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Abstract. In this work, we introduce a density property in ordered sets that is weaker than the

order density. Then, we prove a strong version of a result proved by Büber and Kirk, which is a

special case of the Brouwer Reduction Theorem, in metric spaces relating completeness and density
of ordered sets.
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1. Introduction

In [2] Buber and Kirk proved that in separable metric spaces, countably compact
convexity structures possess minimal elements. This is crucial to many existence
fixed point theorems. A more general result may be obtained through the Brouwer
Reduction Theorem [11] which states that if X is a topological space which has a
countable base, then any family F of nonempty closed subsets of X has minimal
element provided that the intersection of every descending sequence in F contains a
member of F . There is also the known set-theoretic fact (see [5, 17]) that if F is a
countable family of nonempty subsets of a given set, and if the intersection of every
descending sequence in F contains a member of F ; then F has a minimal element.

In this work, we follow the footsteps of the authors in [9] viewing ordered sets as
metric spaces. Then we prove a strong version of Büber and Kirk’s result in ordered
sets. It is worth to mention that the proofs are given in a metric form although
an ordered version could be found. Because it is our belief that this approach will
support the idea that certain concepts of infinistic nature, like those which inspired
metric spaces, can perfectly apply to the study of discrete sets.
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2. Basic definitions and results

Consider a complete lattice V, with a least element 0, greatest element 1, equipped
with a semigroup operation + and an involution satisfying the following properties:

1. V is an ordered semigroup, i.e.
(i) 0 is its neutral element;
(ii) if p � p′ and q � q′ then p + q � p′ + q′.

2. the involution (which satisfies p = p for all p ∈ V) is order-preserving and
reverses the semigroup operation, i.e.

p + q = q + p holds for all p, q ∈ V.

Let M be a set. A distance on M is a map d : M ×M −→ V satisfying:
(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) � d(x, z) + d(z, y), for all x, y, z ∈M ;
(d3) d(x, y) = d(y, x), for all x, y ∈M .

The pair (M,d) is said to be a generalized metric space over V; if there is no confusion
we will denote it M . We also denote BM (x, r) the ball with center x ∈M and radius
r ∈ V, i.e.

BM (x, r) = {y ∈M ; d(x, y) � r}.
If there is no confusion we will denote it B(x, r) instead of BM (x, r).
Examples:

1. Classical metric spaces: We take V = R+ ∪ {+∞}. Extend the addition
to it in the obvious way. The spaces we get are just unions of disjoints copies
of classical metric spaces . We assume that V is a complete ordered set only
to have infinite products.

2. Ordered sets: Let V be the complete lattice defined by

V = {0, α, β, 1},
with α incomparable with β, 0 � α � 1 and 0 � β � 1. The semigroup
operation is a + b = a ∨ b and the involution is defined by

α = β, β = α, 0 = 0 and 1 = 1.

If (M,�) is a partially ordered set, then the map d : M ×M −→ V, defined
by:

d(x, y) = 0 if x = y
d(x, y) = α if x � y
d(x, y) = β if y � x
d(x, y) = 1 if x and y are incomparable

is a generalized metric over V. Conversely, if (M,�) is a generalized metric
over V, then the relation defined by

x � y iff d(x, y) � α

is a partial order on M . The balls of M over V are:
(i) the set M ;
(ii) the singletons in M ;
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(iii) the principal initial segments (←, x] = {m ∈M ; m � x} for all x ∈M ;
(iv) and the principal final segments [x,→) = {m ∈ M ; x � m} for all

x ∈M .

Definition 2.1. Let C be a nonempty family of subsets of M . C defines a convexity
structure on M if C is stable by intersection and contains the balls.

In this work, we will consider the smallest convexity structure containing the balls,
which we denote A(M) (or A if there is no confusion). Clearly, we have C ∈ A if and
only if C =

⋂
i∈I

B(xi, ri) where xi ∈ M and ri ∈ V. Such sets are called admissible.

In this work, we will refer to them as convex. Notice that A ∈ A if and only if there
exists M1 and M2 subsets of M such that:

A = {a ∈M ;m1 � a � m2 for every mi ∈Mi, i = 1, 2}.
Such sets are also called cuts (in ordered set theory [8]).

For the sake of simplicity, we will use the following:

A � x iff a � x, for all a ∈ A,

where A is a subset of M and x ∈M .

Proposition 2.1. Let C be a nonempty convex subset of M .
(i) If c1 and c2 are two elements of C, then the segment [c1, c2] is in C, i.e

c1 � x � c2 =⇒ x ∈ C.

(ii) Let x ∈ C. Then, we have

dist(x,C) =
∧
c∈C

d(x, c) = 0 =⇒ x ∈ C.

(iii) For any family (ci)i∈I of elements of C, we have:∧
i∈I

ci ∈ C and
∨
i∈I

ci ∈ C

The proof of the above is obvious using the definition of a convex set.

Definition 2.2. Let χ be an infinite cardinal.
(1) C is said to be χ-compact if any family (Ci)i∈I , with Ci ∈ A and card(I) ≤ χ,

such that
⋂
i∈F

Ci 6= ∅, for any finite subset F of I, has a nonempty intersection,

i.e
⋂
i∈I

Ci 6= ∅.

(2) We will say that C is σ-compact (or countably compact) if χ = χ0, and com-
pact if C is χ-compact for any cardinal χ.

Let us notice that, since for any infinite set I we have

card(I) = card {F ⊂ I;F finite},
C is χ-compact if and only if any nonempty decreasing family (Ci)i∈I of convex sets,
where I is downward directed, has a nonempty intersection provided that card(I) ≤ χ.
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Since the main result of this work relates these properties to completeness, the
following definition is needed.

Definition 2.3. The ordered set M is said to be χ-complete if any subset S ⊂ M
such that card(S) ≤ χ, has a least upper bound and a greatest lower bound in M , that
is ∨

x∈S

x and
∧
x∈S

x exist in M.

Note that if M is a lattice, M is χ-complete if and only if for every chain C ⊂ M
such that card(C) ≤ χ, C has a least upper bound and a greatest lower bound in M .
We will say that M is σ-complete if χ = χ0 and complete if M is χ-complete for any
cardinal χ.

Proposition 2.2. Assume that M is a lattice. M is χ-complete if and only if A is
χ-compact.

Proof. Let (Ci)i∈I be a nonempty decreasing family of elements in A. Let xi ∈ Ci

for any i ∈ I. Since the family (Ci)i∈I is decreasing, we get xj ∈ Ci for j ≥ i. Since
Ci is convex and M is χ-complete, we deduce that uj =

∨
k≥j

xk ∈ Ci for any j ≥ i. It

is easy to see that (uj)j∈I is decreasing. Therefore, we have

u =
∧
i∈I

ui =
∧
k≥j

uk, for any j ∈ I.

Using the facts uj ∈ Ci for any j ≥ i and the convexity of Ci, we get

u =
∧
j≥i

uj ∈ Ci, for any i ∈ I.

Therefore,
⋂
i∈I

Ci is not empty. Conversely, let C = (xi)i∈I be a chain in M . Take

Ai = [xi,→), then (Ai)i∈I is a nonempty decreasing family of elements in A. By
assumption, we have A =

⋂
i∈I

Ai 6= ∅. Any m ∈ A is an upper bound of C. Set

Bi = Ai

⋂ ⋂
m∈A

(←,m], for any i ∈ I. The family (Bi)i∈I is decreasing. Using the

χ-compactness, we deduce that B =
⋂
i∈I

6= ∅. It is easy to check that B is a singleton,

i.e. B = {s} with s being the least upper bound of C. The same proof leads to the
existence of the greatest lower bound. �

Corollary 2.1. Let M be a lattice.

(i) M is σ-complete if and only if A is σ-compact.
(ii) M is complete if and only if A is compact.
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3. Main result

In [2] Büber and Kirk proved that in a separable metric space, any convexity
structure which is countably compact has minimal elements. In order to prove a
similar or a stronger result in ordered sets, we will need to define separability and
in general the notion of density in ordered sets. We should mention that our initial
approach was to consider classical definitions of density in ordered sets. To our
knowledge, almost nothing is known. This is why we start this section by some
definitions and simple facts regarding density of subsets in ordered sets.

Definition 3.1. (Metric density) Let D be a subset of M . We will say that D is
metric dense in M if for every A and B two convex subsets of M such that A ⊂ B,
B ∩D = ∅ and

dist(d, A) = dist(d,B) for all d ∈ D

then the equality A = B holds.

Note that, although this definition uses the distance, it can be expressed using the
order of M . Indeed, one can prove that D is metric dense in M if and only if for
every convex subsets A and B such that A ⊂ B, B ∩D = ∅ and

(i) for every d ∈ D, if there exists b ∈ B such that d � b, then there exists a ∈ A
such that d � a;

(ii) for every d ∈ D, if there exists b ∈ B such that b � d, then there exists a ∈ A
such that a � d,

we have A = B.
Other natural densities that one could think of are:
(1) Order density: D is dense in M if for every x ∈M , we have:

x =
∧
{d ∈ D;x � d}

=
∨
{d ∈ D; d � x}

It is worth to mention that almost any ordered set is order dense in its Mac-
Neille completion [16].

(2) Real density: D is dense in M if
(i) for every x ∈M , there exist d1 and d2 in D such that d1 � x � d2;
(ii) for every x and y in M such that x � y, there exists d ∈ D such that

x � d � y.
These densities are related to the metric density through the following result.

Proposition 3.1. Let M be a lattice. The real and order densities imply the metric
density.

Proof. (1) Real density implies metric density. Let B be a convex such that B∩D = ∅;
then B is a singleton. Indeed, let x, y ∈ B with x 6= y. Put b1 = x∨ y and b2 = x∧ y,
then b1, b2 ∈ B, since B is convex. We have b1 � b2 and b1 6= b2. The real density
insure the existence of d ∈ D such that b1 � d � b2; therefore d ∈ B. Contradiction.
Hence, B is a singleton which clearly implies that D is metric dense in M .
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(2) Order density implies metric density. Let A and B be convex subsets such that
B ∩ D = ∅ and A ⊂ B satisfying dist(d, A) = dist(d, B) for any d ∈ D. Since A is
convex, then there exists A1 et A2 in M such that

A = {a ∈M ; A1 � a � A2}.

Let x ∈ B and d ∈ D such that x � d. Then dist(d, B) ≤ β. Since d 6∈ B, we have
dist(d, B) = β. Hence dist(d, A) = β. Therefore, there exists a ∈ A such that a � d.
Hence A1 � d, which implies that:

A1 �
∧
x�d

d.

Since the order density implies that x =
∧
x�d

d, we get A1 � x. The same proof leads

to x � A2. Therefore, x is in A which implies that A = B. �

The converse of Proposition 3.1 is false. Indeed, consider the ordered set M defined
on {x1, x2, x3, x4, x5, x6} ∪ R+ by: x1 � x2 � x3 � x4; x1 � x6 � x3; x2 � x5 � x4;
x2 and x6 are incomparable; x3 and x5 are incomparable; x4 � x for every x ∈ R+.
Let D be the set {x1, x4, x5, x6} ∪Q+. It is easy to see that D is metric dense in M ;
but it isn’t neither real dense nor order dense in M . In this example, R and Q are
respectively the sets of real and rational numbers.

The next theorem is the main result of this work.

Theorem 3.1. Let M be a lattice. Assume that there exists D metric dense in M ,
with card(D) ≤ χ, and A is χ-compact. Then A is compact.

Proof. Let D = (xt)t∈Γ be metric dense in M , with card(Γ) ≤ χ. Let also (Ci)i∈I be
a nonempty decreasing family of elements in A. Set

λ(x) =
∨
i∈I

dist(x,Ci), for x ∈M.

For every x ∈ M , λ(x) exists since V is complete. If there exists x ∈ M such that
λ(x) = 0, then x ∈ Ci for any i ∈ I. Hence

⋂
i∈I

Ci is not empty. Let us assume that

λ(x) 6= 0 for any x ∈ D. Since d is a distance over V = {0, α, β, 1}, it is easy to
see that for any x ∈ M there exists i ∈ I such that λ(x) = dist(x,Ci). Then for
any xt ∈ D there exists i(t) ∈ I such that λ(xt) = dist(xt, Ci(t)). Note xt 6∈ Ci(t),
otherwise we will have λ(xt) = 0. Set Cω =

⋂
t∈Γ

Ci(t). Then Cω 6= ∅. We claim that⋂
i∈I

Ci = Cω. Indeed, let i ∈ I.

Case 1. There exists t ∈ Γ such that i ≤ i(t); then Cω ⊂ Ci(t) ⊂ Ci.
Case 2. i ≥ i(t) for all t ∈ Γ; hence, for any t ∈ Γ, we have

dist(xt, Ci) ≤ λ(xt) = dist(xt, Ci(t)) ≤ dist(xt, Cω) ≤ dist(xt, Ci)
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Therefore dist(xt, Ci) = dist(xt, Cω) for all t ∈ Γ. Since Cω ∩D = ∅ and Ci ⊂ Cω,
we get from the metric density of D, that Ci = Cω. In both cases, we get Cω ⊂ Ci

for any i ∈ I. Therefore Cω =
⋂
i∈I

Ci. �

An extension to Büber and Kirk’s result will follow from the main theorem by
taking χ = χ0.

In general these results were motivated by the classical Kirk’s fixed point theorem
[14]. Recall that a convexity C on a metric space M is said to be normal if for every
nonempty bounded element C ∈ C, not reduced to one point, there exists x ∈ C such
that

r(x,C) = sup {d(x, y); y ∈ C} < diam(C).

Kirk’s classical fixed point theorem states that a metric space M which possesses
a compact normal convexity structure, has the fixed point property, i.e. any map
T : M →M which satisfies

d
(
T (x), T (y)

)
≤ d(x, y), for every x, y ∈M,

has a fixed point m ∈M , i.e. T (m) = m. Such mappings are called nonexpansive (see
[1, 7] for more details). The original proof is based on the existence of minimal ele-
ments in the convexity structure via Zorn’s lemma that holds due to the compactness
property. Many authors [3, 12, 13, 15] proved that in many instances, the compact-
ness property does not hold but a weaker version of it is satisfied. This appears to
be enough for the existence part of Kirk’s result [14]. The negative side of these
results is the difficulty to get rid of the normal structure property. It is well known
that the existence of minimal sets is crucial to the application of the well known
Goebel-Karlovitz Lemma [6, 10] which exploits pathological behavior of minimal sets
associated to nonexpansive maps that go beyond the normal structure property.

Let us mention, that among these results which do not use the compactness prop-
erty and exhibit a kind of constructive behavior, the one proved by Kirk [15] which
states that a metric space which possesses a countably compact convexity structure
which is normal, has the fixed point property. Let us notice that this result can not
be generalized to ordered sets.

Example 3.1. M = ω1. Clearly, M is σ-complete and A has normal structure
property, since for any C ∈ A, we have δ(C) = 1 and R(C) = α. Indeed, any
convex subset C, not empty, has a least element m. It is clear that r(m,C) = α
and r(x, C) = 1 for any x ∈ C, x 6= m. But M fails the fixed point property. Indeed,
according to Davis [4], a lattice has the fixed point property if and only if it is complete.
Obviously M is not complete.
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