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1. Introduction

In this paper, we extend the earlier work [1] on boundary value problem (BVP
for short) with integral conditions for fractional differential equations of the order
α ∈ (1, 2) in R to an abstract Banach space X of the following type

cDαy(t) = f(t, y(t)), α ∈ (1, 2), t ∈ J = [0, T ],
y(0) =

∫ T
0
g(s, y)ds,

y(T ) =
∫ T
0
h(s, y)ds,

(1.1)

where cDα is the Caputo fractional derivative of order α, f, g, h : J × X → X are
given functions and satisfy some assumptions that will be specified later. We remark
that the BVP model of the order α ∈ (1, 2) is different from the BVP model of the
order α ∈ (0, 1) since a fractional integral equation which is equivalent to the BVP
model of the order α ∈ (1, 2) is much more complex than the one which is equivalent
to the BVP model of the order α ∈ (0, 1) in some senses.
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Fractional differential equations have been proved to be valuable tools in the mod-
elling of many phenomena in various fields of engineering, physics and economics.
It draws a great application in nonlinear oscillations of earthquakes, many physi-
cal phenomena such as seepage flow in porous media and in fluid dynamic traffic
model. Actually, fractional differential equations are considered as an alternative
model to integer differential equations. For more details, one can see the monographs
of Diethelm [11], Kilbas et al. [14], Miller and Ross [17], Lakshmikantham et al.
[18], Podlubny [19], and Tarasov [23]. Particulary, all kinds of fractional differential
equations (inclusions) and optimal control problems in Banach spaces are studied by
researchers such as Agarwal et al. [1, 2], Ahmad and Nieto [3, 4, 5], Bai [7], Ben-
chohra et al. [8], Chang and Nieto [9], Henderson and Ouahab [13], Wang et al.
[26, 27, 28, 29, 30, 31, 32, 33, 34, 35], and Zhou et al. [36, 37].

In the present paper, we show existence and uniqueness results for the fractional
BVP (1.1) by virtue of fractional calculus and fixed point method. Compared with
the earlier results appeared in [1], there are at least three differences: (i) the work
space is not R but the Banach space X; (ii) the assumptions are weakened and
easy to check; (iii) a priori bounds is given via sublinear conditions and a new type
Gronwall inequality with some mixed integral terms (Lemma 3.2). Compared with
the earlier results appeared in [3], different fixed point theorems via the techniques
of the generalized Gronwall inequality of mixed integral terms are combined to deal
with such problems.

The rest of this paper is organized as follows. In Section 2, we give some notations
and recall some concepts and preparation results. In Section 3, we give a generalized
Gronwall inequality which can be used to establish the estimate of fixed point set
{y : y = λFy, λ ∈ [0, 1]}. In Section 4, we give three main results (Theorems 4.1–
4.3), the first result based on Banach contraction principle, the second result based
on Schaefer’s fixed point theorem, the third result based on nonlinear alternative of
Leray-Schauder type. An example is given in Section 5 to demonstrate the application
of our main results. These results can be considered as a contribution to this emerging
field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. We denote C(J,X) the Banach space of all continuous
functions from J into X with the norm ‖y‖∞ := sup{‖y(t)‖ : t ∈ J}. For measurable
functions m : J → R, define the norm

‖m‖Lp(J,R) :=
(∫

J

|m(t)|pdt
) 1

p

, 1 ≤ p <∞.

We denote Lp(J,R) the Banach space of all Lebesgue measurable functions m with

‖m‖Lp(J,R) <∞.

We need some basic definitions and properties of the fractional calculus theory
which are used further in this paper. For more details, see [14].
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Definition 2.1. The fractional order integral of the function h ∈ L1([a, b], R) of order
α ∈ R+ is defined by

Iαa h(t) =
∫ t

a

(t− s)α−1

Γ(α)
h(s)ds

where Γ is the Gamma function.

Definition 2.2. For a function h given on the interval [a, b], the αth Riemann-
Liouville fractional order derivative of h, is defined by

(Dα
a+h)(t) =

1
Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1h(s)ds,

here n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3. For a function h given on the interval [a, b], the Caputo fractional
order derivative of h, is defined by

(cDα
a+h)(t) =

1
Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.4. Let α ∈ (n − 1, n), then the differential equation cDαh(t) = 0 has
solutions

h(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, · · · , n− 1, n = [α] + 1.

Lemma 2.5. Let α ∈ (n− 1, n), then

Iα(cDαh)(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

for some ci ∈ R, i = 0, 1, 2, · · · , n− 1, n = [α] + 1.

Let us start by defining what we mean by a solution of the fractional BVP (1.1).

Definition 2.6. (Definition 3.20, [1]) A function y ∈ C2(J,X) with its α-derivative
existing on J is said to be a solution of the fractional BVP (1.1) if y satisfies the
equation cDαy(t) = f(t, y(t)) a.e. on J , and the conditions y(0) =

∫ T
0
g(s, y(s))ds

and y(T ) =
∫ T
0
h(s, y(s))ds.

For the existence of solutions for the fractional BVP (1.1), we need the following
auxiliary lemma.

Lemma 2.7. (Lemma 3.21, [1]) A function y ∈ C(J,X) is a solution of the fractional
integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds− t

TΓ(α)

∫ T

0

(T − s)α−1σ(s)ds

−
(
t

T
− 1
)∫ T

0

ρ1(s)ds+
t

T

∫ T

0

ρ2(s)ds,
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if and only if y is a solution of the following fractional BVP
cDαy(t) = σ(t), 1 < α < 2, t ∈ J,
y(0) =

∫ T
0
ρ1(s)ds,

y(T ) =
∫ T
0
ρ2(s)ds.

(2.1)

As a consequence of Lemmas 2.7, we have the following result which is useful in
what follows.

Lemma 2.8. A function y ∈ C(J,X) is a solution of the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds− t

TΓ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds

−
(
t

T
− 1
)∫ T

0

g(s, y(s))ds+
t

T

∫ T

0

h(s, y(s))ds,

if and only if y is a solution of the fractional BVP (1.1).

Lemma 2.9. (Bochner theorem, [6]) A measurable function f : J → X is Bochner
integrable if ‖f‖ is Lebesgue integrable.

Lemma 2.10. (Mazur lemma, [6]) If K is a compact subset of X, then its convex
closure convK is compact.

Lemma 2.11. (Ascoli-Arzela theorem, [22]) Let S = {s(t)} is a function family of
continuous mappings s : [a, b] → X. If S is uniformly bounded and equicontinu-
ous, and for any t∗ ∈ [a, b], the set {s(t∗)} is relatively compact, then there exists a
uniformly convergent function sequence {sn(t)}(n = 1, 2, · · · , t ∈ [a, b]) in S.

Theorem 2.12. (Schaefer’s fixed point theorem, [22]) Let F : X → X completely
continuous operator. If the set

E(F ) = {x ∈ X : x = λFx for some λ ∈ [0, 1]}

is bounded, then F has fixed points.

Theorem 2.13. (Nonlinear alternative of Leray-Schauder type, [12]) Let C a
nonempty convex subset of X. Let U a nonempty open subset of C with 0 ∈ U
and F : U → C compact and continuous operators. Then either

(i) F has fixed points.
(ii) There exist y ∈ ∂U and λ∗ ∈ [0, 1] with y = λ∗F (y).

3. Gronwall inequality with some mixed integral terms
for a priori bounds

The method of a priori bounds has been often used together with the coincidence
fixed point theorems in order to prove the existence of solutions for some BVP (or IVP)
for integer nonlinear differential equations or nonlinear partial differential equations.
See, for example, Crăciun and Lungu [10], Lungu [15, 16], Rus [20, 21], Wang et al.
[24, 25]. To apply the Schaefer fixed point theorem to prove the existence of solutions
of the fractional BVP (1.1), we need a new generalized Gronwall inequality with
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some mixed integral terms. It will play the key role in the study of BVP for a class
of fractional differential equations of the order α ∈ (1, 2) via fixed point methods.

Recall a generalized Gronwall inequality which appeared in our earlier work [24].

Lemma 3.1. (Lemma 2, [24]) Let y ∈ C(J,X) satisfy the following inequality:

‖y(t)‖ ≤ a+ b

∫ t

0

‖y(θ)‖λ1dθ + c

∫ T

0

‖y(θ)‖λ2dθ, t ∈ J,

where λ1 ∈ [0, 1], λ2 ∈ [0, 1), a, b, c ≥ 0 are constants. Then there exists a constant
M∗ > 0 such that

‖y(t)‖ ≤M∗.

Using Lemma 3.1, we can obtain the following generalized Gronwall inequality with
some mixed integral terms.

Lemma 3.2. Let y ∈ C(J,X) satisfy the following inequality:

‖y(t)‖ ≤ a+ b

∫ t

0

(t− s)α−1‖y(s)‖λ1ds (3.1)

+c
∫ T

0

(T − s)α−1‖y(s)‖λ2ds

+d
∫ T

0

‖y(s)‖λ3ds+ e

∫ T

0

‖y(s)‖λ4ds,

where α ∈ (1, 2), a, b, c, d, e ≥ 0 are constants, λ1 ∈ [0, 1 − 1
p ], λ2 ∈ [0, 1 − 1

p ),

λ3, λ4 ∈ [0, 1), and for some p > 1, T > 0 such that Tp(α−1)+1

p(α−1)+1 ≥ 1.
Then there exists a constant M∗∗ > 0 such that

‖y(t)‖ ≤M∗∗.

Proof. Let

x(t) =
{

1, ‖y(t)‖ ≤ 1,
y(t), ‖y(t)‖ > 1. (3.2)

It follows from (3.1), (3.2) and Hölder inequality that

‖y(t)‖ ≤ ‖x(t)‖ ≤ (a+ 1) + b

∫ t

0

(t− s)α−1‖x(s)‖λ1ds

+c
∫ T

0

(T − s)α−1‖x(s)‖λ2ds+ d

∫ T

0

‖x(s)‖λ3ds+ e

∫ T

0

‖x(s)‖λ4ds.

≤ (a+ 1) + b

(∫ t

0

(t− s)p(α−1)ds

) 1
p
(∫ t

0

‖x(s)‖
λ1p
p−1 ds

) p−1
p

+ c

(∫ T

0

(T − s)p(α−1)ds

) 1
p
(∫ T

0

‖x(s)‖
λ2p
p−1 ds

) p−1
p

+ d

∫ T

0

‖x(s)‖λ3ds + e

∫ T

0

‖x(s)‖λ4ds
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≤ (a+ 1) + b

[
T p(α−1)+1

p(α− 1) + 1

] 1
p
∫ t

0

‖x(s)‖
λ1p
p−1 ds

+c
[
T p(α−1)+1

p(α− 1) + 1

] 1
p
∫ T

0

‖x(s)‖
λ2p
p−1 ds+ d

∫ T

0

‖x(s)‖λ3ds+ e

∫ T

0

‖x(s)‖λ4ds

≤ (a+ 1) + b

[
T p(α−1)+1

p(α− 1) + 1

] 1
p
∫ t

0

‖x(s)‖
λ1p
p−1 ds + c

∫ T

0

‖x(s)‖λds

where c = max
{
c
[
Tp(α−1)+1

p(α−1)+1

] 1
p

, d, e

}
, λ = max

{
λ2p
p−1 , λ3, λ4

}
.

Applying Lemma 3.1, there exists a constant M∗∗ > 0 such that

‖y(t)‖ ≤ ‖x(t)‖ ≤M∗∗.

The proof is completed. �

Remark 3.3. For α ∈ (0, 1), we say that the inequality (3.1) is a new type Gronwall
inequality with some singular integral terms. In this case, the above priori estimate
result is also hold for some 1 < p < 1

1−α and T ≥ 1.

4. Existence results via fixed point method

Before stating and proving the main results, we introduce the following hypotheses.
(H1) For any u ∈ X, f(t, u) is strongly measurable with respect to t on J and

for any t ∈ J , f(t, u) is continuous with respect to u on X. g, h : J × X → X are
continuous functions.

(H2) There exists a constant α1 ∈ (0, α − 1) and real valued function m1(t) ∈
L

1
α1 (J,R+) such that

‖f(t, u1)− f(t, u2)‖ ≤ m1(t)‖u1 − u2‖, for each t ∈ J, and all u1, u2 ∈ X.

(H3) There exists a constant α2 ∈ (0, α − 1) and real valued function m2(t) ∈
L

1
α2 (J,R+) such that

‖g(t, u1)− g(t, u2)‖ ≤ m2(t)‖u1 − u2‖, for each t ∈ J, and all u1, u2 ∈ X.

(H4) There exists a constant α3 ∈ (0, α − 1) and real valued function m3(t) ∈
L

1
α3 (J,R+) such that

‖h(t, u1)− h(t, u2)‖ ≤ m3(t)‖u1 − u2‖, for each t ∈ J, and all u1, u2 ∈ X.

(H5) There exists a constant α4 ∈ (0, α − 1) and real valued function m4(t) ∈
L

1
α4 (J,R+) such that

‖f(t, u)‖ ≤ m4(t), for each t ∈ J, and all u ∈ X.

For brevity, let
Mi = ‖mi‖

L
1

αi (J,R+)
, i = 1, 2, 3, 4.

Our first result is based on Banach contraction principle.
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Theorem 4.1. Assume that (H1)–(H5) hold. Then the system (1.1) has a unique
solution on J provided that the function Ω : J → R+ such that

Ω(t) =
2M1t

α−α1

Γ(α)(α−α1
1−α1

)1−α1
+M2 +M3 ≤ ω < 1, t ∈ J. (4.1)

Proof. Firstly, according to the conditions (H1), it is easy to obtain that f(t, y(t)) is
a measurable function on J . In light of Hölder inequality and (H5), we obtain that∫ t

0

∥∥(t− s)α−1f(s, y(s))
∥∥ ds ≤ Tα−α4M4

(α−α4
1−α4

)1−α4
.

Thus, ‖(t − s)α−1f(s, y(s))‖ is Lebesgue integrable with respect to s ∈ [0, t] for all
t ∈ J and y ∈ C(J,X). Then (t− s)α−1f(s, y(s)) is Bochner integrable with respect
to s ∈ [0, t] for all t ∈ J due to Lemma 2.9.

Hence, the fractional BVP (1.1) is equivalent to the following fractional integral
equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds− t

TΓ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds

−(
t

T
− 1)

∫ T

0

g(s, y(s))ds+
t

T

∫ T

0

h(s, y(s))ds.

Since g, h : J ×X → X are continuous functions, we set

G =
∫ T

0

‖g(s, y(s))‖ds, H =
∫ T

0

‖h(s, y(s))‖ds.

Choose

r ≥ 2Tα−α4M4

Γ(α)(α−α4
1−α4

)1−α4
+G+H,

and define Br := {y ∈ C(J,X) : ‖y‖ ≤ r}.
Now we define the operator F on Br as follows

(Fy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds− t

TΓ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds

− (
t

T
− 1)

∫ T

0

g(s, y(s))ds+
t

T

∫ T

0

h(s, y(s))ds. (4.2)

Therefore, the existence of a solution of the fractional BVP (1.1) is equivalent to that
the operator F has a fixed point on Br. We shall use the Banach contraction principle
to prove that F has a fixed point. The proof is divided into two steps.

Step 1. Fy ∈ C(J,X) for every y ∈ Br.



514 JINRONG WANG, LINLI LV AND YONG ZHOU

For every y ∈ Br and any δ > 0, by the condition (H5) and Hölder inequality, we
get

‖(Fy)(t+ δ)− (Fy)(t)‖

≤ 1
Γ(α)

(∫ t

0

[(t− s)α−1 − (t+ δ − s)α−1]
1

1−α4 ds

)1−α4 (∫ t

0

(m4(s))
1

α4 ds

)α4

+
1

Γ(α)

(∫ t+δ

t

(t+ δ − s)
α−1
1−α4 ds

)1−α4
(∫ t+δ

t

(m4(s))
1

α4 ds

)α4

+
δ

TΓ(α)

(∫ T

0

(T − s)
α−1
1−α4 ds

)1−α4
(∫ T

0

(m4(s))
1

α4 ds

)α4

+
δ

T
G+

δ

T
H

≤ M4

Γ(α)(α−α4
1−α4

)1−α4

(
3δα−α4 + Tα−α4−1δ

)
+
δ

T
G+

δ

T
H.

As δ → 0, the right-hand side of the above inequality tends to zero. Therefore, F is
continuous on J , i.e., Fy ∈ C(J,X).

Moreover, for y ∈ Br and all t ∈ J , we get

‖(Fy)(t)‖ ≤ 1
Γ(α)

∫ t

0

(t− s)α−1m4(s)ds+
1

Γ(α)

∫ T

0

(T − s)α−1m4(s)ds

+
∫ T

0

‖g(s, y(s))‖ds+
∫ T

0

‖h(s, y(s))‖ds

≤ 1
Γ(α)

(∫ t

0

(t− s)
α−1
1−α4 ds

)1−α4 (∫ t

0

(m4(s))
1

α4 ds

)α4

+
1

Γ(α)

(∫ T

0

(T − s)
α−1
1−α4 ds

)1−α4
(∫ T

0

(m4(s))
1

α4 ds

)α4

+
∫ T

0

‖g(s, y(s))‖ds+
∫ T

0

‖h(s, y(s))‖ds

≤ 2Tα−α4M4

Γ(α)(α−α4
1−α4

)1−α4
+G+H

≤ r,

which implies that ‖Fy‖∞ ≤ r. Thus, we can conclude that for all y ∈ Br, Fy ∈ Br.
i.e., F : Br → Br.

Step 2. F is a contraction mapping on Br.
For x, y ∈ Br and any t ∈ J , using the conditions (H2)–(H4) and Hölder inequality,

‖(Fx)(t)− (Fy)(t)‖ ≤ ‖x− y‖∞
Γ(α)

(∫ t

0

(t− s)
α−1
1−α1 ds

)1−α1 (∫ t

0

(m1(s))
1

α1 ds

)α1
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+
‖x− y‖∞

Γ(α)

(∫ T

0

(T − s)
α−1
1−α1 ds

)1−α1
(∫ T

0

(m1(s))
1

α1 ds

)α1

+‖x− y‖∞
∫ T

0

m2(s)ds+ ‖x− y‖∞
∫ T

0

m3(s)ds

≤ 2
Γ(α)

M1T
α−α1

(α−α1
1−α1

)1−α1
‖x− y‖∞ +M2‖x− y‖∞ +M3‖x− y‖∞ ≤ ω‖x− y‖∞.

So we obtain

‖Fx− Fy‖∞ ≤ ω‖x− y‖∞.

Thus, F is a contraction due to the condition (4.1).
By Banach contraction principle, we can deduce that F has an unique fixed point

which is just the unique solution of the fractional BVP (1.1). �
Our second result is based on the well known Schaefer’s fixed point theorem via

sublinear growth conditions and Lemma 3.2.
We make the following assumptions:
(H6) The functions f, g, h : J ×X → X are continuous.
(H7) There exist constants λ1 ∈ [0, 1− 1

p ) for some p, T satisfy Tp(α−1)+1

p(α−1)+1 ≥ 1 and
N1 > 0 such that

‖f(t, u)‖ ≤ N1(1 + ‖u‖λ1) for each t ∈ J and all u ∈ X.

(H8) There exist constants λ2 ∈ [0, 1) and N2 > 0 such that

‖g(t, u)‖ ≤ N2(1 + ‖u‖λ2) for each t ∈ J and all u ∈ X.

(H9) There exist constants λ3 ∈ [0, 1) and N3 > 0 such that

‖h(t, u)‖ ≤ N3(1 + ‖u‖λ3) for each t ∈ J and all u ∈ X.

(H10) For every t ∈ J , the sets Kf =
{
(t − s)α−1f(s, y(s)) : y ∈ C(J,X), s ∈

[0, t]
}
, and Kg =

{
g(s, y(s)) : y ∈ C(J,X), s ∈ [0, t]

}
, and Kh =

{
h(s, y(s)) : y ∈

C(J,X), s ∈ [0, t]
}

are relatively compact.

Theorem 4.2. Assume that (H6)–(H10) hold. Then the fractional BVP (1.1) has at
least one solution on J .

Proof. Transform the fractional BVP (1.1) into a fixed point problem. Consider the
operator F : C(J,X) → C(J,X) defined as (4.2). It is obvious that F is well defined
due to (H6).

For the sake of convenience, we subdivide the proof into several steps.
Step 1. F is continuous.
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Let {yn} be a sequence such that yn → y in C(J,X). Then for each t ∈ J , we have

‖(Fyn)(t)− (Fy)(t)‖

≤ ‖f(·, yn(·))− f(·, y(·))‖∞
Γ(α)

[∫ t

0

(t− s)α−1ds+
∫ T

0

(T − s)α−1ds

]
+T‖g(·, yn(·))− g(·, y(·))‖∞ + T‖h(·, yn(·))− h(·, y(·))‖∞

≤ 2Tα

Γ(α+ 1)
‖f(·, yn(·))− f(·, y(·))‖∞ + T‖g(·, yn(·))− g(·, y(·))‖∞

+T‖h(·, yn(·))− h(·, y(·))‖∞.
Since f, g, h are continuous, we have

‖Fyn − Fy‖∞ ≤ 2Tα

Γ(α+ 1)
‖f(·, yn(·))− f(·, y(·))‖∞

+ T‖g(·, yn(·))− g(·, y(·))‖∞ + T‖h(·, yn(·))− h(·, y(·))‖∞
→ 0 as n→∞.

Step 2. F maps bounded sets into bounded sets in C(J,X).
Indeed, it is enough to show that for any η∗ > 0, there exists a ` > 0 such that for

each y ∈ Bη∗ = {y ∈ C(J,X) : ‖y‖∞ ≤ η∗}, we have ‖Fy‖∞ ≤ `.
For each t ∈ J , using the conditions (H7)–(H9), we get

‖(Fy)(t)‖ ≤ 1
Γ(α)

∫ t

0

(t− s)α−1N1(1 + ‖y(s)‖λ1)ds

+
1

Γ(α)

∫ T

0

(T − s)α−1N1(1 + ‖y(s)‖λ1)ds

+
∫ T

0

N2(1 + ‖y(s)‖λ2)ds+
∫ T

0

N3(1 + ‖y(s)‖λ3)ds

≤ 2N1T
α

Γ(α+ 1)
[1 + (η∗)λ1 ] +N2T [1 + (η∗)λ2 ] +N3T [1 + (η∗)λ3 ],

which implies that

‖Fy‖∞ ≤ 2N1T
α

Γ(α+ 1)
[1 + (η∗)λ1 ] +N2T [1 + (η∗)λ2 ] +N3T [1 + (η∗)λ3 ] := `.

Step 3. F maps bounded sets into equicontinuous sets of C(J,X).
Let 0 ≤ t1 < t2 ≤ T , y ∈ Bη∗ , using the condition (H7), we have

‖(Fy)(t2)− (Fy)(t1)‖ ≤
N1(1 + (η∗)λ1)

Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]ds

+
N1(1 + (η∗)λ1)

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

+
(t2 − t1)N1(1 + (η∗)λ1)

TΓ(α)

∫ T

0

(T − s)α−1ds

+ (t2 − t1)N2(1 + (η∗)λ2) + (t2 − t1)N3(1 + (η∗)λ3)
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≤ N1(1 + (η∗)λ1)
Γ(α+ 1)

(tα2 − tα1 + 2(t2 − t1)α) +
(t2 − t1)N1(1 + (η∗)λ1)Tα−1

Γ(α+ 1)

+ (t2 − t1)N2(1 + (η∗)λ2) + (t2 − t1)N3(1 + (η∗)λ3).

As t2 → t1, the right-hand side of the above inequality tends to zero, therefore F is
equicontinuous.

Now, let {yn}, n = 1, 2, · · · be a sequence on Bη∗ , and

(Fyn)(t) = (F1yn)(t) + (F2yn)(t) + (F3yn)(t), t ∈ J.

where

(F1yn)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, yn(s))ds, t ∈ J,

(F2yn)(t) = − t

TΓ(α)

∫ T

0

(T − s)α−1f(s, yn(s))ds, t ∈ J,

(F3yn)(t) = −(
t

T
− 1)

∫ T

0

g(s, yn(s))ds+
t

T

∫ T

0

h(s, yn(s))ds, t ∈ J.

In view of the condition (H10) and Lemma 2.10, we know that convKf is compact.
For any t∗ ∈ J ,

(F1yn)(t∗) =
1

Γ(α)

∫ t∗

0

(t∗ − s)α−1f(s, yn(s))ds

=
1

Γ(α)
lim
k→∞

k∑
i=1

t∗

k
(t∗ − it∗

k
)α−1f(

it∗

k
, yn(

it∗

k
))

=
t∗

Γ(α)
ξ̃n,

where

ξ̃n = lim
k→∞

k∑
i=1

1
k

(t∗ − it∗

k
)α−1f(

it∗

k
, yn(

it∗

k
)).

Since convKf is convex and compact, we know that ξ̃n ∈ convKf . Hence, for any t∗ ∈
J , the set {(F1yn)(t∗)} is relatively compact. From Lemma 2.11, every {(F1yn)(t)}
contains a uniformly convergent subsequence {(F1ynk

)(t)}, k = 1, 2, · · · on J . Thus,
the set {F1y : y ∈ Bη∗} is relatively compact.

Set

(F 2yn)(t) = − t

TΓ(α)

∫ t

0

(t− s)α−1f(s, yn(s))ds, t ∈ J,

and for any t∗ ∈ J ,

(F 2yn)(t∗) = − t∗

TΓ(α)

∫ t∗

0

(t∗ − s)α−1f(s, yn(s))ds = − (t∗)2

TΓ(α)
ξ̃n.

Since ξ̃n ∈ convKf , for any t∗ ∈ J , the set {(F 2yn)(t∗)} is relatively compact. From
Lemma 2.11 again, every {(F 2yn)(t)} contains a uniformly convergent subsequence
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{(F 2ynk
)(t)}, k = 1, 2, · · · on J . Particulary, {(F2yn)(t)} contains a uniformly con-

vergent subsequence {(F2ynk
)(t)}, k = 1, 2, · · · on J . Thus, the set {F2y : y ∈ Bη∗}

is relatively compact.
Similarly, one can verifty the set {F3y : y ∈ Bη∗} is relatively compact due to the

condition (H10) again. As a result, the set {Fy : y ∈ Bη∗} is relatively compact.
As a consequence of Step 1–3, we can conclude that F is continuous and completely

continuous.
Step 4. A priori bounds.
Now it remains to show that the set

E(F ) = {y ∈ C(J,X) : y = λ∗Fy, for some λ∗ ∈ [0, 1]}

is bounded.
Let y ∈ E(F ), then y = λ∗Fy for some λ∗ ∈ [0, 1]. Thus, for each t ∈ J , we have

y(t) = λ∗
(

1
Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds

− t

TΓ(α)

∫ T

0

(T − s)α−1f(s, y(s))ds

− (
t

T
− 1)

∫ T

0

g(s, y(s))ds+
t

T

∫ T

0

h(s, y(s))ds
)
.

For each t ∈ J , we have

‖y(t)‖ ≤ 2N1T
α

Γ(α+ 1)
+ TN2 + TN3 +

N1

Γ(α)

∫ t

0

(t− s)α−1‖y(s)‖λ1ds

+
N1

Γ(α)

∫ T

0

(T − s)α−1‖y(s)‖λ1ds

+ N2

∫ T

0

‖y(s)‖λ2ds+N3

∫ T

0

‖y(s)‖λ3ds.

Applying the Lemma 3.2, there exists a M∗∗ > 0 such that

‖y(t)‖ ≤M∗∗, t ∈ J.

which implies that
‖y‖∞ ≤M∗∗.

This shows that the set E(F ) is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that F has a fixed point which is a solution of the fractional BVP
(1.1). �

In the following theorem we apply the nonlinear alternative of Leray-Schauder type
to derive the existence results for the solution of the fractional BVP (1.1).

We need the following conditions.
(H11) There exist a constant β1 ∈ (0, α − 1), real valued function φf (t) ∈

L
1

β1 (J,R+) and continuous and nondecreasing ψ : [0,+∞) → (0,+∞) such that

‖f(t, u)‖ ≤ φf (t)ψ(‖u‖) for each t ∈ J and all u ∈ X.
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(H12) There exist a constant β2 ∈ (0, α − 1), real valued function φg(t) ∈
L

1
β2 (J,R+) and continuous and nondecreasing ψ∗ : [0,+∞) → (0,+∞) such that

‖g(t, u)‖ ≤ φg(t)ψ∗(‖u‖) for each t ∈ J and all u ∈ X.

(H13) There exist a constant β3 ∈ (0, α − 1), real valued function φh(t) ∈
L

1
β3 (J,R+) and continuous and nondecreasing ψ∗∗ : [0,+∞) → (0,+∞) such that

‖h(t, u)‖ ≤ φh(t)ψ∗∗(‖u‖) for each t ∈ J and all u ∈ X.

(H14) There exists a constant N∗ > 0 such that

N∗

2ψ(N∗)Tα−β1 (1−β1)1−β1ϑ
Γ(α)(α−β1)1−β1

+ aψ∗(N∗) + bψ∗∗(N∗)
> 1, (4.3)

where ϑ = ‖φf‖
L

1
β1 (J,R+)

, a =
∫ T
0
φg(s)ds, b =

∫ T
0
φh(s)ds.

Theorem 4.3. Assume that (H6), (H10)–(H14) hold. Then the fractional BVP (1.1)
has at least one solution.

Proof. Consider the operator F defined in Theorem 4.1. In Theorem 4.2, we have
shown that F is continuous and completely continuous. Repeating the same process
in Step 4 in Theorem 4.2, using Hölder inequality again, for each t ∈ J , we have

‖y(t)‖ ≤ ψ(‖y‖∞)
Γ(α)

(∫ t

0

(t− s)
α−1
1−β1 ds

)1−β1 (∫ t

0

(φf (s))
1

β1 ds

)β1

+
ψ(‖y‖∞)

Γ(α)

(∫ T

0

(T − s)
α−1
1−β1 ds

)1−β1
(∫ T

0

(φf (s))
1

β1 ds

)β1

+ ψ∗(‖y‖∞)
∫ T

0

φg(s)ds+ ψ∗∗(‖y‖∞)
∫ T

0

φh(s)ds

≤ 2ψ(‖y‖∞)Tα−β1(1− β1)1−β1ϑ

Γ(α)(α− β1)1−β1
+ aψ∗(‖y‖∞) + bψ∗∗(‖y‖∞).

Thus we have

‖y‖∞
2ψ(‖y‖∞)Tα−β1 (1−β1)1−β1ϑ

Γ(α)(α−β1)1−β1
+ aψ∗(‖y‖∞) + bψ∗∗(‖y‖∞)

≤ 1.

Because of the condition (H14), there exists a N∗ > 0 such that ‖y‖∞ 6= N∗.
Let U = {y ∈ C(J,X) : ‖y‖∞ < N∗}. The operator F : U → C(J,X) is continuous

and completely continuous. From the choice of U , there is no y ∈ ∂U such that
y = λ∗F (y), λ∗ ∈ [0, 1]. As a consequence of the nonlinear alternative of Leray-
Schauder type, we deduce that F has a fixed point y ∈ U , which implies that the
fractional BVP (1.1) has at least one solution y ∈ C(J,X). �
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5. Example

We consider the following BVP with integral conditions of fractional differential
equation 

cDαy(t) = 1
L+et

|y(t)|
1+|y(t)| , α ∈ (1, 2), t ∈ J = [0, T ], L > 0,

y(0) =
∫ T
0

λ1|y(s)|
1+|y(s)|ds, λ1 > 0,

y(T ) =
∫ T
0

λ2|y(s)|
1+|y(s)|ds, λ2 > 0.

(5.1)

For all (t, y) ∈ J ×X, set

f(t, y) =
1

L+ et
|y|

1 + |y|
, g(t, y) =

λ1|y|
1 + |y|

, h(t, y) =
λ2|y|

1 + |y|
.

Let y1, y2 ∈ X and t ∈ J , we have

‖f(t, y1)− f(t, y2)‖ ≤ m1(t)‖y1 − y2‖, m1(t) :=
1

1 + L
,

‖g(y1)− g(y2)‖ ≤ m2(t)‖y1 − y2‖, m2(t) := λ1,

‖h(y1)− h(y2)‖ ≤ m3(t)‖y1 − y2‖, m3(t) := λ2,

‖f(t, y)‖ ≤ m4(t), m4(t) :=
1

1 + L
, for all y ∈ X and each t ∈ J.

It is obviously that our assumptions in Theorem 4.1 can be satisfied by choosing
a sufficient large L, small enough T , λ1, λ2 and some αi ∈ (0, α− 1), i = 1, 2, 3 such
that

2‖ 1
1+L‖L

1
α1 (J,R+)

Tα−α1

Γ(α)(α−α1
1−α1

)1−α1
+ ‖λ1‖

L
1

α2 (J,R+)
+ ‖λ2‖

L
1

α3 (J,R+)
< 1. (5.2)

For example: set

T =
√
π, α =

3
2
, α1 = α2 = α3 =

1
3
, L = 99, λ1 = λ2 =

2
25
×
(

4
7

) 2
3

× π
1
4

and note that Γ( 3
2 ) =

√
π

2 , then

the condition (5.2) ⇐⇒ 5
25
×
(

4
7

) 2
3

× π
1
4 < 1 ⇐⇒ 4

7
<

(
5
4
√
π

) 3
2

.

It is obvious that 54 > π which implies that
(

5
4√π

) 3
2
> 1, then the condition (5.2)

holds. Therefore, the problem (5.1) has an unique solution. �
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