality

(1− α(d(xqn , xpn)))ε ≤ (1− α(d(xqn , xpn)))d(xqn , xpn)

≤ d(xqn , xqn+1) + d(xpn+1, xpn).

Letting n, m →∞ with pn − qn ≡ 1(m) and taking into account (2.2) we have

lim
n→∞

1− α(d(xqn
, xpn

)) = 0.

Since α ∈ =, this implies lim
n→∞

d(xqn , xpn) = 0. Which contradicts the fact that

d(xqn
, xpn

) ≥ ε for any n ∈ N.
Therefore, the claim is proved.
In what follows, we prove that {xn} is a Cauchy sequence.
Fix ε > 0. Using the claim we can find n0 ∈ N such that if p, q ≥ n0 with p−q ≡ 1(m),
d(xp, xq) ≤

ε

2
.

On the other hand, by (2.2), we find n1 ∈ N such that

d(xn, xn+1) ≤
ε

2m
for any n ≥ n1.

Now, let r, s ≥ max(n0, n1) with s > r. Then, there exists k ∈ {1, 2, . . . ,m} such that
s− r ≡ k(m).
Thus, s− r + j ≡ 1(m) for j = m− k + 1, and, so, we have

d(xr, xs) ≤ d(xr, xs+j) + d(xs+j , xs+j−1) + · · ·+ d(xs+1, xs)

≤ ε

2
+ j

ε

2m

≤ ε

2
+ m

ε

2m
= ε.

This proves that {xn} is a Cauchy sequence. Since X is a complete metric space,
lim

n→∞
xn = x for certain x ∈ X.

Finally, the continuity of T gives that

x = lim
n→∞

xn+1 = lim
n→∞

Txn = T ( lim
n→∞

xn) = Tx.

This finishes the proof. �
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Remark 2.3. Notice that, as X =
m⋃

i=1

Ai is a cyclic representation of X with respect

to T , the fixed point x appearing in Theorem 2.2 satisfies x ∈
m⋂

i=1

Ai.

Now, we will prove that the conclusion of Theorem 2.2 is true for T not necessarily
continuous. The condition of continuity of T is replaced by:

If {xn} is an increasing sequence in X such that xn → x then

xn ≤ x for all n ∈ N. (2.4)

Theorem 2.4. If in Theorem 2.2 we replace the continuity of T by condition (2.4)
we obtain the same conclusion.

Proof. Following the lines of the proof of Theorem 2.2 we only have to check that x
is a fixed point.

In fact, since lim
n→∞

xn = x and X =
m⋃

i=1

Ai is a cyclic representation of X with respect

to T , the sequence {xn} has an infinite number of terms in each Ai ( i = 1, 2, . . . ,m).
We take {xnk

} subsequence of {xn} with xnk
∈ Ai for i ∈ {1, 2, . . . ,m} fixed.

Since x ∈
m⋂

i=1

Ai (see Remark 2.3), Using the triangle inequality and (ii) of Theorem

2.2, we get

d(x, Tx) ≤ d(x, xnk+1) + d(xnk+1, Tx)

= d(x, xnk+1) + d(Txnk
, Tx)

≤ d(x, xnk+1) + α(d(xnk
, x))d(xnk

, x)

< d(x, xnk+1) + d(xnk
, x).

letting k →∞ in the last inequality and since lim
n→∞

xn = x, we have

d(x, Tx) ≤ 0,

or, equivalently, x = Tx. This finished the proof. �

In the sequel, we present an example where it can be appreciate that assumptions
in Theorem 2.2 and 2.4 do not guarantee the uniqueness of the fixed point.

Example 2.5. Consider (R2, d2), where d2 denotes the euclidean distance and the
order given by R = {(x, x) : x ∈ R2}. Let Ai(i = 1, 2) be the closed subsets of R2

given by
A1 = {(x, y) : y ≥ 0} and A2 = {(x, y) : y ≤ 0}.

Obviously, R2 = A1 ∪A2.
Now, we consider the operator T : R2 → R2 given by T (x, y) = (x,−y). It is easily
seen that R2 = A1∪A2 is a cyclic representation of R2 with respect to T . Obviously, T
is continuous and (0, 0) ≤ T (0, 0) = (0, 0). Since elements in X are only comparable to
themselves, T is increasing and satisfies condition (ii) of Theorem 2.2, for any α ∈ =.



374 J. HARJANI, F. SABETGHADAM AND K. SADARANGANI

Therefore, this example satisfies assumptions of Theorem 2.2 and the operator T has
as fixed points the set {(x, 0) : x ∈ R}.

In the sequel, we will prove that the following assumption:

For x, y ∈
m⋂

i=1

Ai there exists z ∈ X which is comparable to x and y, (2.5)

is a sufficient condition for uniqueness of the fixed point in Theorem 2.2 and 2.4.

Theorem 2.6. Adding condition (2.5) to the assumptions of Theorems 2.2 and 2.4
we obtain the uniqueness of the fixed point.

Proof. Suppose that x, y ∈ X are fixed points of T with x 6= y. By Remark 2.3,

x, y ∈
m⋂

i=1

Ai. We consider two cases.

Case 1. x and y are comparable.
In this case, Using (ii) of Theorem 2.2 and taking into account that α ∈ =,
we have

d(x, y) = d(Tx, Ty) ≤ α(d(x, y))d(x, y) < d(x, y),

which is a contradiction. Therefore, x = y.
Case 2. x and y are not comparable.

Since x, y ∈
m⋂

i=1

Ai, by condition (2.5) we find z ∈ X with z is comparable

to x and y. Since T is increasing, x = Tnx and Tnz are comparable for

n = 0, 1, 2, . . . , and, taking into account that x ∈
m⋂

i=1

Ai by (ii) of Theorem

2.2, we can obtain

d(x, Tnz) = d(Tnx, Tnz)

≤ α(d(Tn−1x, Tn−1z))d(Tn−1x, Tn−1z)

< d(Tn−1x, Tn−1z) = d(x, Tn−1z).

This proves that {d(x, Tnz)} is a decreasing sequence of nonnegative real
numbers and, so, lim

n→∞
d(x, Tnz) = r ≥ 0, for certain r ∈ R+. Using a

similar argument that in Theorem 2.2 it can be proved that r = 0. Therefore,
lim

n→∞
Tnz = x.

Similarly, we can prove that lim
n→∞

Tnz = y and the uniqueness of the limit
gives us x = y.

This finishes the proof. �

In what follows, we present an example which says us the condition (2.5) is not a
necessary for the uniqueness of the fixed point.
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Example 2.7. Consider the same metric space that in Example 2.5 and with the
same order. Let T : R2 → R2 the operator given by T (x, y) = (−x,−y). It is easily
checked that R2 = A1∪A2 is a cyclic representation of R2 with respect to T , where the
sets Ai are defined as in Example 2.5. It is easily checked that this example satisfies
assumptions of Theorem 2.2. In this case, the operator T has a unique fixed point
which is (0, 0).
On the other hand, since A1 ∩ A2 = {(x, 0) : x ∈ R} and the order is given by
R = {(x, x) : x ∈ R2} we see that condition (2.5) is not satisfied.

3. Fixed point theorems: nonincreasing case

The starting point of this section is the following definition.

Definition 3.1. Let (X,≤) be a partially ordered set and T : X → X an operator.
We say that T is nonincreasing if for x, y ∈ X

x ≤ y ⇒ Tx ≥ Ty.

The main result of this section is the following.

Theorem 3.2. Let (X,≤) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space.
Suppose that m is a positive integer, A1, A2, . . . , Am nonempty subsets of X,

X =
m⋃

i=1

Ai,

T : X → X a nonincreasing mapping such that:

(i) X =
m⋃

i=1

Ai is a cyclic representation of X with respect to T ,

(ii) for any x ∈ Ai and y ∈ Ai+1 with x and y comparable (i = 1, 2, . . . ,m),

d(Tx, Ty) ≤ α(d(x, y))d(x, y),

where Am+1 = A1 and α ∈ =,
(iii) there exists x0 ∈ X with x0 and Tx0 comparable.

Then
(a) inf{d(x, Tx) : x ∈ X} = 0.
(b) If, in addition, X is compact and T is continuous, then T has at least a fixed

point. Moreover, if (X,≤) satisfies condition (2.5) then the fixed point is
unique.

Proof. (a) If Tx0 = x0 then it is obvious that inf{d(x, Tx) : x ∈ X} = 0. Suppose
that x0 < Tx0 (the same argument works for x0 > Tx0). Since T is nonincreasing
the consecutive terms of the sequence {Tnx0} are comparable and by (ii) we have

d(Tn+1x0, T
nx0) ≤ α(d(Tnx0, T

n−1x0))d(Tnx0, T
n−1x0)

< d(Tnx0, T
n−1x0).
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This proves that {d(Tn+1x0, T
nx0)} is decreasing and nonnegative, so

lim
n→∞

d(Tn+1x0, T
nx0) = r

for certain r ∈ [0,∞).
Using a similar argument that in Theorem 2.2, we prove that

lim
n→∞

d(Tn+1x0, T
nx0) = 0.

This implies that inf{d(x, Tx) : x ∈ X} = 0.
This finishes the proof of (a).
(b) Since X is compact and T is continuous, the mapping ϕ : X → R+ given by

ϕ(x) = d(x, Tx) is continuous, and since X is compact it attains its minimum.
Therefore, we find z ∈ X such that

d(z, Tz) = inf{d(x, Tx) : x ∈ X}.

Now, the part (a) says us that d(z, Tz) = 0.
Consequently, z is a fixed point of T .

The uniqueness of the fixed point is proved as in Theorem 2.6. �

Remark 3.3. Notice that in Theorem 3.2, we do not impose that the subsets Ai

(i = 1, . . . ,m) are closed.

4. Examples and Remarks

In what follows we present some examples which prove that if at least one of the
assumptions of Theorem 2.2 is not satisfied then the conclusion is false.

Example 4.1. We consider N∗ (the natural numbers without zero) with the usual
distance given by d(x, y) = |x − y| and with the usual order. Obviously, (N∗, d) is a
complete metric space since N∗ is closed subsets of (R, d).
Let Ai (i = 1, 2) be the closed subsets of N∗ given by

A1 = {n ∈ N∗ : n even},

A2 = {n ∈ N∗ : n odd}.
Consider the operator T : N∗ → N∗ defined as T (n) = n + 1.
Obviously, T is continuous and increasing.
It is easily seen that N∗ = A1 ∪A2 is a cyclic representation of N∗ with respect to T .
Moreover, for every n ∈ N∗, n ≤ T (n) = n + 1.
On the other hand, for p ∈ A1 and q ∈ A2 with p < q we have for any α ∈ =,

d(T (p), T (q)) = |p− q|,

α(d(p, q))d(p, q) = α(d(p, q))|p− q| < |p− q|
Consequently, condition (ii) of Theorem 2.2 is not satisfied.
Finally, it is easily seen that T has not fixed point.

This proves that if assumption (ii) of Theorem 2.2 is not satisfied the conclusion
of this theorem can be false.
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Example 4.2. Consider the same set N∗ that in Example 2.5 with the same distance,
and with the order given by

R = {(n, n) : n ∈ N∗}.

We consider the same sets Ai (i = 1, 2) that in Example 2.5 and the same operator
T .
In this case, assumption (ii) of Theorem 2.2 is satisfied since that elements in N∗ are
only comparable to themselves.
On the other hand, in this case assumption (iii) of Theorem 2.2 is not satisfied and
the operator T has not fixed point.

Now, we present an example which can be studied by Theorem 2.2 and it cannot
be treated by Theorem 1.4.

Example 4.3. Consider X = {(0, 2), (0, 0), (1, 0), (1, 1)} ⊂ R2 with the Euclidean
distance d2 and the order given by

R = {(x, x) : x ∈ X} ∪ {((1, 0), (1, 1)), ((0, 0), (0, 2))},

obviously, (X, d2) is a complete metric space. Let Ai (i = 1, 2) be the closed subsets
of X given by

A1 = {(1, 0), (1, 1), (0, 0)},

A2 = {(0, 0), (0, 2)}

and T : X → X the operator defined by

T (1, 0) = (0, 0);T (1, 1) = (0, 2);T (0, 2) = (0, 0) = (0, 0).

Obviously, T is an increasing and continuous and X = A1 ∪ A2 is a cyclic represen-
tation of X with respect to T . Moreover, in this case the elements x, y ∈ X satisfying
x ∈ Ai and y ∈ Ai+1 and x and y are comparable are x = y = (0, 0) and, therefore,
assumption (ii) of Theorem 2.2 is satisfied.
Moreover, since (0, 0) ≤ T (0, 0) = (0, 0), Theorem 2.2 says us that the operator T has
a fixed point (which is (0, 0)).
On the other hand, since (1, 0) ≤ (1, 1) and

d(T (1, 0), T (1, 1)) = d((0, 0), (0, 2)) = 2,

and

α(d((1, 0), (1, 1)))d((1, 0), (1, 1) = α(d((1, 0), (1, 1)) < 1,

for any α ∈ =.

We see that the contractive condition of Theorem 1.4 is not satisfied and, conse-
quently, this example cannot be treated by Theorem 1.4.
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