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quence, using a version of W.K. Kim’s quasi-point theorem, we obtain the existence of equilibria for
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1. Introduction

The aim of this paper is to prove some fixed points theorems for correspondences
which are not continuous or convex valued and to give applications in game theory.

The significance of equilibrium theory stems from the fact that it develops impor-
tant tools (as fixed point and selection theorems) to prove the existence of equilib-
rium for different types of games. In 1950, J. F. Nash [15] first proved a theorem
of equilibrium existence for games where the player’s preferences were representable
by continuous quasi-concave utilities. G. Debreu’s works on the existence of equilib-
rium in a generalized N-person game or on an abstract economy [6] were extended
by several authors. In [16] W. Shafer and H. Sonnenschein proved the existence of
equilibrium of an economy with finite dimensional commodity space and irreflexive
preferences represented as correspondences with open graph. N. C. Yannelis and N.
D. Prahbakar [19] developed new techniques based on selection theorems and fixed-
point theorems. Their main result concerns the existence of equilibrium when the
constraint and preference correspondences have open lower sections. They worked
within different frameworks (countable infinite number of agents, infinite dimensional
strategy spaces). K.J. Arrow and G. Debreu proved the existence of Walrasian equi-
librium in [3]. In [20], X.Z. Yuan proposed a model of abstract economy more general
than that introduced by Borglin and Keing in [4].
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Within the last years, a lot of authors generalized the classical model of abstract
economy. For example, K. Vind [18] defined the social system with coordination,
X.Z. Yuan [20] proposed the model of the general abstract economy. Motivated by
the fact that any preference of a real agent could be unstable by the fuzziness of
consumers’ behaviour or market situation, W.K. Kim and K.K. Tan [12] defined the
generalized abstract economies. Also W.K. Kim [13] obtained a generalization of the
quasi fixed-point theorem due to I. Lefebvre [14], and as an application, he proved an
existence theorem of equilibrium for a generalized quasi-game with infinite number of
agents. W. K. Kim’s result concerns generalized quasi-games where the strategy sets
are metrizable subsets in locally convex linear topological spaces.

Biconvexity was studied by R. Aumann, S. Hart in [2] and J. Gorski, F. Pfeuffer
and K. Klamroth in [10].

An open problem of the fixed point theory is to prove the existence of fixed points
for correspondences without continuity or convex values. X. Ding and He Yiran
introduced in [7] the correspondences with weakly convex graph to prove a fixed point
theorem. The result concerning the existence of the affine selection on a special type
of sets (simplex) proves to be redundant, since a correspondence T : X → 2Y has an
affine selection if and only if it has a weakly convex graph. This result is stronger than
it needs in order to obtain a fixed point theorem. We try to weaken these conditions by
defining several types of correspondences which are not continuous or convex valued:
weakly naturally quasiconvex, *-weakly naturally quasiconvex, correspondences with
*–weakly convex graph and weakly biconvex correspondences. We prove fixed point
theorems for these kinds of correspondences and using a version of W.K. Kim’s quasi-
point theorem, we prove the existence of equilibria for a quasi-game. We use the
continuous selection technique introduced by N.C. Yannelis and N.D. Prahbakar in
[19].

The paper is organized in the following way: Section 2 contains preliminaries and
notation. The fixed point theorems are given in Section 3 and the equilibrium theo-
rems are stated in Section 4.

2. Preliminaries and notations

Throughout this paper, we shall use the following notations and definitions:
Let A be a subset of a topological space X.
1. 2A denotes the family of all subsets of A.
2. cl A denotes the closure of A in X.
3. If A is a subset of a vector space, coA denotes the convex hull of A.
4. If F , T : A → 2X are correspondences, then coT , cl T , T ∩ F : A → 2X are

correspondences defined by (coT )(x) =coT (x), (clT )(x) =clT (x) and (T ∩ F )(x) =
T (x) ∩ F (x) for each x ∈ A, respectively.

5. The graph of T : X → 2Y is the set Gr(T ) = {(x, y) ∈ X × Y | y ∈ T (x)}
6. The correspondence T is defined by T (x) = {y ∈ Y : (x, y) ∈clX×Y GrT} (the

set clX×Y Gr(T ) is called the adherence of the graph of T).
It is easy to see that clT (x) ⊂ T (x) for each x ∈ X.
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Definition 2.1. Let X, Y be topological spaces and T : X → 2Y be a correspondence.
T is said to be upper semicontinuous if for each x ∈ X and each open set V in Y
with T (x) ⊂ V , there exists an open neighborhood U of x in X such that T (y) ⊂ V
for each y ∈ U .

Let X ⊂ E1 and Y ⊂ E2 be two nonempty convex sets, E1, E2 be topological
vector spaces and let B ⊂ X × Y.

Definition 2.2. [2] The set B ⊂ X × Y is called a biconvex set on X × Y if the
section Bx = {y ∈ Y : (x, y) ∈ B} is convex for every x ∈ X and the section By =
{x ∈ X : (x, y) ∈ B} is convex for every y ∈ Y.

Definition 2.3. [2] Let (xi, yi) ∈ X × Y for i = 1, 2, ...n. A convex combination

(x, y) =
n∑

i=1

λi(xi, yi), (with
n∑

i=1

λi = 1, λi ≥ 0 i = 1, 2, ..., n) is called biconvex

combination if x1 = x2 = ... = xn = x or y1 = y2 = ... = yn = y.

Theorem 2.4. (Aumann and Hart [2]). A set B ⊆ X × Y is biconvex if and only if
B contains all biconvex combinations of its elements.

Definition 2.5. [2] Let A ⊆ X × Y be a given set. The set H :=
⋂
{AI : A ⊆ AI ,

AI is biconvex} is called biconvex hull of A and is denoted biconv(A).

Theorem 2.6. (Aumann and Hart [2]). The biconvex hull of a set A is biconvex.
Furthermore, it is the smallest biconvex set (in the sense of set inclusion), which
contains A.

Lemma 2.7. (Gorski, Pfeuffer and Klamroth [10]). Let A ⊆ X × Y be a given set.
Then biconv(A) ⊆conv(A).

Notation. We denote the standard (n − 1)- dimensional simplex by

∆n−1 = {(λ1, λ2, ..., λn) ∈ R
n :

n∑

i=1

λi = 1, λi > 0, i = 1, 2, ..., n}.

3. Selection theorems and fixed point theorems

An open problem of the fixed point theory is to prove the existence of fixed points
for correspondences without continuity or convex values. In this section we introduce
some types of correspondences which are not continuous or convex valued and prove
selection theorems and fixed point theorems.

First, we introduce the concept of weakly naturally quasiconvex correspondence.

Definition 3.1. Let X,Y be nonempty convex subsets of topological vector spaces
E, respectively F . The correspondence T : X −→ 2Y is said to be weakly naturally
quasiconvex (WNQ) if for each n ∈ N and for each finite set {x1, x2, ..., xn} ⊂ X, there
exists yi ∈ T (xi) , (i = 1, 2, ..., n) and g = (g1, g2, ..., gn) : ∆n−1 → ∆n−1 a bijective
function depending on x1, x2, ..., xn with gi continuous, gi(1) = 1, gi(0) = 0 for each

i = 1, 2, ...n, such that for every (λ1, λ2, ..., λn) ∈ ∆n−1, there exists y ∈ T (
n∑

i=1

λixi)

and y =
n∑

i=1

gi(λi)yi.
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Remark 3.2. A weakly naturally quasiconvex correspondence may not be continuous
or convex valued.

We give an economic interpretation of the weakly naturally quasiconvex correspon-
dences.

We consider an abstract economy Γ = (Xi, Ai, Pi)i∈I with I - the set of agents.
Each agent can choose a strategy from the set Xi and has a preferrence correspondence
Pi : X =

∏
i∈I

Xi → 2Xi and a constraint correspondence Ai : X =
∏
i∈I

Xi → 2Xi . The

traditional approach considers that the preferrence of agent i is characterized by a
binary relation �i on the set Xi. A real valued function ui : X → R that satisfies
x �i y ⇔ ui(x) ≥ ui(y) is called an utility function of the preferrence �i . The relation
between the utility function ui and the preferrence correspondence Pi, for each agent
i is:

Pi(x) = {yi ∈ Xi : ui(x, yi) > ui(x, xi)} , where, in this case, ui : X × Xi → R.
The aim of the equilibrium theory is to maximize each agent’s utility on a strategy

set.
For the case that, for each index i, Pi is a weakly naturally quasiconvex correspon-

dence, the interpretation is the following: for all certain amounts x1, x2, ...xn ∈ X,
the agent i with the correspondence Pi will always prefer yi, the weighted aver-
age of some quantities yk

i ∈ Pi(x
k), k = 1, · · · , n. This implies that there exist

y1
i ∈ Pi(x

1), y2
i ∈ Pi(x

2), ..., yn
i ∈ Pi(x

n) and g = (g1, g2, ..., gn) : ∆n−1 → ∆n−1 a
bijective function depending on x1, x2, ..., xn with gi continuous for each i = 1, 2, ..., n,

such that, for each λ ∈ ∆n−1, there exists yi =
n∑

k=1

gi(λk)yk
i and yi ∈ Pi(

n∑
k=1

λkxk) (i.e.,

if there exist utility functions ui : X × Xi → R such that, if ui(x
k, yk

i ) > ui(x
k, xk

i )

for every k ∈ {1, 2, ...n}, we have that yi ∈ Ai(
n∑

k=1

λkxk) and ui(
n∑

k=1

λkxk, yi) >

ui(
n∑

k=1

λkxk, (
n∑

k=1

λkxk)i).

Theorem 3.3. (selection theorem). Let K be a simplex in a topological vector space
F and Y be a non-empty convex subset of a topological vector space E. Let T : K → 2Y

be a weakly naturally quasiconvex correspondence. Then, T has a continuous selection
on K.

Proof. Assume that K is a simplex, i.e., the convex hull of an affinely independent
set {a1, a2, ..., an}. Since T is weakly naturally quasiconvex, there exist bi ∈ T (ai),
(i = 1, 2, ..., n) and g = (g1, g2, ..., gn) : ∆n−1 → ∆n−1 a bijective function with gi

continuous for each i = 1, 2, ..., n, such that for every (λ1, λ2, ..., λn) ∈ ∆n−1, there

exists y ∈ T (
n∑

i=1

λiai) with y =
n∑

i=1

gi(λi)yi.

Since K is a (n − 1)-dimensional simplex with the vertices a1, ..., an, there exists
unique continuous functions λi : K → R, i = 1, 2, ..., n such that for each x ∈ K, we

have (λ1(x), λ2(x), ..., λn(x)) ∈ ∆n−1 and x =
n∑

i=1

λi(x)ai.

Let’s define f : K → Y by
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f(ai) = bi (i = 1, ..., n) and

f(
n∑

i=1

λiai) =
n∑

i=1

gi(λi)bi ∈ T (x).

We show that f is continuous.

Let (xm)m∈N be a sequence which converges to x0 ∈ K, where xm =
n∑

i=1

λi(xm)ai

and x0 =
n∑

i=1

λi(x0)ai. By the continuity of λi, it follows that for each i = 1, 2, ..., n,

λi(xm) → λi(x0) as m → ∞. Since g1, g2, ..., gn are continuous, we have gi(λi(xm)) →
gi(λi(x0)) as m → ∞. Hence, f(xm) → f(x0) as m → ∞, i.e. f is continuous.

We proved that T has a continuous selection on K.
By Brouwer’s fixed point theorem, we obtain the following fixed point theorem for

weakly naturally quasiconvex correspondences.

Theorem 3.4. Let K be a simplex in a topological vector space F. Let T : K → 2K

be a weakly naturally quasiconvex correspondence. Then, T has a fixed point in K.

Proof. By Theorem 2.5, T has a continuous selection on K, f : K → K.
Since f has a fixed point x∗ ∈ K, we have that x∗ = f(x∗) ∈ T (x∗).

Notation. For the correspondence T : X → 2Y and for the set V ∈ Y, we denote TV

the correspondence TV : X → 2Y , defined by TV (x) = (T (x)+V )∩Y for each x ∈ X.
If Y = K, we obtain the following fixed point theorem:

Theorem 3.5. Let K be a simplex in a topological vector space F and let T : K → 2K

be a correspondence. Assume that for each neighborhood V of the origin in F ,
there is TV : K → 2K a weakly naturally quasiconvex correspondence such that
GrTV ⊂clGrTV . Then there exists a point x∗ ∈ K such that x∗ ∈ T (x∗).

To prove Theorem 3.5, we need the following lemma from [20].

Lemma 3.6 (20). Let X be a topological space, Y be a non-empty subset of a topo-
logical vector space E, ß be a base of the neighborhoods of 0 in E and T : X → 2Y . If
x∗ ∈ X and ŷ ∈ Y are such that ŷ ∈ ∩V ∈ßTV (x∗), then ŷ ∈ T (x∗), where T : X → 2Y

is defined by T (x) = {y ∈ Y : (x, y) ∈clX×Y GrT}.

Proof of Theorem 3.5. Let ß denote the family of all neighborhoods of zero in F. Let
V ∈ß. By the fixed point theorem 3.4, it follows that for each neighborhood V of the
origin in Y, there exists x∗

V ∈ TV (x∗
V ) ⊂ (T (x∗

V ) + V ) ∩ K.
For each V ∈ ß, we define QV = {x ∈ K : x ∈ (T (x) + V ) ∩ K}.
QV is nonempty since x∗

V ∈ QV , then clQV is nonempty.
We prove that the family {clQV : V ∈ ß} has the finite intersection property.

Let {V (1), V (2), ..., V (n)} be any finite set of ß. Let V =
n
∩

k=1
V (k), then V ∈ ß.

Clearly QV ⊂
n
∩

k=1
QV (k) so that

n
∩

k=1
QV (k) 6= ∅. Then

n
∩

k=1
clQV (k) 6= ∅.

Since K is compact and the family {clQV : V ∈ ß} has the finite intersection
property, we have that ∩{clQV : V ∈ ß} 6= ∅. Take any x∗ ∈ ∩{clQV : V ∈ß}, then for
each V ∈ ß, x∗ ∈cl{x∗ ∈ K : x∗ ∈ (T (x∗) + V ) ∩ K}. Hence (x∗, x∗) ∈clGr((T (x) +
V ) ∩ K) for each V ∈ß. By Lemma 3.6 we have that x∗ ∈ T (x∗), i.e. x∗ is a fixed
point for T . �
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The weakly convex correspondences are defined in [7].

Definition 3.7. [7] Let X and Y be nonempty convex subsets of a topological vector
space E. The correspondence T : X −→ 2Y is said to have weakly convex graph (in
short it is a WCG correspondence), if for each finite set {x1, x2, ..., xn} ⊂ X, there
exists yi ∈ T (xi), (i = 1, 2, ..., n), such that

(1) co({(x1, y1), (x2, y2), ..., (xn, yn)}) ⊂Gr(T )

The relation (1) is equivalent to

(2)
n∑

i=1

λiyi ∈ T (
n∑

i=1

λixi) (∀(λ1, λ2, ..., λn) ∈ ∆n−1).

It is clear that if either Gr(T ) is convex, or
⋂
{T (x) : x ∈ X} 6= ∅, then T has a

weakly convex graph.

Remark 3.8. Let T : X → 2Y be a WCG correspondence and X0 be a non-empty
convex subset of X. Then, the restriction of T on X0, T|X0

: X0 → 2Y is a WCG
correspondence, too.

Now we introduce the following definition.

Definition 3.9. Let E, F be topological vector spaces, X and Y be nonempty convex
subsets of E, respectively F and T : X → 2Y be a correspondence. T is said to
have a *-weakly convex graph if for each neighborhood V of the origin in F, the
correspondence TV : X → 2Y , defined by TV (x) = (T (x)+V )∩Y for each x ∈ X has
an weakly convex graph.

The next theorem (its proof follows the same lines as that of Theorem 3.5) is a
fixed point result for a correspondence with *-weakly convex graph.

Theorem 3.10. Let K be a simplex in a topological vector space F. Let T : K → 2K

be a correspondence with *-weakly convex graph. Then, there exists a point x∗ ∈ K
such that x∗ ∈ T (x∗).

We get the following corollary.

Corollary 3.11. Let K be a simplex in a topological vector space F. Let S, T : K →
2K be two correspondences with the following conditions:

(i) for each x ∈ K, S(x) ⊂ T (x) and S(x) 6= ∅,
(ii) S has *-weakly convex graph.
Then, there exists a point x∗ ∈ K such that x∗ ∈ T (x∗).
Now, we introduce the concept of *-weakly naturally quasiconvex correspondence.

Definition 3.12. Let E, F be topological vector spaces, X and Y be nonempty
convex subsets of E, respectively F and T : X → 2Y be a correspondence. T is said
to be *-weakly naturally quasiconvex if for each neighborhood V of the origin in F,
the corespondence TV : X → 2Y , defined by TV (x) = (T (x) + V ) ∩ Y for each x ∈ X
is weakly naturally quasiconvex.

Theorem 3.13 is a fixed point theorem for *-weakly naturally quasiconvex corre-
spondences.
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Theorem 3.13. Let K be a non-empty simplex in a topological vector space F. Let
T : K → 2K be a *-weakly naturally quasiconvex correspondence. Then there exists a
point x∗ ∈ K such that x∗ ∈ T (x∗).

Proof. Let ß denote the family of all neighborhoods of zero in F and let V ∈ß. The
corespondence TV : K → 2K , defined by TV (x) = (T (x) + V ) ∩ K for each x ∈ K is
*-weakly naturally quasiconvex. Then there exists a continuous selection fV : K → K
such that fV (x) ∈ TV (x). The proof follows the same line as in Theorem 3.5. �

Now we introduce the following definition.

Definition 3.14. Let B ⊂ X×Y be a biconvex set, Z a nonempty convex subset of a
topological vector space F and T : B → 2Z a correspondence. T is called weakly bicon-
vex if for each finite set {(x1, y1), (x2, y2), ..., (xn, yn)} ⊂ B, there exists zi ∈ T (xi, yi),

(i = 1, 2, ..., n) such that for every biconvex combination (x, y) =
n∑

i=1

λi(xi, yi) ∈ B

(with
n∑

i=1

λi = 1, λi ≥ 0 i = 1, 2, ..., n), there exists y′ ∈ T (
n∑

i=1

λi(xi, yi)) and

y′ =
n∑

i=1

λizi.

We state the following selection theorem for weakly biconvex correspondences.

Theorem 3.15. (selection theorem). Let Y be a non-empty convex subset of a topo-
logical vector space F and K ⊂ E1 × E2, where E1, E2 are topological vector spaces.
Suppose that K is the biconvex hull of {(a1, b1), (a2, b2), ..., (an, bn)} ⊂ E1 × E2. Let
T : K → 2Y be a weakly biconvex correspondence. Then, T has a continuous selection
on K.

Proof. Since T is weakly biconvex, there exists ci ∈ T (ai, bi), (i = 1, 2, ..., n), such that

for every (λ1, λ2, ..., λn) ∈ ∆n−1, there exists z ∈ T (
n∑

i=1

λi(ai, bi)) with z =
n∑

i=1

λizi.

Since K is biconvex hull of (a1, b1), ..., (an, bn), there exist unique continuous
functions λi : K → R, i = 1, 2, ..., n such that for each (x, y) ∈ K, we have

(λ1(x, y), λ2(x, y), ..., λn(x, y)) ∈ ∆n−1 and (x, y) =
n∑

i=1

λi(x, y)(ai, bi).

Define f : K → 2Y by
f(ai, bi) = ci (i = 1, ..., n) and

f(
n∑

i=1

λi(ai, bi)) =
n∑

i=1

λici ∈ T (x, y).

We show that f is continuous.
Let (xm, ym)m∈N be a sequence which converges to x0 ∈ K, where (xm, ym) =

n∑
i=1

λi(xm, ym)(ai, bi) implies a1 = a2 = ... = an = a or b1 = b2 = ... = bn = b and

(x0, y0) =
n∑

i=1

λi(x0)(ai, bi) with a1 = a2 = ... = an = a or b1 = b2 = ... = bn = b. By

the continuity of λi, it follows that for each i = 1, 2, ..., n, λi(xm, ym) → λi(x0, y0) as
m → ∞. Hence f(xm, ym) → f(x0, y0) as m → ∞, i.e. f is continuous.

We proved that T has a continuous selection on K.
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In order to prove the existence theorems of equilibria for a generalized quasi-game,
we need the following version of Kim’s quasi fixed-point theorem:

Theorem 3.16. Let I and J be any (possible uncountable) index sets. For each i ∈ I
and j ∈ J , let Xi and Yj be non-empty compact convex subsets of Hausdorff locally
convex spaces Ei and respectively Fj.

Let X :=
∏

Xi, Y :=
∏
i∈I

Yj and Z := X × Y .

For each i ∈ I let Φi : Z → 2Xi be a correspondence such that the set Wi =
{(x, y) ∈ Z | Φi(x, y) 6= ∅} is open and Φi has a continuous selection f i on Wi.

For each j∈ J let Ψj : Z → 2Yj be an upper semicontinuous correspondence with
non-empty closed convex values.

Then there exists a point (x∗, y∗) ∈ Z such that for each i ∈ I, either Φi(x
∗, y∗) = ∅

or xi ∈ Φi(x
∗, y∗), and for each j ∈ J , y∗

j ∈ Ψj(x
∗, y∗).

Proof. We first endow
∏
i∈I

Ei and
∏

j∈J

Fj with the product topologies; and then
∏
i∈I

Ei×
∏

j∈J

Fj is also a locally convex Hausdorff topological vector space.

For each i ∈ I, we define a correspondence Φ
′

i : Z → 2Xi by

Φ
′

i(x, y) :=

{
{fi(x, y)}, if (x, y) ∈ Wi,
Xi, if (x, y) /∈ Wi.

Then for each (x, y) ∈ Z, Φ
′

i(x, y) is a non-empty closed convex subset of Xi. Also,

Φ
′

i is an upper semicontinuous correspondence on Z. In fact, for each proper open
subset V of Xi, we have

U := {(x, y) ∈ Z | Φ
′

i(x, y) ⊂ V }

={(x, y) ∈ Wi | Φ
′

i(x, y) ⊂ V ∪ (x, y) ∈ Z \ Wi | Φ
′

i(x, y) ⊂ V }
...={(x, y) ∈ Wi | fi(x, y) ∈ V } ∪ {(x, y) ∈ Z \ Wi | Xi ⊂ V }

={(x, y) ∈ Wi | fi(x, y) ∈ V } = f−1
i (V ) ∩ Wi.

Since Wi is open and fi is a continuous map on Wi, U is open, and hence Φ
′

i is
upper semicontinuous on Z.

Finally, we define a correspondence Φ : Z → 2Z by
Φ(x, y) :=

∏
i∈I

Φ
′

i(x, y) ×
∏

j∈J

Ψj(x, y) for each (x, y) ∈ Z.

Then, by Lemma 3 in [8], Φ is an upper semicontinuous correspondence such that
each Φ(x, y) is non-empty closed convex. Therefore, by Fan-Glicksebrg fixed point
theorem [9] there exists a fixed point (x∗,y∗) ∈ Z such that (x∗, y∗) ∈ Φ(x, y), i.e.,

for each i ∈ I, x∗
i ∈ Φ

′

i(x, y), and for each j ∈ J , y∗
j ∈ Ψj(x, y). If (x∗, y∗) ∈ Wi for

some i ∈ I, then x∗
i = fi(x

∗, y∗) ∈ Φi(x
∗, y∗); and if (x∗, y∗) /∈ Wi for some i ∈ I,

then Φi(x
∗, y∗) = ∅. Therefore, we have that for each i ∈ I, either Φi(x

∗, y∗) = ∅
or x∗

i ∈ Φi(x
∗, y∗). Also, for each j ∈ J , we already have y∗

j ∈ Ψj(x
∗, y∗). This

completes the proofs. �

We have the following corollary.

Corollary 3.17. Let I and J be any (possible uncountable) index sets. For each i ∈ I
and j ∈ J , let Xi and Yj be non-empty compact convex subsets of Hausdorff locally
convex spaces Ei and respectivelly Fj.
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Let X :=
∏

Xi, Y :=
∏
i∈I

Yj and Z := X × Y .

For each i ∈ I, let Si : Z → 2Xi be a correspondence such that the set Wi =
{(x, y) ∈ Z | Si(x, y) 6= ∅} is the interior of the biconvex hull of {(a1, b1), (a2, b2), ...,
(an, bn)} ⊂ Z and Si is weakly biconvex on Wi.

For each j ∈ J , let Tj : Z → 2Yj be an upper semicontinuous correspondence with
non-empty closed convex values.

Then there exists a point (x∗, y∗) ∈ Z such that for each i ∈ I, either Si(x
∗, y∗) = ∅

or x∗
i ∈ Si(x

∗, y∗), and for each j ∈ J , y∗
j ∈ Tj(x

∗, y∗).

4. Applications in the equilibrium theory

In this paper, we study the following model of a generalized quasi-game.

Definition 4.1. Let I be a nonempty set (the set of agents). For each i ∈ I,
let Xi be a non-empty topological vector space representing the set of actions and
define X :=

∏
i∈I

Xi; let Ai, Bi : X × X → 2Xi be the constraint correspondences

and Pi : X × X → 2Xi the preference correspondence. A generalized quasi-game
Γ = (Xi, Ai, Bi, Pi)i∈I is defined as a family of ordered quadruples (Xi, Ai, Bi, Pi).

In particular, when I={1, 2...n}, Γ is called n-person quasi-game.

Definition 4.2. An equilibrium for Γ is defined as a point (x∗, y∗) ∈ X × X such
that for each i ∈ I, y∗

i ∈clBi(x
∗, y∗) and Ai(x

∗, y∗) ∩ Pi(x
∗, y∗) = ∅.

If Ai(x, y) = Bi(x, y) for each (x, y) ∈ X ×X and i ∈ I, this model coincides with
the one introduced by W. K. Kim [13].

If, in addition, for each i ∈ I, Ai, Pi are constant with respect to the first argument,
this model coincides with the classical one of the abstract economy and the definition
of equilibrium is the one given in [4].

In this work, Kim established an existence result for a generalized quasi-game with
a possibly uncountable set of agents, in a locally convex Hausdorff topological vector
space.

Here is his result:

Theorem 4.3 (11). Let Γ = (Xi, Ai, Bi, Pi)i∈I be a generalized quasi-game, where I
is a (possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty compact convex subset of a Hausdorff locally convex space
Ei and denote X :=

∏
i∈I

Xi and Z := X × X;

(2) The correspondence Ai : X × X → 2Xi is upper semicontinuous such that
Ai(x, y) is a non-empty convex subset of Xi for each (x, y) ∈ Z;

(3) A−1
i (xi) is (possibly empty) open for each xi ∈ Xi;

(4) the correspondence Pi : Z → 2Xi is such that (Ai ∩ Pi)
−1 (xi) is (possibly

empty) open for each xi ∈ Xi;
(5) the set Wi : = {(x, y) ∈ Z | (Ai ∩ Pi) (x, y) 6= ∅} is perfectly normal;
(6) for each (x, y) ∈ Wi, xi /∈ coPi(x, y).
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Then there exists an equilibrium point (x∗, y∗) ∈ X ×X for Γ, i.e., for each i ∈ I,
y∗

i ∈clAi(x
∗, y∗) and Ai(x

∗, y∗) ∩ Pi(x
∗, y∗) = ∅.

As application of the selection theorems from section 3, we state a theorem on the
existence of the equilibrium for a generalized quasi-game.

Theorem 4.4. Let Γ = (Xi, Ai, Bi, Pi)i∈I be a generalized quasi-game where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty compact convex set in a Hausdorff locally convex space Ei

and denote X :=
∏
i∈I

Xi and Z := X × X;

(2) The correspondence Bi : Z → 2Xi is non-empty, convex valued such that for
each (x, y) ∈ Z, Ai(x, y) ⊂ Bi(x, y) and clBi is upper semicontinuous;

(3) the correspondence Ai ∩ Pi : Wi → 2Xi is weakly naturally quasiconvex;
(4) the set Wi : = {(x, y) ∈ Z / (Ai ∩ Pi) (x, y) 6= ∅} is open and clWi is a (n−1)

dimensional simplex in Z;
(5) for each (x, y) ∈ Wi, xi /∈ Pi(x, y).
Then there exists an equilibrium point (x∗, y∗) ∈ Z for Γ, i.e., for each i ∈ I,

y∗
i ∈clBi(x

∗, y∗) and Ai(x
∗, y∗) ∩ Pi(x

∗, y∗) = ∅.
Proof. For each i ∈ I, we define Φi : Z → 2Xi by

Φi(x, y) =

{
(Ai ∩ Pi)(x, y), if (x, y) ∈ Wi,
∅, if (x, y) /∈ Wi;

By applying Theorem 3.3 to the restrictions Ai ∩ Pi on Wi, we can obtain that
there exists a continuous selection fi : Wi → Xi such that fi(x, y) ∈ (Ai ∩ Pi)(x, y)
for each (x, y) ∈ Wi.

For each j ∈ I, we define Ψj : Z → 2Xi , by Ψj(x, y) =clBj(x, y) for each (x, y) ∈ Z.
Then Ψj is an upper semicontinuous correspondence and Ψj(x, y) is a non-empty,

convex, closed subset of Xj for each (x, y) ∈ Z.
By Theorem 3.16, it follows that there exists (x∗, y∗) ∈ Z such that for each i ∈ I,

either Φi(x
∗, y∗) = ∅ or x∗

i ∈ Φi(x
∗, y∗) and for each j ∈ J , y∗

j ∈ Ψj(x
∗, y∗).

If x∗
i ∈ Φi(x

∗, y∗) for some i ∈ I, then x∗
i ∈ Φi(x

∗, y∗) = (Ai ∩ Pi)(x
∗, y∗) ⊂

Pi(x
∗, y∗) which contradicts the assumption (5).

Therefore, for each i ∈ I, Φi(x, y) = ∅ and then (x∗, y∗) /∈ Wi. Hence, (Ai ∩
Pi)(x

∗, y∗) = ∅ and for each i ∈ I, y∗ ∈ Ψi(x
∗, y∗) =clBi(x

∗, y∗). �

By using a similar type of proof and Theorem 3.15, we obtain Theorem 4.5.

Theorem 4.5. Let Γ = (Xi, Ai, Bi, Pi)i∈I be a generalized quasi-game where I is a
(possibly uncountable) set of agents such that for each i ∈ I :

(1) Xi is a non-empty compact convex set in a Hausdorff locally convex space Ei

and denote X :=
∏
i∈I

Xi and Z := X × X;

(2) The correspondence Bi : Z → 2Xi is non-empty, convex valued such that for
each (x, y) ∈ Z, Ai(x, y) ⊂ Bi(x, y) and clBi is upper semicontinuous;

(3) Ai ∩ Pi is a weakly biconvex correspondence on Wi;
(4) the set Wi : = {(x, y) ∈ Z / (Ai ∩ Pi) (x, y) 6= ∅} is the interior of the biconvex

hull of {(a1, b1), (a2, b2), ..., (an, bn)} ⊂ Z;
(5) for each (x, y) ∈ Wi, xi /∈coPi(x, y).
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Then there exists an equilibrium point (x∗, y∗) ∈ Z for Γ, i.e., for each i ∈ I,
y∗

i ∈clBi(x
∗, y∗) and Ai(x

∗, y∗) ∩ Pi(x
∗, y∗) = ∅.
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