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1. Introduction

In this paper, we are interested in the positive solution for fourth-order m-point
boundary value problems

x(4)(t) + f(t, x(t), x′(t), x′′(t), x′′′(t)) = 0, t ∈ [0, 1] (1.1)

x′′′(0) = 0, x′′(0) = 0, x′(0) = 0, x(1) =
m−2∑
i=1

βix(ξi) (1.2)

and 
x(4)(t) + f(t, x(t), x′(t), x′′(t), x′′′(t)) = 0, t ∈ [0, 1] (1.1)

x′′′(1) = 0, x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi) (1.3)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 < βi < 1, i = 1, 2, · · · ,m − 2,
m−2∑
i=1

βi < 1

and f ∈ C([0, 1]×R4, [0,+∞)).
It is well known that boundary value problems for nonlinear differential equations

arise in a large number problems in physics, biology and chemistry. For example,
the deformations of an elastic beam in the equilibrium state can be described as a
boundary value problem of some fourth-order differential equations. Owing to its
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importance in application, the existence of positive solutions for nonlinear second-
order or high-order boundary value problems have been studied by many authors.
We refer to recent contributions of Ma[1, 2, 3], He and Ge [4], Guo and Ge [5], R. I.
Avery et al.[6, 7], J. Henderson [8], P.W. Eloe and J. Henderson [9], Yang et al. [10],
J.R.L. Webb and G. Infante [11, 12], R.P. Agarwal and D. O’Regan [13]. For survey
of known results and additional references, we refer the reader to the monographs by
Agarwal [14] and Agarwal et al [15].

Equation (1.1), often referred to as the beam equation, has been studied under a
variety of two point boundary conditions, see in [16-24]. But few work is concerned
with the positive solutions with the m-point boundary conditions. Furthermore, for
nonlinear fourth-order equations, only the situation that the nonlinear term does not
depend on the first, second and third order derivatives are considered, see in [16-23].
Few paper deals with the situation that lower order derivatives are involved in the
nonlinear term explicitly. In fact, the derivatives are of great importance in problems
in some cases. For example, in the linear elastic beam equation (Euler-Bernoulli
equation)

(EIu′′(t))′′ = f(t), t ∈ (0, L),

where u(t) is the deformation function, L is the length of the beam, f(t) is the load
density, E is the Young’s modulus of elasticity and I is the moment of inertia of the
cross-section of the beam. In this problem, the physical meaning of the derivatives of
the function u(t) is as follows: u(4)(t) is the load density stiffness, u′′′(t) is the shear
force stiffness, u′′(t) is the bending moment stiffness and the u′(t) is the slope. If the
payload depends on the shear force stiffness, bending moment stiffness or the slope,
the derivatives of the unknown function are involved in the nonlinear term explicitly.

The goal of the present paper is to study the fourth-order multi-point boundary
value problems (1.1, 1.2) and (1.1, 1.3) which all order derivatives are involved in the
nonlinear term explicitly. In this sense, the problem studied in this paper are more
general than before. In order to overcome the difficulty of the derivatives that appear,
our main technique is to transfer the problem to a equivalent operator equation by
constructing the associate Green’s function and apply a fixed point theorem due to
Avery and Peterson [25]. In this paper, multiple concave and monotone positive
solutions for problem (1.1, 1.2) and (1.1, 1.3) are established. The results presented
extends the study of boundary value problems for fourth-order nonlinear ordinary
differential equations.

This paper is organized as follows. In section 2, we present some preliminaries and
lemmas. Section 3 is devoted to the existence of at least three concave and decreasing
positive solutions for problem (1.1, 1.2). In section 4, we prove that there exist at
least three concave and increasing positive solutions for problem (1.1, 1.3).

2. Preliminaries and Lemmas

In this section, some preliminaries and lemmas used later are presented.
Definition 2.1 Let E be real Banach space. A nonempty convex closed set P ⊂ E
is called a cone provided that
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(1) au ∈ P , for all u ∈ P, a ≥ 0;
(2) u,−u ∈ P implies u = 0.
Definition 2.2 The map α is said to be a nonnegative continuous convex functional
on cone P of a real Banach space E provided that α : P → [0,+∞) is continuous and

α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y),

for all x, y ∈ P and t ∈ [0, 1].
Definition 2.3 The map β is said to be a nonnegative continuous concave functional
on cone P of a real Banach space E provided that β : P → [0,+∞) is continuous and

β(tx+ (1− t)y) ≥ tβ(x) + (1− t)β(y),

for all x, y ∈ P and t ∈ [0, 1].
Let γ, θ be nonnegative continuous convex functionals on P , α be a nonnegative

continuous concave functional on P and ψ be a nonnegative continuous functional on
P. Then for positive numbers a, b, c and d, we define the following convex sets:
P (γ, d) = {x ∈ P | γ(x) < d},
P (γ, α, b, d) = {x ∈ P | b ≤ α(x), γ(x) ≤ d},
P (γ, θ, α, b, c, d) = {x ∈ P | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d}

and a closed set

R(γ, ψ, a, d) = {x ∈ P | a ≤ ψ(x), γ(x) ≤ d}.

The following Avery and Peterson fixed point theorem will be used to prove our
main results.
Lemma 2.1 Let P be a cone in Banach space E. Let γ, θ be nonnegative continuous
convex functionals on P , α be a nonnegative continuous concave functional on P and
ψ be a nonnegative continuous functional on P satisfying:

ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1, (2.1)

such that for some positive numbers l and d,

α(x) ≤ ψ(x), ‖x‖ ≤ lγ(x) (2.2)

for all x ∈ P (γ, d). Suppose T : P (γ, d) → P (γ, d) is completely continuous and
there exist positive numbers a, b, c with a < b such that
(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅ and α(Tx) > b for x ∈
P (γ, θ, α, b, c, d);
(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;
(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.
Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that:

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2), α(x2) < b; ψ(x3) < a. (2.3)

3. Positive solutions for problem (1.1, 1.2)

Firstly we consider the properties of the solution for following fourth-order m-point
boundary value problem

x(4)(t) = y(t), t ∈ [0, 1] (3.1)
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x′′′(0) = 0, x′′(0) = 0, x′(0) = 0, x(1) =
m−2∑
i=1

βix(ξi), (3.2)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 < βi < 1, i = 1, 2, · · · ,m−2, and
m−2∑
i=1

βi < 1.

Lemma 3.1 Denote ξ0 = 0, ξm−1 = 1, β0 = βm−1 = 0, y(t) ∈ C[0, 1], problem
(3.1), (3.2) has the unique solution

x(t) =
∫ 1

0

G(t, s)y(s)ds,

where for i = 1, 2, · · · , m− 1,

G(t, s) =



−1
6
s3 +

1
6
− 1

2
s+

1
2
s2 − 1

6

i−1∑
k=0

βks
3 +

m−2∑
k=i

βkξk(−1
6
ξ2k +

1
2
ξks−

1
2
s2)

1−
m−1∑
k=0

βk

,

t ≤ s, ξi−1 ≤ s ≤ ξi

−1
6
t3 +

1
2
st2 − 1

2
s2t

+

1
6
− 1

2
s+

1
2
s2 − 1

6

i−1∑
k=0

βks
3 +

m−2∑
k=i

βkξk(−1
6
ξ2k +

1
2
ξks−

1
2
s2)

1−
m−1∑
k=0

βk

,

t ≥ s, ξi−1 ≤ s ≤ ξi

Proof. Let G(t, s) be the Green’s function of problem −x(4)(t) = 0 with boundary
condition (3.2). We can suppose

G(t, s) =

{
a3t

3 + a2t
2 + a1t+ a0, t ≤ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1

b3t
3 + b2t

2 + b1t+ b0, t ≥ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1

where ai, bi, i = 0, 1, 2, 3 are unknown coefficients. Considering the properties of
Green’s function and boundary condition (3.2), we have

a3s
3 + a2s

2 + a1s+ a0 = b3s
3 + b2s

2 + b1s+ b0
3a3s

2 + 2a2s+ a1 = 3b3s2 + 2b2s+ b1
6a3s+ 2a2 = 6b3s+ 2b2
6a3 − 6b3 = 1
a3 = 0,
a2 = 0,
a1 = 0

b3+ b2+ b1+ b0=
i=1∑
k=0

βk(a3ξ
3
k+ a2ξ

2
k+ a1ξk + a0)+

m−2∑
k=i

βk(b3ξ3k+ b2ξ
2
k+ b1ξk + b0)
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A straightforward calculation shows that

b3 = −1
6
, a3 = a2 = a1 = 0, b2 =

s

2
, b1 = −s

2

2

a0 = −1
6
s3 +

1
6
− 1

2
s+

1
2
s2 − 1

6

i−1∑
k=0

βks
3 +

m−2∑
k=i

βkξk(−1
6
ξ2k +

1
2
ξks−

1
2
s2)

1−
m−1∑
k=0

βk

,

b0 =

1
6
− 1

2
s+

1
2
s2 − 1

6

i−1∑
k=0

βks
3 +

m−2∑
k=i

βkξk(−1
6
ξ2k +

1
2
ξks−

1
2
s2)

1−
m−1∑
k=0

βk

These give the explicit expression of the Green’s function and the proof of Lemma
3.1 is completed.
Lemma 3.2 One can see that G(t, s) ≥ 0, t, s ∈ [0, 1].
Proof. For ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1,

∂G(t, s)
∂t

=


0, t ≤ s, ξi−1 ≤ s ≤ ξi

−1
2
(t− s)2, t ≥ s, ξi−1 ≤ s ≤ ξi

Then
∂G(t, s)

∂t
≤ 0, 0 ≤ t, s ≤ 1, which induces that G(t, s) is decreasing on t.

By a simple computation, we see

G(1, s)=−1
6
+

1
2
s−1

2
s2+

1
6
− 1

2
s+

1
2
s2 − 1

6

i−1∑
k=0

βks
3 +

m−2∑
k=i

βkξk(−1
6
ξ2k +

1
2
ξks−

1
2
s2)

1−
m−1∑
k=0

βk

=

1
6

m−1∑
k=0

βk(1− s)3 +
1
6

m−2∑
k=i

1
2
βk(s− ξk)3

1−
m−1∑
k=0

βk

≥ 0.

This ensures that G(t, s) ≥ 0, t, s ∈ [0, 1].
Lemma 3.3 If x(t) ∈ C3[0, 1] and

x′′′(0) = 0, x′′(0) = 0, x′(0) = 0, x(1) =
m−2∑
i=1

βix(ξi).

Furthermore x(4)(t) ≤ 0 and there exist t0 such that x(4)(t0) < 0, then x(t) has the
following properties
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(1) min
0≤t≤1

|x(t)| ≥ δ max
0≤t≤1

|x(t)|,

(2) max
0≤t≤1

|x(t)| ≤ γ max
0≤t≤1

|x′(t)|,

(3) max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|

where δ =
m−2∑
i=1

βi(1− ξi)/(1−
m−2∑
i=1

βiξi), γ = (1−
m−2∑
i=1

βiξi)/(1−
m−2∑
i=1

βi) are positive

constants.
Proof. Since x(4)(t) ≤ 0, t ∈ [0, 1], then x′′′(t) is decreasing on [0,1]. Considering
x′′′(0) = 0, we have x′′′(t) ≤ 0, t ∈ [0, 1]. Thus x′′(t) is decreasing on [0,1]. Consider-
ing this together with the boundary condition x′′(0) = 0, we conclude that x′′(t) ≤ 0.
Then x(t) is concave on [0,1]. Taking into account that x′(0) = 0, we get that

max
0≤t≤1

x(t) = x(0), min
0≤t≤1

x(t) = x(1).

(1) From the concavity of x(t), we have

ξi(x(1)− x(0)) ≤ x(ξi)− x(0).

Multiplying both sides with βi and considering the boundary condition, we have

(1−
m−2∑
i=1

βiξi)x(1) ≥
m−2∑
i=1

βi(1− ξi)x(0). (3.3)

Thus

min
0≤t≤1

|x(t)| ≥ δ max
0≤t≤1

|x(t)|.

(2) Considering the mean-value theorem together with the concavity of x(t), we have

x(ξi)− x(1) = (1− ξi)|x′(ηi)| < (1− ξi)|x′(1)|, ηi ∈ (ξi, 1). (3.4)

Multiplying both sides with βi and considering the boundary condition, we have

(1−
m−2∑
i=1

βi)x(1) ≤
m−2∑
i=1

βi(1− ξi)|x′(1)|. (3.5)

Comparing (3.3) and (3.5) yields that

x(0) ≤ (1−
m−2∑
i=1

βiξi)/(1−
m−2∑
i=1

βi)|x′(1)| = γ max
0≤t≤1

|x′(t)|.

(3) Since x′(t) = x′(0) +
∫ t

0

x′′(s)ds and x′(0) = 0, we get

|x′(t)| = |
∫ t

0

x′′(s)ds| ≤
∫ 1

0

|x′′(s)|ds.
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Since x′′(t) = x′′(0) +
∫ t

0

x′′′(s)ds and x′′(0) = 0, we get

|x′′(t)| = |
∫ 1

t

x′′(s)ds| ≤
∫ 1

0

|x′′′(s)|ds.

Consequently

max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|.

These give the proof of Lemma 3.3.
Remark. Lemma 3.3 ensures that

max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′′(t)|} ≤ γ max
0≤t≤1

|x′′′(t)|.

Let Banach space E = C3[0, 1] be endowed with the norm

‖x‖ = max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′′(t)|}, x ∈ E.

Define the cone P ⊂ E by

P = {x ∈ E | x(t) ≥ 0, x′′′(0) = 0, x′′(0) = 0, x′(0) = 0,

x(1) =
m−2∑
i=1

βix(ξi), x(t) is concave on [0, 1]}.

Let the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals γ, θ and the nonnegative continuous functional ψ be defined on
the cone by

γ(x) = max
0≤t≤1

|x′′′(t)|, θ(x) = ψ(x) = max
0≤t≤1

|x(t)|, α(x) = min
0≤t≤1

|x(t)|.

By Lemma 3.3, the functionals defined above satisfy

δθ(x) ≤ α(x) ≤ θ(x) = ψ(x), ‖x‖ ≤ γγ(x). (3.6)

Denote

m =
∫ 1

0

G(1, s)ds, N =
∫ 1

0

G(0, s)ds, λ = min{m, δγ}.

Assume that there exist constants 0 < a, b, d with a < b < λd such that

A1) f(t, u, v, w, p) ≤ d, (t, u, v, w, p) ∈ [0, 1]× [0, γd]× [−d, 0]× [−d, 0]× [−d, 0],

A2) f(t, u, v, w, p)>b/m, (t, u, v, w, p)∈ [0, 1]×[b, b/δ]×[−d, 0]×[−d, 0]×[−d, 0],

A3) f(t, u, v, w, p) < a/N, (t, u, v, w, p) ∈ [0, 1]×[0, a]×[−d, 0]×[−d, 0]×[−d, 0].

Theorem 3.1 Under assumptions A1) − A3), problem (1.1, 1.2) has at least three
positive solutions x1, x2, x3 satisfying

max
0≤t≤1

|x′′′i (t)| ≤ d, i = 1, 2, 3; b < min
0≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b; max
0≤t≤1

|x3(t)| ≤ a.
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Proof. Problem (1.1, 1.2) has a solution x = x(t) if and only if x(t) is a fixed point of
operator T

T (x(t)) =
∫ 1

0

G(t, s)f(s, x(s), x′(s), x′′(s), x′′′(s))ds.

A straightforward calculation shows that

(Tx)′′′(t) = −
∫ t

0

f(s, x, x′, x′′, x′′′)ds

For x ∈ P (γ, d), considering Lemma 3.3 and assumption A1), we have

f(t, x(t), x′(t), x′′(t), x′′′(t)) ≤ d.

Thus

γ(Tx) = |(Tx)′′′(1)| = |−
∫ 1

0

f(s, x, x′, x′′, x′′′)ds| =
∫ 1

0

|f(s, x, x′, x′′, x′′′)|ds ≤ d.

Hence T : P (γ, d) → P (γ, d).
An application of the Arzela-Ascoli theorem yields that T is a completely continuous
operator.
The fact that the constant function x(t) = b/δ ∈ P (γ, θ, α, b, c, d) and α(b/δ) > b
implies that

{x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅.
Thus condition (S1) of Lemma 2.1 is fulfilled.

For x ∈ P (γ, θ, α, b, c, d), it is easy to check that b ≤ x(t) ≤ b/δ and |x′′′(t)| < d.
From assumption A2), we see

f(t, x, x′, x′′, x′′′) > b/m.

Hence, by definition of α and the cone P , we can get

α(Tx) = (Tx)(1) =
∫ 1

0

G(1, s)f(s, x, x′, x′′, x′′′)ds ≥ b

m

∫ 1

0

G(1, s)ds >
b

m
m = b,

which ensures that α(Tx) > b, ∀x ∈ P (γ, θ, α, b, b/δ, d). Second, from (3.4) and
b < λd, we have

α(Tx) ≥ δθ(Tx) > δ × b

δ
= b

for all x ∈ P (γ, α, b, d) with θ(Tx) >
b

δ
. Thus, condition (S2) of Lemma 2.1 holds.

Finally we show that (S3) also holds. For ψ(0) = 0 < a, we see 0 6∈ R(γ, ψ, a, d).
Suppose that x ∈ R(γ, ψ, a, d) with ψ(x) = a, then by the assumption of A3),

ψ(Tx) = max
0≤t≤1

|(Tx)(t)| =
∫ 1

0

G(0, s)f(s, x, x′, x′′, x′′′)ds <
a

N

∫ 1

0

G(0, s)ds = a,

which ensures that condition (S3) of Lemma 2.1 is fulfilled. Thus, an application
of Lemma 2.1 implies that the fourth-order m-point boundary value problem (1.1,
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1.2) has at least three concave and decreasing positive solutions x1, x2, x3 with the
properties that

max
0≤t≤1

|x′′′i (t)| ≤ d, i = 1, 2, 3; b < min
0≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b; max
0≤t≤1

|x3(t)| ≤ a.

4. Positive solutions for problem (1.1, 1.3)

Lemma 4.1. Denote ξ0 = 0, ξm−1 = 1, β0 = βm−1 = 0, the Green’s function of
problem

−x(4)(t) = 0, (4.1)

x′′′(1) = 0, x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi), (4.2)

is given as follow: for i = 1, 2, · · · , m− 1

H(t, s) =



1
6
t3 − 1

2
st2 +

1
2
s2t+

i−1∑
k=0

βk(
1
6
ξ3k −

1
2
ξ2ks+

1
2
ξks

2) +
1
6

m−2∑
k=i

βks
3

1−
m−1∑
k=0

βk

,

ξi−1 ≤ s ≤ ξi

1
6
s3 +

i−1∑
k=0

βk(
1
6
ξ3k −

1
2
ξ2ks+

1
2
ξks

2) +
1
6

m−2∑
k=i

βks
3

1−
m−1∑
k=0

βk

,

ξi−1 ≤ s ≤ ξi

Proof. Suppose

G(t, s) =

{
a3t

3 + a2t
2 + a1t+ a0 t ≤ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1

b3t
3 + b2t

2 + b1t+ b0 t ≥ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1

Considering the definition and properties of Green’s function together with the bound-
ary condition (4.2), we have

a3s
3 + a2s

2 + a1s+ a0 = b3s
3 + b2s

2 + b1s+ b0
3a3s

2 + 2a2s+ a1 = 3b3s2 + 2b2s+ b1
6a3s+ 2a2 = 6b3s+ 2b2
6a3 − 6b3 = 1
b3 = 0, 6b3 + 2b2 = 0, 3b3 + 2b2 + b1 = 0,

a0 =
i=1∑
k=0

βk(a3ξ
3
k + a2ξ

2
k + a1ξk + a0) +

m−2∑
k=i

βk(b3ξ3k + b2ξ
2
k + b1ξk + b0)
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Hence

a3 =
1
6
, a2 = −1

2
s, a1 =

1
2
s2, b3 = b2 = b1 = 0,

a0 =

i−1∑
k=0

βk(
1
6
ξ3k −

1
2
ξ2ks+

1
2
ξks

2) +
1
6

m−2∑
k=i

βks
3

1−
m−1∑
k=0

βk

,

b0 =
1
6
s3 +

i−1∑
k=0

βk(
1
6
ξ3k −

1
2
ξ2ks+

1
2
ξks

2) +
1
6

m−2∑
k=i

βks
3

1−
m−1∑
k=0

βk

The proof of Lemma 4.1 is completed.
Lemma 4.2 One can see that H(t, s) ≥ 0, t, s ∈ [0, 1].
Proof. For ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1,

∂H(t, s)
∂t

=


1
2
(s− t)2, t ≤ s, ξi−1 ≤ s ≤ ξi

0, t ≥ s, ξi−1 ≤ s ≤ ξi

Then
∂H(t, s)

∂t
≥ 0, 0 ≤ t, s ≤ 1, which implies that H(t, s) is increasing on t.

The fact that

H(0, s) =

i−1∑
k=0

βk(
1
6
ξ3k −

1
2
ξ2ks+

1
2
ξks

2) +
1
6

m−2∑
k=i

βks
3

1−
m−1∑
k=0

βk

≥ 0

ensures that H(t, s) ≥ 0, t, s ∈ [0, 1].
Lemma 4.3 If x(t) ∈ C3[0, 1],

x′′′(1) = 0, x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi),

and x(4)(t) ≤ 0, there exist t0 such that x(4)(t0) < 0, then
(1) min

0≤t≤1
|x(t)| ≥ δ1 max

0≤t≤1
|x(t)|,

(2) max
0≤t≤1

|x(t)| ≤ γ1 max
0≤t≤1

|x′(t)|,

(3) max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|
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where δ1 =
m−2∑
i=1

βiξi/(1 −
m−2∑
i=1

βi(1 − ξi)), γ1 = (1 −
m−2∑
i=1

βi(1 − ξi))/(1 −
m−2∑
i=1

βi) are

positive constants.
Proof. It follows from the same methods as Lemma 3.3 that x(t) is concave on [0,1].
Taking into account that x′(1) = 0, one see that x(t) is increasing on [0,1] and

max
0≤t≤1

x(t) = x(1), min
0≤t≤1

x(t) = x(0).

(1) From the concavity of x(t), we have

ξi(x(1)− x(0)) ≤ x(ξi)− x(0).

Multiplying both sides with βi and considering the boundary condition, we have
m−2∑
i=1

βiξix(1) ≤ (1−
m−2∑
i=1

βi(1− ξi))x(0). (4.3)

Thus
min

0≤t≤1
|x(t)| ≥ δ1 max

0≤t≤1
|x(t)|.

(2) Considering the mean-value theorem, we get

x(ξi)− x(0) = ξix
′(ηi), η ∈ (ξi, 1).

From the concavity of x similarly with above we know

(1−
m−2∑
i=1

βi)x(0) <
m−2∑
i=1

βiξix
′(0). (4.4)

Considering (4.3) together with (4.4) we have x(1) ≤ γ1|x′(0)| = γ1 max
0≤t≤1

|x′(t)|.

(3) For x′(t) = x′(1)−
∫ 1

t

x′′(s)ds, x′′(t) = x′′(1)−
∫ 1

t

x′′′(s)ds and x′(1) = 0, x′′(1) =

0, we get

|x′(t)| = |
∫ 1

t

x′′(s)ds| ≤
∫ 1

0

|x′′(s)|ds, |x′′(t)| = |
∫ 1

t

x′′′(s)ds| ≤
∫ 1

0

|x′′′(s)|ds.

Thus
max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|.

Remark. Then we see that

max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′′(t)|} ≤ γ1 max
0≤t≤1

|x′′′(t)|.

Denote

m1 =
∫ 1

0

H(0, s)ds, N1 =
∫ 1

0

H(1, s)ds, λ1 = min{m1, δ1γ1}.

Assume that there exist constants 0 < a, b, d with a < b < λ1d such that

A4) f(t, u, v, w, p) ≤ d, (t, u, v, w, p) ∈ [0, 1]× [0, γ1d]× [0, d]× [−d, 0]× [−d, 0],

A5) f(t, u, v, w, p)>b/m1, (t, u, v, w, p)∈ [0, 1]×[b, b/δ1]×[0, d]×[−d, 0]×[−d, 0],
A6) f(t, u, v, w, p) < a/N1, (t, u, v, w, p) ∈ [0, 1]×[0, a]×[0, d]×[−d, 0]×[−d, 0].
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Theorem 4.1 Under assumptions A4) − A6), problem (1.1, 1.3) has at least three
concave and increasing positive solutions x1, x2, x3 with the properties that

max
0≤t≤1

|x′′′i (t)| ≤ d, i = 1, 2, 3; b < min
0≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b; max
0≤t≤1

|x3(t)| ≤ a.

The proof is similar with Theorem 3.1 and is omitted here.

5. Example

In this section, we present an example to illustrate the main results. Consider the
third-order four-point boundary value problem x(4)(t) + f(t, x(t), x′(t), x′′(t), x′′′(t)) = 0, t ∈ [0, 1],

x′′′(0) = 0, x′′(0) = 0, x′(0) = 0, x(1) =
1
2
x(

1
2
),

(4.1)

where

f(t, u, v, w, p) =


1
60
et +

2u5

10π
+

1
60

( p

1800

)4

, 0 ≤ u ≤ 6,

1
60
et +

15552
10π

+
1
60

( p

1800

)4

, u ≥ 6,

By a simple computation, the function G(t, s) is given by

G(t, s) =



−1
6
s3 +

3
4
s2 − 7

8
s+

5
16
, 0 ≤ s ≤ 1

2
, t ≤ s,

−1
6
t3 +

1
2
st2 − 1

2
s2t+

3
4
s2 − 7

8
s+

5
16
, 0 ≤ s ≤ 1

2
, t ≥ s,

−1
3
s3 +

1
3
− s+ s2,

1
2
≤ s ≤ 1, t ≤ s,

−1
6
t3 +

1
2
st2 − 1

2
s2t+

1
3
− s+ s2 − 1

6
s3,

1
2
≤ s ≤ 1, t ≥ s,

Choosing a = 1, b = 5, d = 1800, we note that

γ =
3
2
, δ =

1
3
, m =

∫ 1

0

G(1, s)ds =
5

128
, N =

∫ 1

0

G(0, s)ds =
31
384

.

We can check that f(t, u, v, w, p) satisfies that
f(t, u, v, w, p) ≤ 1800,

(t, u, v, w) ∈ [0, 1]× [0, 2700]× [−1800, 0]× [−1800, 0]× [−1800, 0];

f(t, u, v, w, p) ≥ 128,

(t, u, v, w) ∈ [0, 1]× [5, 15]× [−1800, 0]× [−1800, 0]× [−1800, 0];

f(t, u, v, w, p) ≤ 384
31

,

(t, u, v, w) ∈ [0, 1]× [0, 1]× [−1800, 0]× [−1800, 0]× [−1800, 0].
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Then all assumptions of Theorem 3.1 are satisfied. Thus, problem (5.1) has at
least three positive solutions x1, x2, x3 such that

max
0≤t≤1

|x′i(t)| ≤ 1800, i = 1, 2, 3; min
0≤t≤1

x1(t) > 5;

max
0≤t≤1

x2(t) > 1, min
0≤t≤1

x2(t) < 5; max
0≤t≤1

x3(t) < 1.

Remark. We can notice that problem (4.1) is a fourth-order three-point Bvps and
the nonlinear term is involved in the third-order derivative explicitly. Earlier results
for positive solutions, to author’s best knowledge, are not applicable to this problem.
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