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1. Introduction

The time scales theory, introduced in 1988 in the PhD Thesis of S. Hilger (see
[24]), allows a unified treatment of continuous and discrete problems, therefore it has
recently received a lot of attention (for a survey, we refer to [4], [5] and the references
therein).

At the same time, the Henstock integral (see [22], [9], [31] for functions defined on
a real interval or [12] for functions on time scales) enlarges the spectrum of considered
problems, since the case of very oscillating functions can be covered by this theory of
integration (but not by classical theories).

In the present paper, we obtain in the Henstock integrability setting an existence
result for periodic dynamic inclusions of first order

x∆(t) ∈ F (t, x(t)), ∆− a.e. t ∈ [0, 1]T,
x(0) = x(1). (1.1)

where F : [0, 1]T × Rn → Pkc(Rn) and the symbol Pkc(Rn) stands for the family of
nonempty, compact convex subsets of Rn.

Inclusions of first order on time scales have been studied in the particular case
n = 1 in [11] (via Leray-Schauder nonlinear alternative for multi-valued maps) or in
[2] (using the method of upper and lower solutions), while the multi-dimensional case
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has been treated in [20]. In all these references, Bochner integrability conditions have
been imposed.

After introducing the notations and giving some basic properties of (single- or
set-valued) functions on time scales as well as some results concerning the Henstock
integral in this setting, we will give the main result by assuming the integrability in
Henstock sense for the right-hand side and the existence of a solution tube. This
notion, that generalizes to the multi-dimensional case the notions of upper and lower
solutions on the real line, has been introduced in the study of first order differential
inclusions in [26], see also [17], [18].

On time scales, for existence results obtained by the solution tube method we refer
to [21] (in the particular single-valued case) or to the more recent papers [19], [20]. To
the best of our knowledge, our result is the only one concerning first order differential
inclusions on time scales using the Henstock integral.

2. Preliminaries

We start with some basic elements of time scale theory; for a survey on this subject,
we refer the reader to [4] or [5] and to references therein.

A time scale T is a nonempty closed set of real numbers R, with the subspace
topology inherited from the standard topology of R (for example T = R, T = N
or T = qZ = {qt : t ∈ Z}, where q > 1). For two points a, b in T we denote by
[a, b]T = {t ∈ T : a ≤ t ≤ b}, respectively [a, b)T = {t ∈ T : a ≤ t < b} the time scale
intervals. The key elements in developing the time scales theory are presented in the
sequel.
Definition 1.1 The forward jump operator σ : T → T and the backward jump
operator ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t}, respectively ρ(t) =
sup {s ∈ T : s < t}. Also, inf ∅ = sup T (i.e. σ(M) = M if T has a maximum M) and
sup ∅ = inf T ( i.e. ρ(m) = m if T has a minimum m).

A point t ∈ T is called right dense, right scattered, left dense, left scattered, dense,
respectively isolated if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) = t = σ(t) and
ρ(t) < t < σ(t), respectively. Also, we will use the function µ(t) = σ(t) − t that is
called the graininess function.

When considering σ one obtains the ∆ part of the theory, while ρ is used for the
∇ part. We will be concerned only with the ∆-theory.
We give an auxiliary result.

Lemma 1.2 The function g : [a, b]T → R+, g(t) =
1

1 + µ(t)
is of bounded variation.

Proof. For any partition a = t0 < ... < tn = b of [a, b]T,

n∑
i=1

|g(ti)− g(ti−1)| =
n∑

i=1

∣∣∣∣ 1
1 + µ(ti)

− 1
1 + µ(ti−1)

∣∣∣∣
≤ 2

n∑
i=1

µ(ti).
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As (ti)i ⊂ [a, b] it follows that the series
∑∞

i=1 µ(ti) is convergent and so, the function
g is indeed of bounded variation.
Definition 1.3 Let f : T → Rn and t ∈ T. The ∆-derivative f∆(t) is the element of
Rn (if it exists) with the property that for any ε > 0 there exists a neighborhood of
t on which ∥∥f(σ(t))− f(s)− f∆(t)[σ(t)− s]

∥∥ ≤ ε|σ(t)− s|.
In this situation, f is called ∆-differentiable at the point t.

Several simple properties of ∆-derivatives were proved in [5] (Theorem 1.3):
i) f is continuous at the points where it is ∆-differentiable;
ii) if f is continuous at the right-scattered point t, then f is ∆-differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
;

iii) if t is right-dense, then f is ∆-differentiable at t if and only if the limit

lim
s→t,s>t

f(s)− f(t)
s− t

exists and is finite. In this case, its value equals to f∆(t).
The following chain rule is available on time scales:
Lemma 1.4 (Theorem 1.87 in [4]) Assume f : R → R is continuously differentiable,
g : T → R is continuous and ∆-differentiable. Then there exists c ∈ [t, σ(t)] such that

(f ◦ g)∆(t) = f ′(g(c))g∆(t).

Notice that the time scale calculus allows the unification (and a generalization) of
treatment of differential and difference equations since, in particular,

(i) f∆ = f ′ is the usual derivative if T = R,
(ii) f∆ = ∆f is the usual forward difference operator if T = Z.

The space C([a, b]T, Rn) of continuous functions is endowed with the usual (Banach
space) norm ‖f‖C = sup

t∈[a,b]T

‖f(t)‖.

Recall the following notion:
Definition 1.5 A function f : T → Rn is said to be rd-continuous provided it is
continuous at right-dense points and its left-sided limits exist (and are finite) at all
left-dense points. The set of such functions is denoted by Crd(T, Rn) and the set of
functions that are ∆-differentiable with rd-continuous ∆-derivative by C1

rd(T, Rn).
The symbol µ∆ stands for the Lebesgue measure on T (for its definition and prop-

erties we refer the reader to [8]). For properties of Riemann delta-integral we refer to
[23] and for Lebesgue integral on time scales to [3], [4], [5] or [23].

Concerning the Henstock-type integrals, as in the case where T = R (see [9]), in
general Banach spaces two different vector-valued integrals of Henstock-type where
introduced in literature. However, in our (finite-dimensional) case, these two notions
are equivalent.

In order to recall them, let δ = (δL, δR) be a ∆-gauge, that is a pair of positive
functions such that δL(t) > 0 on (a, b], δR(t) > 0 and δR(t) ≥ σ(t) − t on [a, b).
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A division D = {[xi−1, xi]T; ξi , i = 1, 2, . . . n} of [a, b]T (that is, a partition together
with an associate system of intermediary points) is δ-fine whenever:

ξi ∈ [xi−1, xi] ⊂ [ξi − δL(ξi), ξi + δR(ξi)],∀1 ≤ i ≤ n.

The Cousin’s Lemma for time scale domains (Lemma 1.9 in [27]) yields that such a
division exists for arbitrary positive pair of functions.
Definition 1.6([12], see also [9], [31], [6], [13] for the particular case T = R)
i) A function f : [a, b]T → Rn is Henstock-∆-integrable on [a, b]T if there exists an
element (H)

∫
[a,b]T

f(s)∆s ∈ Rn satisfying the following property: given ε > 0, there
exists a ∆-gauge δε on [a, b]T such that∥∥∥∥∥

n∑
i=1

f(ξi)µ∆([xi−1, xi]T)− (H)
∫

[a,b]T

f(s)∆s

∥∥∥∥∥ < ε

for every δε-fine division D = {[xi−1, xi]T, ξi} of [a, b]T. We call it the Henstock-∆-
integral of f on [a, b]T.
ii) A function f : [a, b)T → Rn is Henstock-∆-integrable on [a, b)T if there exists
(H)

∫
[a,b)T

f(s)∆s ∈ Rn such that for every ε > 0, there exists a ∆-gauge δε with the
property that ∥∥∥∥∥

n∑
i=1

f(ξi)µ∆([xi−1, xi)T)− (H)
∫

[a,b)T

f(s)∆s

∥∥∥∥∥ < ε

for every δε-fine division D = {[xi−1, xi)T, ξi} of [a, b)T. We call it the Henstock-∆-
integral of f on [a, b)T.

If the space Rn is replaced by R in the preceding definition, we obtain the Henstock-
Kurzweil (shortly, HK) ∆-integral.

On the other hand, a family of Henstock ∆-integrable functions is said to be
uniformly Henstock ∆-integrable if the ∆-gauge δε can be chosen to be the same for
all elements of the family.
Remark 1.7 It was proved (in [9], see also [31]) that in the particular case where
T = R if f is Henstock-integrable, then it is measurable and its primitive (H)

∫ ·
0
f(s)ds

is continuous and a.e. differentiable.
In order to present a similar result on time scales, we need to refer to [8]. As said

there, the integrability of a function on time scales is equivalent to the integrability
of its extension (defined below) to a real interval. More precisely, if the time scale T
is contained in a real interval [a, b], then a function f : T → Rn is integrable if and
only if the function f̂ : [a, b] → Rn given by

f̂(t) =
{

f(t), if t ∈ T;
f(ti), if t ∈ (ti, σ(ti)) for i ∈ RT.

is integrable (here the set RT is the set of all right-scattered points that is, by Lemma
3.1 in [8], at most countable) and in this case∫

T
f(s)∆s =

∫
[a,b]

f̂(s)ds.
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Notice that in [8] the Lebesgue integral is considered, but the discussion is identical
for any other integral. Using this property and Remark 1.7 one can prove, following
the same method as in Proposition 2.19 in [21], the announced result.
Proposition 1.8 Let g : [a, b]T → Rn be Henstock-∆-integrable. Then its primitive

G(t) = (H)
∫

[a,t)T

g(s)∆s

is ∆-a.e. differentiable and G∆ = g, ∆-a.e.
We denote the space of Henstock-∆-integrable Rn-valued functions by H([a, b]T, Rn)
and we provide it with the Alexiewicz norm:

‖f‖A = sup
t∈[a,b]T

∥∥∥∥∥(H)
∫

[a,t]T

f(s)∆s

∥∥∥∥∥ .

In [28] it was proved that T is a linear continuous functional on the space of real HK-
integrable functions if and only if there exists a real function g of bounded variation
such that, for every HK-integrable function f , T (f) = (HK)

∫ b

a
f(s)g(s)ds. Similarly,

it can be shown that
Proposition 1.9 If f : [a, b)T → Rn is Henstock-∆-integrable and g : [a, b)T → R is
of bounded variation, then fg is Henstock-∆-integrable.

Before passing to the set-valued case, let us give a convergence result on time scales:
Theorem 1.10 Let (gn)n∈N ⊂ H([a, b]T, Rn) be a pointwisely bounded sequence such
that:
i) gn(t) → g(t) for t ∈ [a, b]T \ E, where E ⊂ [a, b]T a ∆-null measure set;
ii) (gn)n is uniformly Henstock-∆-integrable.
Then g ∈ H([a, b]T, Rn) and ‖gn − g‖A → 0.
Proof. Let RT be the set of right-scattered points of [a, b]T. For each n ∈ N, extend
the functions gn and g on the real interval [a, b] as follows:

ĝn(t) =
{

gn(t), if t ∈ T;
gn(ti), if t ∈ (ti, σ(ti)) for i ∈ RT,

respectively

ĝ(t) =
{

g(t), if t ∈ T;
g(ti), if t ∈ (ti, σ(ti)) for i ∈ RT.

We emphasize that any element of E cannot be a right-scattered point, since right-
scattered points are of ∆ measure σ(t)− t > 0.
Then (ĝn)n∈N is a sequence of Henstock-integrable functions on the interval [a, b] ⊂ R
satisfying the following conditions:
1) it is pointwisely bounded;
2) ĝn(t) → ĝ(t) a.e.;
3) (ĝn)n is uniformly Henstock-integrable.
Applying Theorem 4 in [15] we obtain that ĝ ∈ H([a, b], Rn) and that ‖ĝn− ĝ‖A → 0.
Otherwise said, g ∈ H([a, b]T, Rn) and ‖gn − g‖A → 0.

In the set-valued setting, for all concepts of measurability, we refer the reader to
[10]. Following [16] (on real intervals), we introduce the Henstock-∆-integrability.
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Definition 1.11 A Pkc(Rn)-valued function Γ is Henstock-∆-integrable if there exists
(H)

∫
[a,b]T

Γ(t)∆t ∈ Pkc(Rn) satisfying that, for every ε > 0, there is a ∆-gauge δε

such that for any δε-fine division of [a, b]T,

D

(
(H)

∫
[a,b]T

Γ(t)∆t,
n∑

i=1

Γ(ξi)µ∆([xi−1, xi]T)

)
< ε.

Here D denotes the Pompeiu-Hausdorff distance.
Let us remind the following:

Theorem 1.12 Let Γ : [a, b] → Pkc(Rn) be Henstock-integrable. Then the following
conditions hold:
i) each measurable selection of Γ is Henstock-integrable (Theorem 1 in [16]);
ii) the collection {σ(x∗,Γ(·));x∗ ∈ B∗} is uniformly HK-integrable (Proposition 1 in
[16]).

A classical result will be very useful (see e.g. [29]):
Lemma 1.13 For any sequence (yn)n of measurable selections of a Pkc(Rn)-valued
measurable multifunction, there exists a sequence zn ∈ conv {ym,m≥n} a.e. conver-
gent to some measurable selection.

We recall that a set-valued function F : [a, b]T × Rn → Pkc(Rn) is called
Carathéodory if it is measurable with respect to the first variable and upper semi-
continuous with respect to the second one ∆-a.e.

3. Main results

We first state a new result for the single-valued case, that generalizes Proposition
2.29 in [21] (where the right hand side is Bochner-∆-integrable).
We will make use of two first order Sobolev-type spaces.
Definition 2.1 A function u : T → R belongs to the space W 1,1(T, R) if and only if
u ∈ L1(T, R) and there exists a function g ∈ L1(T, R) such that∫

T
u(s)φ∆(s)∆s = −

∫
T

g(s)φ(σ(s))∆s

for every

φ ∈ C1
0,rd(T) =

{
f : T → R, f ∈ C1

rd(T), f(min T) = f(max T) = 0
}

.

As it will be seen below, this space is closely related to the notion of absolute
continuity.
Definition 2.2 A function f : T → R is said to be absolutely continuous on T if for
every ε > 0 there exists δε > 0 such that

n∑
i=1

(ti − ti−1) < δε =⇒
n∑

i=1

|f(ti)− f(ti−1)| < ε

for any finite pairwise disjoint family ([ti−1, ti))
n
i=1 of subintervals of T.

It was proved (in [1]) that if u and g are like in the preceding definition, then there
exists a unique absolutely continuous function x : T → R such that ∆-a.e. x = u
and x∆ = g (recall that, by Theorem 4.1 in [7], any absolutely continuous function
on time scales is ∆-a.e. differentiable and has L1-derivative).
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The other Sobolev-type space involved is

W 1,H(T, Rn) = {v : T → Rn; v continuous, ∆−a.e. differentiable and v∆ ∈ H(T, Rn)}

endowed with the supremum norm, that is a Banach space.
Theorem 2.3 Let α ∈ H([0, 1]T, Rn). Then the linear periodic problem

x∆(t)− x(t) = α(t), ∆− a.e. t ∈ [0, 1]T
x(0) = x(1)

has a unique solution in the space W 1,H(T, Rn),

x(t) = e1(t)

(
e1(1)

1− e1(1)
(H)

∫
[0,1)T

α(s)
e1(σ(s))

∆s + (H)
∫

[0,t)T

α(s)
e1(σ(s))

∆s

)
,

where
e1(t) = e

R
[0,t)T

ξ(µ(s))∆s

with

ξ(τ) =

{
1, if τ = 0;
ln(1 + τ)

τ
, if τ 6= 0.

Proof. Using the equivalence between the integrability of a function on time scales
and the integrability of its extension on a real interval (described in Section 2) we
can apply the main result in [25] in order to find an increasing sequence Xn of closed
sets whose union covers the unit interval such that on each of them α is Bochner
integrable and

lim
n→∞

∫
Xn∩[0,t)T

α(s)∆s = (H)
∫

[0,t)T

α(s)∆s, uniformly on [0, 1]T.

Then αn(t) = α(t)χXn
(t) is a sequence of Bochner-∆-integrable functions converging

to α. We shall prove that∫
[0,t)T

αn(s)
e1(σ(s))

∆s → (H)
∫

[0,t)T

α(s)
e1(σ(s))

∆s uniformly.

To this aim, let’s see that

1
e1(σ(t))

= e
−
R
[0,σ(t))T

ξ(µ(s))∆s

= e
−
R
[0,t)T

ξ(µ(s))∆s · e−
R
[t,σ(t)) ξ(µ(s))∆s

= e
−
R
[0,t)T

ξ(µ(s))∆s · e−µ(t)ξ(µ(t))

= e
−
R
[0,t)T

ξ(µ(s))∆s · 1
1 + µ(t)

.

Theorem 1.60.(ii) in [4] asserts that the function µ is rd-continuous, while ξ is contin-
uous and so, by Theorem 1.60.(v) in [4], their composition is rd-continuous. It follows
from Theorem 1.74 in [4] that its ∆-integral is continuous and ∆-differentiable and
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the ∆-derivative is ξ(µ(t)). On the other hand, the real exponential function is con-
tinuously differentiable and so, by Lemma 1.4, e

−
R
[0,t)T

ξ(µ(s))∆s is ∆-differentiable
and there exists c ∈ [t, σ(t)] such that(

e
−
R
[0,t)T

ξ(µ(s))∆s
)∆

= e
−
R
[0,c)T

ξ(µ(s))∆s · ξ(µ(t)).

As this ∆-derivative is bounded because ln 2 ≤ ξ(µ(s)) ≤ 1, it follows that
e
−
R
[0,t)T

ξ(µ(s))∆s is of bounded variation.
Using now Lemma 1.2 gives that the map t 7→ 1

e1(σ(t))
is of bounded variation,

wherefrom ∥∥∥∥∥
∫

[0,t)T

αn(s)
e1(σ(s))

∆s− (H)
∫

[0,t)T

α(s)
e1(σ(s))

∆s

∥∥∥∥∥
≤
∥∥∥∥ 1

e1(σ(s))

∥∥∥∥
BV

· sup
s∈[0,t)T

∥∥∥∥(H)
∫ s

0

αn(u)− α(u)∆u

∥∥∥∥
and so, ∫

[0,t)T

αn(s)
e1(σ(s))

∆s → (H)
∫

[0,t)T

α(s)
e1(σ(s))

∆s uniformly. (3.1)

Since αn ∈ L1([0, 1]T, Rn), following Proposition 2.29 in [21], the problem

x∆(t)− x(t) = αn(t), ∆− a.e. t ∈ [0, 1]T
x(0) = x(1)

has a solution

xn(t) = e1(t)

(
e1(1)

1− e1(1)
(H)

∫
[0,1)T

αn(s)
e1(σ(s))

∆s + (H)
∫

[0,t)T

αn(s)
e1(σ(s))

∆s

)
.

When n →∞, the assertion (3.1) gives that the limit function defined by

x(t) = e1(t)

(
e1(1)

1− e1(1)
(H)

∫
[0,1)T

α(s)
e1(σ(s))

∆s + (H)
∫

[0,t)T

α(s)
e1(σ(s))

∆s

)
is a solution for our problem.

Finally, the uniqueness comes immediately if one suppose that there are two dif-
ferent solutions x and y. Then their difference z = x− y satisfies the linear periodic
dynamic problem with Bochner integrable right hand side

z∆(t)− z(t) = 0, ∆− a.e. t ∈ [0, 1]T
z(0) = z(1)

that has the unique solution in the space W 1,1(T, Rn)

z(t) = 0.

We proceed now to give the main result of the paper. To this aim, we adapt to our
framework the notion introduced in [17] which generalizes, to the multi-dimensional
case, the concepts of lower and upper solutions. For the corresponding single-valued
notion of solution tube in absolute integrability setting, see [21].
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Definition 2.4 Let v ∈ W 1,H([0, 1]T, Rn) and r ∈ W 1,1([0, 1]T, R+). We say that
(v, r) is a solution tube for the inclusion (1.1) if:
i) for ∆-a.e. t ∈ [0, 1]T and every x ∈ Rn with ‖x−v(t)‖ = r(t), there exists y ∈ F (t, x)
with

〈x− v(t), y − v∆(t)〉 ≤ r(t)r∆(t);

ii) for ∆-a.e. t ∈ [0, 1]T for which r(t) = 0, v∆(t) ∈ F (t, v(t)) and r∆(t) = 0;
iii) ‖v(0)− v(1)‖ ≤ r(0)− r(1).

Denote by T (v, r) = {x ∈ C([0, 1]T, Rn); ‖x(t)− v(t)‖ ≤ r(t),∀t ∈ [0, 1]T}.
Theorem 2.5 Let F : [0, 1]T × Rn → Pkc(Rn) be a Carathéodory multifunction
such that for every R > 0, there exists a Henstock-∆-integrable multifunction GR :
[0, 1]T → Pkc(Rn) such that

F (t, x) ⊂ GR(t), ∀t ∈ [0, 1]T, ∀x ∈ Rn, ‖x‖ ≤ R.

If the periodic dynamic inclusion (1.1) has a solution tube (v, r) ∈ W 1,H([0, 1]T, Rn)×
W 1,1([0, 1]T, R+), then it has at least one solution

x ∈ W 1,H([0, 1]T, Rn) ∩ T (v, r).

Proof. We follow the method of proof given in [18], defining the truncated multifunc-
tion

F̃ : [0, 1]T × Rn → Pkc(Rn), F̃ (t, x) = F (t, x̃t) ∩G(t, x)

where

x̃t =

 x, if ‖x− v(t)‖ ≤ r(t)

v(t) +
r(t)

‖x− v(t)‖
(x− v(t)), otherwise

and the multifunction G with closed values is given by

G(t, x) =

 v∆(t), if r(t) = 0;
Rn, if ‖x− v(t)‖ ≤ r(t) and r(t) > 0;
{z ∈ Rn; 〈x− v(t), z − v∆(t)〉 ≤ r∆(t)‖x− v(t)‖}, otherwise.

I. We shall prove that the modified problem

x∆(t)− x(t) ∈ F̃ (t, x(t))− x̃(t)t, ∆− a.e. t ∈ [0, 1]T
x(0) = x(1)

has at least one solution x ∈ W 1,H([0, 1]T, Rn).
Consider the set-valued operator F : W 1,H([0, 1]T, Rn) → W 1,H([0, 1]T, Rn),

F(x) =
{

y ∈ W 1,H([0, 1]T, Rn), y∆(t)− y(t) ∈ F̃ (t, x(t))− x̃(t)t ∆− a.e.
}

,

which has convex and nonempty values (by Theorem 2.3). Let us nos show that
its values are weakly compact. For this purpose, take x ∈ W 1,H([0, 1]T, Rn) and
(yn)n ⊂ F(x). There exists a sequence zn of Henstock-∆-integrable selections of
F̃ (t, x(t)) such that

y∆
n (t)− yn(t) = zn(t)− x̃(t)t ∆− a.e.
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whence, by Theorem 2.3,

yn(t) = e1(t)

(
e1(1)

1− e1(1)
(H)

∫
[0,1)T

zn(s)− x̃(s)s

e1(σ(s))
∆s + (H)

∫
[0,t)T

zn(s)− x̃(s)s

e1(σ(s))
∆s

)
.

(3.2)
Lemma 1.13 implies the existence of a sequence zn ∈ conv {zm,m≥n} ∆-a.e. norm-
convergent (pointwisely) to a measurable z. As F̃ has compact convex values, it
follows that z(t) ∈ F̃ (t, x(t)), ∆− a.e. t ∈ [0, 1]T. Using Theorem 1.12 we can apply
the convergence Theorem 1.10 in order to obtain that z ∈ H([0, 1]T, Rn) (so, z is a
Henstock-∆-integrable selection of F̃ (t, x(t))) and that ‖zn − z‖A → 0. It follows, as
in the proof of Theorem 2.3, that

yn → y uniformly,

where yn is the corresponding convex combination of {ym,m ≥ n} and

y(t) = e1(t)

(
e1(1)

1− e1(1)
(H)

∫
[0,1)T

z(s)− x̃(s)s

e1(σ(s))
∆s + (H)

∫
[0,t)T

z(s)− x̃(s)s

e1(σ(s))
∆s

)
.

From Corollary 2.2. in [14] it follows that F(x) is weakly compact.
Let us now prove that F is upper semi-continuous with respect to the weak
topology. Let M ⊂ W 1,H([0, 1]T, Rn) be weakly closed and (xn)n ⊂ {x ∈
W 1,H([0, 1]T, Rn);F(x) ∩ M 6= ∅} converge to x0. One can find yn ∈ F(xn) ∩ M ,
so

y∆
n (t)− yn(t) ∈ F̃ (t, xn(t))− x̃n(t)t, ∆− a.e. t ∈ [0, 1]T.

By hypothesis, there exists a sequence zn ∈ conv {ym,m≥n} ∆-a.e. convergent to a
measurable y and ‖·‖A-convergent too (so, y ∈ M). Since F is Carathéodory, for each
neighborhood V of the origin, there exists nt,V ∈ N such that, for every n ≥ nt,V ,
F (t, xn(t)) ⊂ F (t, x0(t)) + V . Then

F̃ (t, xn(t))− x̃n(t)t ⊂ F̃ (t, x0(t))− x̃0(t)t + V, ∀n ≥ nt,V .

Consequently, for ∆-a.e. t ∈ [0, 1]T,

y(t) ∈ F̃ (t, x0(t))− x̃0(t)t

and so, {x ∈ W 1,H([0, 1]T, Rn);F(x) ∩M 6= ∅} is closed.
Moreover, from (3.2) we obtain that for all x ∈ W 1,H([0, 1]T, Rn),

‖x̃(t)t‖ ≤ R = max
t∈[0,1]T

(‖v(t)‖+ r(t)) ,

whence F̃ (t, x(t)) ⊂ GR(t) and from here
⋃
{F(x);x ∈ W 1,H([0, 1]T, Rn)} has for

every fixed t values contained in a compact subset of Rn.
We show now that

⋃
{F(x);x ∈ W 1,H([0, 1]T, Rn)} is equi-continuous (and this will

imply that it is relatively weakly compact).
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Indeed, let y ∈ F(x) for some x ∈ W 1,H([0, 1]T, Rn) and let t′ < t” ∈ [0, 1]T. Then

‖y(t′)− y(t”)‖ ≤ |e1(t′)− e1(t”)| e1(1)
1− e1(1)

·

·

(∥∥∥∥∥(H)
∫

[0,1)T

z(s)− x̃(s)s

e1(σ(s))
∆s

∥∥∥∥∥+

∥∥∥∥∥(H)
∫

[0,t′)T

z(s)− x̃(s)s

e1(σ(s))
∆s

∥∥∥∥∥
)

+e1(t”)
e1(1)

1− e1(1)

∥∥∥∥∥(H)
∫

[t′,t”)T

z(s)− x̃(s)s

e1(σ(s))
∆s

∥∥∥∥∥
and the equi-continuity is an immediate consequence of Theorem 1.12 and Lemma
3.3 in [30].

So, F is a compact upper semi-continuous operator with compact and convex
values. By Kakutani fixed point theorem, it has fixed points.
II. In exactly the same way as in Theorem 4.3 in [21] (see also [18] for functions
defined on a real interval), it follows that any solution found at the first step satisfies
the condition x ∈ T (v, r), whence x̃(t)t = x(t) and so, x is in fact a solution for our
initial problem (1.1).

We conclude by providing an example of first order dynamic inclusion for which
our main theorem guarantees the existence of solutions, while classical results (like
Theorem 3.7 in [20]) do not apply.
Example. Consider on an arbitrary time scale T the periodic problem

x∆(t) ∈ f(t) + F (t, x(t)), ∆− a.e. t ∈ [0, 1]T,

x(0) = x(1)

where

f(t) =
{ (

2t sin 1
t2 −

2
t cos 1

t2

)
x0, if t ∈ (0, 1]T,

0, if t = 0

with x0 ∈ Rn and F : [0, 1]T × Rn → Pkc(Rn) is a Carathéodory multifunction
satisfying that for every R > 0, one can find gR ∈ L1([0, 1]T, R+) such that

max{‖y‖, y ∈ F (t, x), ‖x‖ ≤ R} ≤ gR(t), ∆− a.e.

and there exists a solution tube (v, r) ∈ W 1,H([0, 1]T, Rn)×W 1,1([0, 1]T, R+).
Due to the fact that f is Henstock-∆-integrable, the right-hand side of our inclusion

satisfies the hypothesis of Theorem 2.5 and so, the considered problem has at least
one solution in W 1,H([0, 1]T, Rn) ∩ T (v, r). But as f /∈ L1([0, 1]T, Rn), none of the
existence results given in absolute integrability setting can be applied.
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