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space are obtained. Existence of a common solution for a class of functional equations arising in
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1. INTRODUCTION

Generalizing the classical Banach contraction theorem (Bct) and some other results
by Chatterjea [5], Hardy and Rogers [8], Kannan [10], Reich [15], Rus [17] and others,
Wong [24] obtained the following common fixed point theorem for a pair of maps on
a complete metric space.

Theorem 1.1 Let S and T be maps from a complete metric space (X,d) to itself.
Suppose that their exist nonnegative real numbers ay,as,as, ay, as which satisfy

(1) ay+ a2 +az+ag+as < 1,‘

(ii) a9 = a3 or ag = as.
Assume for each x,y € X,
(iii) d(Sz,Ty) < ard(z,y) + asd(x, Sz) + aszd(y, Ty) + asd(z, Ty) + asd(y, Szx).
Then S and T have a unique common fized point.

Recently Suzuki [23] obtained a forceful generalization of the Bet. It has several
important outcomes and applications (see, for instance, [6, 7, 11, 12, 14, 20, 22]). The
following generalization of the Bct is essentially due to Mot and Petrusel [12].
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Theorem 1.2 Let T be a map from a complete metric space X into itself. Suppose
that their exist nonnegative real numbers ay, as, az such that a1 +as+az < 1. Assume,

for each z,y € X,
((1 — ag —a3)

Tt ) d(z, Tx) < d(z,y)
implies
d(Tz, Ty) < ard(z,y) + agd(x, Tx) + azd(y, Ty).
Then T has a unique fized point.
The purpose of this paper is to obtain a generalization of Theorems 1.1 and 1.2.
Applications regarding the existence of common solutions of certain functional equa-
tions are also discussed.

2. COMMON FIXED POINT THEOREMS

We begin with the following result.
Theorem 2.1 Let S and T be maps from a complete metric space X to itself. Suppose
that there exist nonnegative real numbers ai,as,as,aq,as which satisfy (i) and (ii).
Assume for each xz,y € X,

Bmin{d(z, Sz),d(y,Ty)} < d(z,y) implies (iii), (2.1)

1 — a0 — s — a4 —
where = (1—az — a5 — ay — as) .
(1+a1+as+as)
Then S and T have a unique common fized point.
Proof. Pick g € X. Construct a sequence z,in X such that

Tont1 = STon, Tont2 = Txopt1, n=0,1,2,....
If, for any n, d(x2n, Tant+1) < d(Tont1, Tant2), then
Bmin{d(za,, Sxan), d(xan+1, Txont1)} = Bmin{d(xan, Tant1), d(Tont1, Toni2)}
= [Bd(x2n, T2n+1)
< d(xon, Tant1)-
If, for any n, d(x2n+1, Tant2) < d(@2n, Tant1), then
Bmin{d(za,, Sxan), d(xan+1, TTont1)} = Bmin{d(zan, Tant1), d(Tont1, Tani2)}
= Bd(x2n+1, T2n+2)
< d(®2n41, Tant2)
< d(2n, Tant1)-
Hence, in either case by (2.1),
d(xon+t1, Tant2) = d(Stan, TTont1)
< a1d(T2n, Tang1) + a2d(Ton, STon) + a3d(T2nq1, TT2n41)
+ agd(zan, TTont1) + asd(x2n11, STopn)
= a1d(T2n, Tant1) + a2d(Ton, Tant1) + azd(T2ny1, Tant2)

+ asd(Zon, Tont1) + a5d(T2p41, Tant2)-
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This yields

d(zant1, Tant2) < 1 d(Xon, Tont1), (2.2)
where p — (a1t a2 +as)
(1 —as — a4)
Analogously
d(Tony2, Tant3) < 8 d(Tant1, Tang2), (2.3)
where s — (artas+as)

1-— ag — (L5>
Therefore inductively by (2.2) and (2.3),

d(xont1, Tante) < r(rs)"d(xo,z1) and d(xont2,Tants) < (rs)”“d(xo,xl).

Since rs < 1 and

Z d(:cTL?xn‘i‘l) S (1 + T) Z(rs)”d(xo,zl),
n=0 n=0

{z,} is Cauchy sequence. Since the space X is complete, it has a limit in X. Call
it z.

Now we show that z is fixed point of S. Let IV be the set of natural numbers.

Since x,, — z, there exists ng € N such that

1
d(z,z,) < gd(z,y) for y# 2z and all n > no.
Then as in [23, p. 1862] and [12, p. 3376]
Bd(z2n, Sw2n) < d(z2n, ST2n)

(
(x2n7 x2n+1)
(

Ton, 2) + d(2, Tani1)

IN I
SV

IN
| Do

d(z,y)

(0) - 5d(z0)
(z,y) — d(xan, 2)
< d(z2n,9)- (2.4)
If d(x2n, Stan) < d(y, Ty) then by (2.4),
Bmin{d(zan, Sxan), d(y, Ty)} < d(z2n,y)-

If d(y, Ty) < d(x2n, Say), then again by (2.4),

Bmin{d(z2n, Sxan), d(y, Ty)} = Bd(y, Ty)
< Bd(w2n, ST2n)
< d(w2n,y).

AN CIN
QoA A ow

So for any n € N,
ﬁ min{d(x?na San)v d(y7 Ty)} S d(xQna y)
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Hence by (2.1),
d(Sz2n, Ty) < ard(z2n,y) + azd(z2n, ST2,) + azd(y, Ty)
+ a4d(n, Ty) + asd(y, Stay)
= a1d(@2n, y) + a2d(z2n, T2n+1) + asd(y, Ty)
+ a4d(2n, Ty) + as5d(y, Tont1).
Making n — oo,

d(zv Ty) < (al + a5)d(z7 y) + a3d(yu Ty) + a4d(z7 Ty)

Therefore
d(y,Ty) < d(z,y) +d(z,Ty)
< (T + a1 +as)d(z,y) + asd(y, Ty) + asd(z, Ty)
< (T + a1 +as5)d(z,y) + asd(y, Ty) + asd(z,y) + asd(y, Ty).
This gives
(1 —as — a4) )
d(y, Ty) < d )
<(1+a1+a4+a5) (y, Ty) < d(z,y)
Therefore
(1 — as — (14) )
d(y, Ty) < d(y, Ty) < d(z,y).
pd(y, Ty) < <(1+a1+a4+a5) (y, Ty) < d(z,y)

Now we consider two cases.
(I) Suppose min{d(z, Sz),d(y,Ty)} = d(y, Ty).
Then by (2.5),

Bmin{d(z, 5z),d(y, Ty)} < d(z,y),
and by (2.1),
d(Sz,Ty) < a1d(z,y) + asd(z,Sz) + asd(y, Ty) + asd(z, Ty) + asd(y, Sz).
Taking y = 9,41, this gives
d(Sz, Trant1) < a1d(z,xon11) + a2d(z,52) + asd(xan+1, TT2n+1)
+ aqd(z, Txont1) + asd(zony1,52).
Making n — oo,
d(z,5%) < azd(z,Sz) + asd(z, Sz).

This proves Sz = z.
(IT) Suppose min{d(z, Sz),d(y,Ty)} = d(z, Sz).
Then by (2.5),

Bmin{d(z, Sz),d(y,Ty)} = Bd(z,Sz) < pd(y, Ty) < d(z,y).
')

We shall use the obvious fact of this case, viz., fd(z,Sz) < d(z,y) as well.
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Therefore by (2.1),

d(Sz,Ty) < ard(z,y) + azd(z, Sz) + azd(y, Ty) + asd(z, Ty) + azd(y, Sz)
< ard(z,y) + %d(z, y) + asd(y, Ty) + asd(z, Ty) + asd(y, S2).

Taking y = x9,+1 in this relation and passing to the limit, we obtain d(Sz,z) <
asd(z,Sz), and z is a fixed point of S.

Thus we have shown that z is a fixed point of S in both the cases. Analogously, we
can prove that z is a fixed point of T' as well.

Assume that y is another common fixed point of S and 7T". Then as

Bmin{d(z, Sz),d(y, Ty)} =0 < d(z,y).
We have by (2.1),
d(z,y) = d(Sz,Ty) < ard(z,y) + azd(z, Sz) + azd(y, Ty) + asd(z, Ty) + asd(y, Sz)
< (Cl,l + a4 + a5)d(2, y)7

yielding z = y.
This completes the proof.
Corollary 2.1 Theorem 1.2.
Proof. Tt comes from Theorem 2.1 when S =T and a4 = a5 = 0.

The following result is a generalization of Theorem 1.2 and certain results from
[8, 9, 15, 16, 18] and others.
Corollary 2.2 Let T be a map from a complete metric space X to itself. Suppose

that there exist nonnegative real numbers ay,as, as, aq,as which satisfy (i) and (ii).
Assume, for each x,y € X,

Bd(x, Tx) < d(z,y)
implies
d(Tz,Ty) < ard(z,y) + azd(z, Tx) + azd(y, Ty) + asd(z, Ty) + asd(y, T'z),

(1—a2—a3—a4—a5)>
14+ar+as+as) )

Then T has a unique fized point.

Proof. It comes from Theorem 2.1 when S =T.

The following example shows the generality of Theorem 2.1 over Theorem 1.1.
Example 2.1 Let X = {(1,1),(1,4),(4,1),(4,5),(5,4)} and d is defined by
dl(z1,22), (y1,92)] = |1 — y1| + |r2 — y2l.

Let S and T be such that

r1,1) ifz <z
st - [l 5

(1,x2) if z1 > o
Then S and T do not satisfy the condition (iii) of Theorem 1.1 at z = (4,5), y = (4,5).
However, this is readily verified that all the hypotheses of Theorem 2.1 are satisfied
for the maps S and T'.
We remark that, by virtue of symmetry in the contractive condition (iii), one may
take ay = a3 and ag = a5 (see, for instance, [8, 16, 17] and [18, p. 98]). So, we

where 3 =

(1,%1) if T < To

d T(xy,z5) =
an (fL'l 1'2) {(172,1) if ©1 > a9
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have the following result generalizing several common fixed point theorems (see, for
instance, Rus [18, Theorem 9.8.1]).

Theorem 2.2 Let S and T be maps from a complete metric space X to itself. Suppose
that there exist nonnegative real numbers a, b, ¢ which satisfy

(iv) a+2b+2c < 1.
Assume for each x,y € X,

ymin{d(z, Sx),d(y, Ty)} < d(z,y)
implies
(v) d(Sz,Ty) < ad(z,y) + bld(z, Sx) + d(y, Ty)] + cld(z, Ty) + d(y, Sz)],

where 4 = <<(11+ 2;’”2;)) .

Then S and T have a unique common fized point.

3. APPLICATIONS

In all that follows we assume that Y and Z are Banach spaces, W CY and D C Z.
Let R denote the field of reals, g1,92o : W x D — R and Hi,Hs : W x D X R —
R. Viewing W and D as the state and decision spaces respectively, the problem of
dynamic programming reduces to the problem of solving functional equations:

bi = Sug{gi($7y) +Hz(x7y7pl(x7y))}7 MRS VV7 1= 172 (31)
ye

In the multistage process, some functional equations arise in a natural way (cf.
Bellman [2] and Bellman and Lee [3] ; see also [1, 4, 13, 19]). The intent of this section
is to study the existence of the common solution of the functional equations (3.1).

Let B(W) denote the set of all bounded real-valued functions on W. For an
arbitrary h € B(W), define ||h|| = sup |h(z)|. Then (B(W),|| - ||) is a Banach space.

zeW
Suppose that the following conditions hold:

(DP-1) Hy, Hs, g1 and g5 are bounded.
(DP-2) Let a,b,c and 7 be defined as in Theorem 2.2. Assume for every (z,y) €
W x D, h,k e BW) and t € W,

ymin{|h(t) — A1h(t)], [k(t) — A2k(t)]} < [h(t) — k(t)]
implies
|Hy (2, y, h(t)) — Ha(z,y, k(t))]
< alh(t) — k()] + b[|h(t) — Arh(t)] + [k(t) — A2k(t)]]
+ c[|h(t) — Azk(t)] + |k(t) — A1h(t)|]
where A, Ay are defined as follows:

Aih(z) = sup Hi(z,y,h(z,y)), xze€W, he B(W), i=1,2.
yeD
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Theorem 3.1 Assume the conditions (DP-1) and (DP-2). Then the functional equa-
tions (3.1), i = 1,2, have a unique common solution in B(W).

Proof. For any h,k € B(W), let d(h, k) := sup{|h(z) — k(z)| : « € W}. Let X be any
arbitrary positive number and hy,hy € B(W). Pick x € W and choose y1,y2 € D
such that

Aihy < Hi(x,y5, hi(3)) + A, (3.2)

where z; = (z,y;), 1 = 1,2.
Further,

Arhy > Hy(x,y2, h(22)), (3.3)
Aghy > Ha(w,y1, ha(z1)).
Therefore, the first inequality in (DP-2) becomes
ymin{|hy (z) — Avha(z)], [ha(z) — Azha(z)|} < |ha(z) — ha(z)], (3.5)
and this together with (3.2) and (3.4) implies
Aihy = Ashy < Hi(z,y1, hi(1)) — Ha(z, y1, ha(z1)) + A
< [Hy(z,y1, ha(z1)) — Ha(z, y1, ho(21))] + A
< alhy(t) = ha(t)] + bl[h1(t) — Arha ()] + |ha(t) — A2ha(t)]]
+ c[|h1(t) — Asha(t)] + |he(t) — A1ha (B)]] + A (3.6)
Similarly, (3.2), (3.3) and (3.5) imply
Asha(x) — Arhi(x) < alha(t) — ha(t)] + b[|h1(t) — Arha ()] + |ha(t) — Azha(1)]]
+ c[[h1(t) — Asha(t)] + [h2(t) — Arha (8)]] + A. (3.7)
So from (3.6) and (3.7), we obtain
[Avhi(x) — Asha(2)| < alha(t) = ha(t)] + b[|h1 () — Arha(t)] 4 [ha(t) — Azha ()]
+ c[|h1(t) — Aaha(t)]| + |ha(t) — Arha (B)]] + A (3.8)

Since this inequality is true for any x € W, and A > 0 is arbitrary, on taking supremum
we find from (3.5) and (3.8) that

~ymin{d(hy, A1hy), d(hy, Ashs)} < d(hy, hs)
implies
d(A1hy, Asho) < alhi(t) — ho(t)| + b[|h1(t) — A1hy(¢)| + |ha(t) — Asha(¥)]]
+ [P (t) — A2ha ()] + |ha(t) — Arha ()],
that is
d(A1hi, Ashs) < ad(hy, he) + bld(h1, A1hy) + d(ha, Ashs)]
+ c[d(hy, Agha) + d(ha, Arhq)].

Therefore, Theorem 2.1 applies, wherein A; and As correspond respectively to the
maps S and T. So A; and A, have a unique common fixed point ~A*, that is, h*(z) is
the unique bounded common solution of the functional equations (3.1), i =1, 2.
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The following result is a variant of Singh and Mishra [21, Corollary 4.2] which in

turn extends certain results from [1, 3, 4].
Corollary 3.1 Suppose that the following conditions hold.

(i) G and g are bounded.

(i

i) There exists r € [0,1) such that for every (z,y) € W x D, h,k € B(W) and
teW,
ymin |h(t) — Kh(t)| < [h(t) — k(t)]

implies

G (2,y, h(t)) — Gz, y,k(1))| < alh(t) = k(B)] + 26[|h(t) — KR(t)] + |k(t) — KE@)]]

+ 2¢[|h(t) — KE(t)| + |k(t) — Kh(t)]].
where K is defined as

Kh(t) = Sgg{g(t,y) +G(t,y,h(t,y))}, teW,he BW).

Then the functional equation (3.1) with Hy = Hy = G and g1 = g2 = g possesses a
unique bounded solution in W.

Proof. Tt comes from Theorem 3.1 when g; = go = g and H; = H, = G.
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