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1. Introduction

In 1965, Halpern [4] invented an iterative algorithm for finding a fixed point of
a nonexpansive mapping in the framework of Hilbert spaces. To state Halpern’s
algorithm, recall that a self-mapping of a closed convex subset C of a real Banach
space H is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ C. (1.1)

The set of fixed points of T is denoted Fix(T ) and suppose that Fix(T ) 6= ∅.
Halpern’s algorithm [4] then generates a sequence {xn} by the recursive process:

xn+1 = αnu + (1− αn)Txn, n ≥ 0 (1.2)

where u ∈ C is called an anchor, x0 ∈ C is an initial guess, and {αn} ⊂ (0, 1) is a
sequence of iteration parameters.

Halpern called a sequence {αn} ⊂ (0, 1) acceptable if the sequence {xn} generated
by (1.2) always converges in norm to a fixed point of T irrespective of the choice of
Hilbert space H, closed convex subset C of H, nonexpansive mapping T : C → C
such that Fix(T ) 6= ∅, anchor u ∈ C, and starting point x0 ∈ C. He proved that the
following conditions (H1) and (H2) are necessary for {αn} to be acceptable:

(H1) limn→∞ αn = 0.
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(H2)
∑∞

n=0 αn = ∞.
Halpern [4] also proved that the conditions (H1), (H2) and (H3) are sufficient for

{αn} to be acceptable, where
(H3) there is a strictly increasing sequence of positive integers, {nj}, such that{

αj+nj

αj
→ 1, as j →∞,

njαj →∞, as j →∞.
(1.3)

He observed that αn = (n + 1)−α for all n, where 0 < α < 1, satisfies (H1), (H2) and
(H3), hence acceptable.

In 1977, Lions [5] proved that the conditions (H1), (H2) and (L1) are sufficient for
{αn} to be acceptable, where

(L1) limn→∞ |αn+1 − αn|/α2
n+1 = 0.

Note that Lions [5] is the first to extend the algorithm (1.2) to find a common fixed
point of a finite family of (firmly) nonexpansive mappings.

Many researchers made contributions to the Halpern-Lions algorithm (1.2) by find-
ing a third condition which, together with (H1) and (H2), is sufficient for {αn} to be
acceptable; each of the following conditions is such a third condition:

(W1)
∑∞

n=0 |αn+1 − αn| < ∞ (Wittmann [15]),
(R1) {αn} is decreasing (Reich [9]),
(X1) limn→∞ |αn+1 − αn|/αn+1 = 0 or equivalently, limn→∞(αn/αn+1) = 1 (Xu

[16, 17]).
A question gives rise to whether or not the conditions (H1) and (H2) are sufficient

for {αn} to be acceptable. This question was answered negatively by Suzuki [13].
However, it is still an open question: What conditions are necessary and sufficient
for {αn} to be acceptable. If we narrow the class of nonexpansive mappings down to
the class of so-called averaged nonexpansive mappings, then the conditions (H1) and
(H2) are not only necessary but sufficient for {αn} to be acceptable. Recall that a
mapping T : C → C is said to be averaged nonexpansive if T = (1− λ)I + λV , where
λ ∈ (0, 1) and V : C → C is nonexpansive.

On the other hand, it is interesting to extend the algorithm (1.2) to the setting
of Banach spaces. In this regard, Reich [8] was the first to prove that the sequence
{xn} generated by the algorithm (1.2) in a uniformly smooth Banach space with the
choice of parameters αn = (1 + n)−α for all n, where 0 < α < 1, converges in norm
to a fixed point of T . Due to this reason, we will refer the algorithm (1.2) to as the
Halpern-Lions-Reich algorithm throughout the rest of this paper.

While searching new iterative algorithms, Yao, et al [20] introduced an iterative
algorithm that generates a sequence {xn} through the recursion:

xn+1 = αnu + βnxn + γnTxn, n ≥ 0, (1.4)

where {αn}, {βn}, {γn} are sequences in [0,1] such that αn + βn + γn = 1 for all n.
We shall call it a Halpern-Lions-Reich-like algorithm. Yao, et al [20] proved that if,
in addition, there hold the conditions:

(i) αn → 0 as n →∞ and
∑∞

n=1 αn = ∞,
(ii) γn → 0 as n →∞,
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then the sequence {xn} generated by (1.4) converges in norm to a fixed point of T .
Nevertheless, it is recently pointed out in [10] that Yao, et al’s result above is false,

that is, the conditions (i) and (ii) are insufficient to guarantee the strong convergence
of the sequence {xn}. It is proved in [10] that if, in addition to the condition (i), there
hold the conditions:

(iii) βn → 0 as n →∞,
(iv)

∑∞
n=0 |αn+1 − αn| < ∞,

(v)
∑∞

n=0 |βn+1 − βn| < ∞,
then the sequence {xn} generated by (1.4) does converge in norm to a fixed point of
T .

It is of interest to investigate the strong convergence of the Halpern-Lions-Reich-
like algorithm (1.4) under appropriate conditions to be imposed on the sequences
{αn}, {βn}, {γn}. The purpose of this paper is twofold. First, we will prove a strong
convergence theorem for the Halpern-Lions-Reich-like algorithm (1.4) under different
conditions from those of Sangago [10]. Secondly, we will apply our convergence result
to solve a quadratic minimization problem.

2. Preliminaries

Let X be a real uniformly smooth Banach space and C a closed convex subset of
X. Let J : X → X∗ be the (normalized) duality map defined by

J(x) ∈ X∗, ‖J(x)‖ = ‖x‖, 〈x, J(x)〉 = ‖x‖2.

Note that the uniform smoothness of X implies that J is uniformly continuous on
bounded sets in the norm-to-norm topology.

Let T : C → C be a nonexpansive mapping such that Fix(T ) 6= ∅. For each fixed
anchor u ∈ C and t ∈ (0, 1). Let xt ∈ C be the unique fixed point of the contraction

Ttx := tu + (1− t)Tx, x ∈ C. (2.1)

The following theorem is known, the Hilbert space counterpart of which is proved by
Browder [1].
Theorem 2.1 [8] If X is a uniformly smooth Banach space, then {xt} converges in
norm, as t → 0, to a fixed point of T ; moreover, the operator Q : C → Fix(T ) defined
by

Q(u) := ‖ · ‖ − lim
t→0

xt, u ∈ C (2.2)

defines the unique sunny nonexpansive retraction from C onto Fix(T ); that is, Q
satisfies the properties:

(i) 〈Qu− u, J(p− u)〉 ≥ 0, u ∈ C, p ∈ Fix(T ).
(ii) ‖Qu−Qv‖2 ≤ 〈u− v, J(Qu−Qv)〉, u, v ∈ C.

To prove our main result in the next section, we need the following two lemmas.
Lemma 2.2 [16] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that
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(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 γn|δn| < ∞.

Then limn→∞ an = 0.
Lemma 2.3 [12] Let {xn} and {yn} be bounded sequences in a Banach space X such
that

xn+1 = γnxn + (1− γn)yn, n ≥ 0 (2.3)

where {γn} is a sequence in [0, 1] such that

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Assume
lim sup

n→∞
(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. (2.4)

Then limn→∞ ‖yn − xn‖ = 0.
The following lemma is straightforward, but convenient in use.

Lemma 2.4 In a real smooth Banach space, there holds the inequality for all x, y:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉.

3. Convergence of a Halpern-Lions-Reich-like Algorithm

Recall that our Halpern-Lions-Reich-like algorithm generate a sequence {xn}
through the recursion:

xn+1 = αnu + βnxn + γnTxn, n ≥ 0, (3.1)

where {αn}, {βn}, {γn} are sequences in [0,1] such that αn + βn + γn = 1 for all n.
Yao, et al [20] claimed that the conditions
(a) αn → 0 as n →∞ and

∑∞
n=1 αn = ∞,

(b) γn → 0 as n →∞,
were sufficient to guarantee the strong convergence of the sequence {xn} generated
by (1.4). But the fact is that their conclusion is incorrect, as the counterexamples of
Sangago [10] showed. Sangago [10] did not figure out the cause of the incorrectness
in the proof given in Yao, et al [20]. So let us briefly review the main points of the
proof of Yao, et al [20]. Let t ∈ (0, 1) and n ≥ 1 be given and let zt,n be the unique
fixed point of the contraction

Tt,nz :=
(1− αn)t
γn + tβn

u +
(1− t)γn

γn + tβn
Tz, z ∈ C. (3.2)

Then one has that
lim
t→0

zt,n = p ∈ Fix(T ), n ≥ 1. (3.3)

Indeed, p = Qu, where Q : C → Fix(T ) is the unique sunny nonexpansive retraction
from C onto Fix(T ) as defined in Theorem 2.1.

The key step of the proof of Yao, et al [20] is the following inequality

lim sup
n→∞

〈u− p, J(xn − p)〉 ≤ 0. (3.4)
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To achieve this, they interchanged the order in the following iterated limits

lim sup
t→0

lim sup
n→∞

〈u− zt,n, J(xn − zt,n)〉 ≤ 0 (3.5)

by using the uniform smoothness of the space X (equivalently, the norm-to-norm
uniform continuity over bounded sets of the normalized duality map J). This however
requires that the limit in (3.3) be uniformly over n ≥ 1, which fails to be true, in
general, under the conditions (a) and (b) of Yao, et al [20]. To illustrate this, we use
the counterexample in [10].
Example 3.1 [10] Take X = R to be the real line equipped with the absolute value
as norm, C = [−1, 1], and T : C → C to be the reflection: Tx = −x for x ∈ C.
Then T is nonexpansive and x = 0 is the unique fixed point of T . Furthermore, take
u = 1 and x0 = 1

3 , and take αn = γn ∈ (0, 1
3 ) for all n so that βn = 1− 2αn ∈ ( 2

3 , 1).
It is then easily seen that the sequence {xn} generated by the algorithm (3.1) is a
constant:

xn ≡
1
3
, n ≥ 1.

Hence, the sequence {xn} fails to converge to a fixed point of T .
In this case, it is not hard to find that the unique fixed point zt,n of the contraction

Tt,n defined in (3.2) is given by

zt,n =
(1− αn)t

2αn + t(βn − αn)
.

It is immediately clear that

lim
t→0

zt,n = 0 ∈ Fix(T ), lim
n→∞

zt,n = 1 6∈ Fix(T ).

This shows that the limit in (3.3) fails to be uniform over n ≥ 1, and consequently,
the order of the iterated limits in (3.5) cannot be interchanged. As a matter of fact,
we have

lim sup
t→0

lim sup
n→∞

〈u− zt,n, J(xn − zt,n)〉 = lim sup
t→0

lim sup
n→∞

(1− zt,n)(
1
3
− zt,n) = 0,

lim sup
n→∞

lim sup
t→0

〈u− zt,n, J(xn − zt,n)〉 = lim sup
n→∞

lim sup
t→0

(1− zt,n)(
1
3
− zt,n) =

1
3
.

Moreover, the relation (3.4) fails to hold; indeed, we have

lim sup
n→∞

〈u− p, J(xn − p)〉 = lim sup
n→∞

xn =
1
3
.

We will provide with a new selection of the sequences {αn}, {βn} and {γn} by
avoiding usage of the sequence {zt,n}. Below is our convergence result on the algo-
rithm (3.1).
Theorem 3.2 Let X be a real uniformly smooth Banach space, C a closed convex
subset of X, and T : C → C a nonexpansive mapping such that Fix(T ) 6= ∅. Let
{xn} be generated by the Halpern-Lions-Reich-like algorithm (3.1). Assume that the
sequences (αn), (βn), and (γn) satisfy the following conditions:

(i) αn, βn, γn ∈ (0, 1) are such that αn + βn + γn = 1 for all n ≥ 0.
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,
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(iii) limn→∞ βn = β ∈ (0, 1).
Then (xn) converges in norm to Qu, where Q is the sunny nonexpansive retraction
from C onto Fix(T ) defined by (2.2).

Proof. 1. {xn} is bounded. Indeed, take a fixed point p of T to get

‖xn+1 − p‖ = ‖αn(u− p) + βn(xn − p) + γn(Txn − p)‖
≤ αn‖u− p‖+ (βn + γn)‖xn − p‖‖
≤ max{‖u− p‖, ‖xn − p‖}.

So an induction gives

‖xn − p‖ ≤ max{‖u− p‖, ‖x0 − p‖}, n ≥ 0.

2. ‖xn − Txn‖ → 0. To see this we put

yn =
αnu + γnTxn

1− βn
(3.6)

so that we have
xn+1 = βnxn + (1− βn)yn. (3.7)

It is not hard to find that

yn+1 − yn =
αn+1u + γn+1Txn+1

1− βn+1
− αnu + γnTxn

1− βn

=
γn+1

1− βn+1
(Txn+1 − Txn)

+
(

αn+1

1− βn+1
− αn

1− βn

)
u +

(
γn+1

1− βn+1
− γn

1− βn

)
Txn.

It turns out that

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤
∣∣∣∣ γn+1

1− βn+1
− 1

∣∣∣∣ M +
∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣ M

+
∣∣∣∣ γn+1

1− βn+1
− γn

1− βn

∣∣∣∣ M,

where M > 0 is selected so that M ≥ max{‖u‖, 2‖xj‖, ‖Txj‖} for all j. Since αn → 0
and βn → β ∈ (0, 1), γn → 1− β ∈ (0, 1) and we get

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. (3.8)

Due to (3.8) together with the assumption βn → β ∈ (0, 1), we can apply Lemma 2.3
to the relation (3.7) to get

lim
n→∞

‖yn − xn‖ = 0.

Noticing also from (3.6)

‖yn − Txn‖ =
αn

1− βn
‖u− Txn‖ ≤

2αnM

1− βn
→ 0,

we obtain

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Txn‖ → 0.
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3. lim supn→∞〈u− q, J(xn − q)〉 ≤ 0, with q = Qu.
Let t ∈ (0, 1) and let zt ∈ C solves the fixed point equation

zt = tu + (1− t)Tzt.

Then q = limt→0 zt in the norm topology.
We have

‖zt − xn‖2 = ‖(1− t)(Tzt − xn) + t(u− xn)‖2

≤ (1− t)2‖Tzt − xn‖2 + 2t〈u− xn, J(zt − xn)〉
≤ (1− t)2(‖Tzt − Txn‖+ ‖Txn − xn‖)2

+ 2t(〈u− zt, J(zt − xn)〉+ ‖zt − x‖2)

≤ (1 + t2)‖zt − xn‖2 + M‖Txn − xn‖
+ 2t〈u− zt, J(zt − xn)〉.

Here M is such that

M ≥ 2‖zt − xn‖+ ‖Txn − xn‖ for all n and t ∈ (0, 1).

It turns out that

〈u− zt, J(xn − zt)〉 ≤
t

2
‖zt − xn‖2 +

M

2t
‖Txn − xn‖. (3.9)

Let K be a bounded set such that

{xn − zt, xn − q, zt − u} ⊂ K for all n and t ∈ (0, 1)

and let d := sup{‖u‖ : u ∈ K} < ∞. Since the duality map J is uniformly continuous
in the norm topology, there exists, given ε > 0, a δ > 0 (we assume also that δ < ε)
such that

u, v ∈ K, ‖u− v‖ < δ ⇒ ‖J(u)− J(v)‖ < ε.

In particular, since zt → q in norm, there exists t0 > 0 small enough so that

‖zt − q‖ < δ < ε for all 0 < t < t0. (3.10)

It turns out that

‖J(xn − zt)− J(xn − q)‖ < ε for all n and 0 < t < t0. (3.11)

It follows from (3.9)-(3.11) that, for all n and 0 < t < t0,

〈u− q, J(xn − q)〉 = 〈u− zt, J(xn − zt)〉+ 〈zt − q, J(xn − q)〉
+〈u− zt, J(xn − q)− J(xn − zt)〉

≤ 〈u− zt, J(xn − zt)〉+ 2dε

≤ td2

2
+

M

2t
‖Txn − xn‖+ 2dε.

Consequently, for 0 < t < t0,

lim sup
n→∞

〈u− q, J(xn − q)〉 ≤ td2

2
+ 2dε. (3.12)
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Letting t → 0 in (3.12) yields immediately that

lim sup
n→∞

〈u− q, J(xn − q)〉 ≤ 0. (3.13)

4. xn → q in norm. Applying Lemma 2.4, we get

‖xn+1 − q‖2 ≤ ‖βn(xn − q) + γn(Txn − q) + αn(u− q)‖2

≤ ‖βn(xn − q) + γn(Txn − q)‖2 + 2αn〈u− q, J(xn+1 − q)〉
≤ (βn‖xn − q‖+ γn‖xn − q‖)2 + 2αn〈u− q, J(xn+1 − q)〉
≤ (1− αn)‖xn − q‖2 + 2αn〈u− q, J(xn+1 − q)〉. (3.14)

By applying Lemma 2.2 to (3.14) we conclude that ‖xn − q‖2 → 0, as required. �

4. A Quadratic Minimization Problem

Consider the quadratic minimization problem in a real Hilbert space H:

min
x∈C

1
2
〈Ax, x〉 − 〈x, u〉 (4.1)

where C is the fixed point set Fix(T ) of a nonexpansive mapping T on H and u is a
given point in H. Assume Fix(T ) is nonempty. Assume also A is strongly positive;
that is, there is a constant γ > 0 with the property

〈Ax, x〉 ≥ γ‖x‖2 for all x ∈ H. (4.2)

Then the minimization (4.1) has a unique solution x∗ ∈ C which satisfies the opti-
mality condition

〈Ax∗ − u, x− x∗〉 ≥ 0, x ∈ C. (4.3)
In [19, 7] it is proved that the sequence {xn} generated by the algorithm

xn+1 = (I − αnA)Txn + αnu, n ≥ 0 (4.4)

converges in norm to the solution x∗ of (4.1) provided the sequence {αn} in (0,1)
satisfies the conditions (H1) and (H2), and additionally, either condition (W1) or
(X1) stated in Section 1. Below following the idea presented in Section 3, we will
demonstrate a new algorithm that generates a sequence strongly converging to the
solution x∗ of (4.1) under the conditions (H1) and (H2) only. Given an anchor u ∈ H
and a starting point x0 ∈ H. Let {αn} ⊂ (0, 1) be given. Let a sequence {βn} be
also given in (0, 1) such that β ≤ βn ≤ β for all n and some 0 < β ≤ β < 1. Define a
sequence {xn} by the algorithm

xn+1 = (I − αnA)(βnxn + (1− βn)Txn) + αnu, n ≥ 0. (4.5)

Lemma 4.1 [7] Assume A is a strongly positive linear bounded operator on a real
Hilbert space H with coefficient γ > 0 (i.e., 〈Ax, x〉 ≥ γ‖x‖2 for all x ∈ H) and
0 < α ≤ ‖A‖−1. Then ‖I − αA‖ ≤ 1− αγ.
Lemma 4.2 [3] Let H be a Hilbert space, K a closed convex subset of H, and
T : K → K a nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a sequence in K
weakly converging to x and if {(I−T )xn} converges strongly to 0, then (I−T )x = 0.
Theorem 4.3 Suppose A is a strongly positive linear bounded operator with coeffi-
cient γ > 0 as given in (4.2). Suppose the sequence {αn} of parameters satisfies the
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conditions (H1) and (H2). Then the sequence {xn} generated by the algorithm (4.5)
converges in norm to the unique solution x∗ of the minimization problem (4.1).

Proof. First we claim that {xn} is bounded. As a matter of fact, take a p ∈ Fix(T )
and use Lemma 4.1 to deduce (as αn → 0 we assume, with no loss of generality, that
αn < ‖A‖−1 for all n)

‖xn+1 − p‖ = ‖(I − αnA)(βnxn + (1− βn)Txn − p) + αn(u−Ap)‖
≤ (1− γαn)‖xn − p‖+ αn‖u−Ap‖
≤ max{‖xn − p‖, (1/γ)‖u−Ap‖}.

By induction we can get

‖xn − p‖ ≤ max
{
‖x0 − p‖, 1

γ
‖u−Ap‖

}
, n ≥ 0.

Hence, {xn} is bounded. Next rewrite xn+1 in the form:

xn+1 = (1− γn)xn + γnyn, (4.6)

where
γn = 1− (1− αn)βn (4.7)

and

yn =
αnβn

γn
(I −A)xn +

1− βn

γn
(I − αnA)Txn +

αn

γn
u. (4.8)

Since αn → 0, it is easily seen that lim infn→∞ γn ≥ 1− β > 0 and lim supn→∞ γn ≤
1 − β < 1. Since also {xn} is bounded, equation (4.8) shows that {yn} is bounded.
Set

zn :=
1
γn

(βn(I −A)xn − (1− βn)ATxn + u).

Then {zn} is bounded and from (4.8), yn can be rewritten as

yn = αnzn +
1− βn

γn
Txn = αnzn +

(
1− αnβn

γn

)
Txn (4.9)

since 1−βn

γn
= 1− αnβn

γn
, due to (4.7). We can now compute

yn+1 − yn = αn+1zn+1 − αnzn +
(

1− αn+1βn+1

γn+1

)
Txn+1 −

(
1− αnβn

γn

)
Txn

= αn+1zn+1 − αnzn +
(

1− αn+1βn+1

γn+1

)
(Txn+1 − Txn)

+
((

1− αn+1βn+1

γn+1

)
−

(
1− αnβn

γn

))
Txn

=
(

1− αn+1βn+1

γn+1

)
(Txn+1 − Txn)

+
(

αnβn

γn
− αn+1βn+1

γn+1

)
Txn + αn+1zn+1 − αnzn.
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It turns out that

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤
αn+1βn+1

γn+1
‖xn+1 − xn‖+ αn+1‖zn+1‖

+
∣∣∣∣αnβn

γn
− αn+1βn+1

γn+1

∣∣∣∣ ‖Txn‖+ αn‖zn‖. (4.10)

Since αn → 0 as n →∞, it is immediately clear from (4.10) that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Consequently, we can apply Lemma 2.3 to assert that

lim
n→∞

‖yn − xn‖ = 0. (4.11)

By (4.9) we have

‖yn − Txn‖ = αn

∥∥∥∥zn −
βn

γn
Txn

∥∥∥∥ → 0. (4.12)

This together with (4.11) yields

lim
n→∞

‖xn − Txn‖ = 0. (4.13)

Lemma 4.3 then implies that ωw(xn) ⊂ Fix(T ) = C. Here

ωw(xn) = {z : ∃xnj
→ z weakly}

is the set of weak ω-limit points of the sequence {xn}.
Let x∗ be the unique solution to the minimization (4.1). Then by the definition of

the algorithm (4.5), we can write

xn+1 − x∗ = (I − αnA)(βnxn + (1− βn)Txn − x∗) + αn(u−Ax∗).

Apply Lemma 2.4 (as J is the identity in a Hilbert space) and use Lemma 4.1 to get
(noting ‖βnxn + (1− βn)Txn − x∗‖ ≤ ‖xn − x∗‖)

‖xn+1 − x∗‖2 ≤ ‖(I − αnA)(βnxn + (1− βn)Txn − x∗)‖2

+2αn〈u−Ax∗, xn+1 − x∗〉
≤ (1− γαn)‖xn − x∗‖2 + 2αn〈u−Ax∗, xn+1 − x∗〉. (4.14)

However, we can take a subsequence {xnj
} of {xn} such that

lim sup
n→∞

〈u−Ax∗, xn − x∗〉 = lim
j→∞

〈u−Ax∗, xnj
− x∗〉

and also xnj → p weakly. Then, since p ∈ Fix(T ) = C, we get from the optimality
condition (4.3),

lim sup
n→∞

〈u−Ax∗, xn − x∗〉 = 〈u−Ax∗, p− x∗〉 ≤ 0. (4.15)

Therefore, applying Lemma 2.2 to (4.14) and noticing (4.15), we conclude that ‖xn−
x∗‖2 → 0. �
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