Fixed Points and Fractional Differential Equations: Examples

T.A. Burton* AND BO ZHANG**

*Northwest Research Institute, 732 Caroline St.
Port Angeles 98362, WA USA
**Department of Mathematics and Computer Science, Fayetteville State University
Fayetteville, NC 28301
E-mail: taburton@olypen.com, bzhang@uncfsu.edu

Abstract. We study a fractional differential equation of Caputo type by first inverting it as an integral equation, then noting that the kernel is completely monotone, and finally transforming it into another integral equation with a kernel which supports both contractions and compact maps. That kernel allows us to use fixed point theory to obtain qualitative properties of solutions. At the end of Section 4 we give a list of five transformations which convert challenging problems into simple fixed point problems. We treat linear, superlinear, and sublinear examples using Krasnoselskii’s fixed point theorem.

Key Words and Phrases: fractional differential equations, integral equations, fixed points.

2010 Mathematics Subject Classification: 34A08, 47G05, 34D20, 47H10.

Acknowledgments. Research of the second author was supported in part by the Fayetteville State University Faculty Summer Research Grant-2011.

References

Received: October 24, 2011; Accepted: January 19, 2012.