A HALPERN-LIONS-REICH-LIKE ITERATIVE METHOD FOR NONEXPANSIVE MAPPINGS

ZAHRA AL-RUMAIH*, SOUHAIL CHEBBI* AND HONG-KUN XU**,1
*Department of Mathematics, College of Science, King Saud University P.O. Box 2455, Riyadh 11451, Saudi Arabia
E-mails: rumaihz@gmail.com, schebbi@ksu.edu.sa
** Department of Applied Mathematics, National Sun Yat-sen University
Kaohsiung 80424, Taiwan
E-mail: xuhk@math.nsysu.edu.tw

Abstract

We prove strong convergence of a Halpern-Lions-Reich-like iterative algorithm for approximating fixed points of nonexpansive mappings in a uniformly smooth Banach space. The idea of this algorithm is then applied to solve a quadratic minimization problem in a Hilbert space. Key Words and Phrases: Halpern-Lions-Reich-like iterative algorithm, nonexpansive mapping, fixed point, uniformly smooth Banach space, quadratic minimization problem. 2010 Mathematics Subject Classification: 47H09, 65J15, 47J25, 47J20, 47H10, 49N45, 65J15.

1. Introduction

In 1965, Halpern [4] invented an iterative algorithm for finding a fixed point of a nonexpansive mapping in the framework of Hilbert spaces. To state Halpern's algorithm, recall that a self-mapping of a closed convex subset C of a real Banach space H is nonexpansive if

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\|, \quad x, y \in C . \tag{1.1}
\end{equation*}
$$

The set of fixed points of T is denoted $\operatorname{Fix}(T)$ and suppose that $F i x(T) \neq \emptyset$.
Halpern's algorithm [4] then generates a sequence $\left\{x_{n}\right\}$ by the recursive process:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0 \tag{1.2}
\end{equation*}
$$

where $u \in C$ is called an anchor, $x_{0} \in C$ is an initial guess, and $\left\{\alpha_{n}\right\} \subset(0,1)$ is a sequence of iteration parameters.

Halpern called a sequence $\left\{\alpha_{n}\right\} \subset(0,1)$ acceptable if the sequence $\left\{x_{n}\right\}$ generated by (1.2) always converges in norm to a fixed point of T irrespective of the choice of Hilbert space H, closed convex subset C of H, nonexpansive mapping $T: C \rightarrow C$ such that $\operatorname{Fix}(T) \neq \emptyset$, anchor $u \in C$, and starting point $x_{0} \in C$. He proved that the following conditions (H1) and (H2) are necessary for $\left\{\alpha_{n}\right\}$ to be acceptable:
(H1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

[^0](H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$.
Halpern [4] also proved that the conditions (H1), (H2) and (H3) are sufficient for $\left\{\alpha_{n}\right\}$ to be acceptable, where
(H3) there is a strictly increasing sequence of positive integers, $\left\{n_{j}\right\}$, such that
\[

$$
\begin{cases}\frac{\alpha_{j+n_{j}}}{\alpha_{j}} \rightarrow 1, & \text { as } j \rightarrow \infty, \tag{1.3}\\ n_{j} \alpha_{j} \rightarrow \infty, & \text { as } j \rightarrow \infty\end{cases}
$$
\]

He observed that $\alpha_{n}=(n+1)^{-\alpha}$ for all n, where $0<\alpha<1$, satisfies (H1), (H2) and (H3), hence acceptable.

In 1977, Lions [5] proved that the conditions (H1), (H2) and (L1) are sufficient for $\left\{\alpha_{n}\right\}$ to be acceptable, where
(L1) $\lim _{n \rightarrow \infty}\left|\alpha_{n+1}-\alpha_{n}\right| / \alpha_{n+1}^{2}=0$.
Note that Lions [5] is the first to extend the algorithm (1.2) to find a common fixed point of a finite family of (firmly) nonexpansive mappings.

Many researchers made contributions to the Halpern-Lions algorithm (1.2) by finding a third condition which, together with (H1) and (H2), is sufficient for $\left\{\alpha_{n}\right\}$ to be acceptable; each of the following conditions is such a third condition:
(W1) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ (Wittmann [15]),
(R1) $\left\{\alpha_{n}\right\}$ is decreasing (Reich [9]),
(X1) $\lim _{n \rightarrow \infty}\left|\alpha_{n+1}-\alpha_{n}\right| / \alpha_{n+1}=0$ or equivalently, $\lim _{n \rightarrow \infty}\left(\alpha_{n} / \alpha_{n+1}\right)=1$ (Xu $[16,17])$.
A question gives rise to whether or not the conditions (H1) and (H2) are sufficient for $\left\{\alpha_{n}\right\}$ to be acceptable. This question was answered negatively by Suzuki [13]. However, it is still an open question: What conditions are necessary and sufficient for $\left\{\alpha_{n}\right\}$ to be acceptable. If we narrow the class of nonexpansive mappings down to the class of so-called averaged nonexpansive mappings, then the conditions (H1) and (H2) are not only necessary but sufficient for $\left\{\alpha_{n}\right\}$ to be acceptable. Recall that a mapping $T: C \rightarrow C$ is said to be averaged nonexpansive if $T=(1-\lambda) I+\lambda V$, where $\lambda \in(0,1)$ and $V: C \rightarrow C$ is nonexpansive.

On the other hand, it is interesting to extend the algorithm (1.2) to the setting of Banach spaces. In this regard, Reich [8] was the first to prove that the sequence $\left\{x_{n}\right\}$ generated by the algorithm (1.2) in a uniformly smooth Banach space with the choice of parameters $\alpha_{n}=(1+n)^{-\alpha}$ for all n, where $0<\alpha<1$, converges in norm to a fixed point of T. Due to this reason, we will refer the algorithm (1.2) to as the Halpern-Lions-Reich algorithm throughout the rest of this paper.

While searching new iterative algorithms, Yao, et al [20] introduced an iterative algorithm that generates a sequence $\left\{x_{n}\right\}$ through the recursion:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T x_{n}, \quad n \geq 0 \tag{1.4}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all n. We shall call it a Halpern-Lions-Reich-like algorithm. Yao, et al [20] proved that if, in addition, there hold the conditions:
(i) $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(ii) $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$,
then the sequence $\left\{x_{n}\right\}$ generated by (1.4) converges in norm to a fixed point of T.
Nevertheless, it is recently pointed out in [10] that Yao, et al's result above is false, that is, the conditions (i) and (ii) are insufficient to guarantee the strong convergence of the sequence $\left\{x_{n}\right\}$. It is proved in [10] that if, in addition to the condition (i), there hold the conditions:
(iii) $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$,
(iv) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$,
(v) $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$,
then the sequence $\left\{x_{n}\right\}$ generated by (1.4) does converge in norm to a fixed point of T.

It is of interest to investigate the strong convergence of the Halpern-Lions-Reichlike algorithm (1.4) under appropriate conditions to be imposed on the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$. The purpose of this paper is twofold. First, we will prove a strong convergence theorem for the Halpern-Lions-Reich-like algorithm (1.4) under different conditions from those of Sangago [10]. Secondly, we will apply our convergence result to solve a quadratic minimization problem.

2. Preliminaries

Let X be a real uniformly smooth Banach space and C a closed convex subset of X. Let $J: X \rightarrow X^{*}$ be the (normalized) duality map defined by

$$
J(x) \in X^{*}, \quad\|J(x)\|=\|x\|, \quad\langle x, J(x)\rangle=\|x\|^{2} .
$$

Note that the uniform smoothness of X implies that J is uniformly continuous on bounded sets in the norm-to-norm topology.

Let $T: C \rightarrow C$ be a nonexpansive mapping such that $\operatorname{Fix}(T) \neq \emptyset$. For each fixed anchor $u \in C$ and $t \in(0,1)$. Let $x_{t} \in C$ be the unique fixed point of the contraction

$$
\begin{equation*}
T_{t} x:=t u+(1-t) T x, \quad x \in C . \tag{2.1}
\end{equation*}
$$

The following theorem is known, the Hilbert space counterpart of which is proved by Browder [1].
Theorem 2.1 [8] If X is a uniformly smooth Banach space, then $\left\{x_{t}\right\}$ converges in norm, as $t \rightarrow 0$, to a fixed point of T; moreover, the operator $Q: C \rightarrow F i x(T)$ defined by

$$
\begin{equation*}
Q(u):=\|\cdot\|-\lim _{t \rightarrow 0} x_{t}, \quad u \in C \tag{2.2}
\end{equation*}
$$

defines the unique sunny nonexpansive retraction from C onto $\operatorname{Fix}(T)$; that is, Q satisfies the properties:
(i) $\langle Q u-u, J(p-u)\rangle \geq 0, \quad u \in C, \quad p \in \operatorname{Fix}(T)$.
(ii) $\|Q u-Q v\|^{2} \leq\langle u-v, J(Q u-Q v)\rangle, \quad u, v \in C$.

To prove our main result in the next section, we need the following two lemmas.
Lemma 2.2 [16] Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\gamma_{n} \delta_{n}, \quad n \geq 0
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in \mathbb{R} such that
(i) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$ or $\sum_{n=1}^{\infty} \gamma_{n}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.3 [12] Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X such that

$$
\begin{equation*}
x_{n+1}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) y_{n}, \quad n \geq 0 \tag{2.3}
\end{equation*}
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $[0,1]$ such that

$$
0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1
$$

Assume

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 \tag{2.4}
\end{equation*}
$$

Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
The following lemma is straightforward, but convenient in use.
Lemma 2.4 In a real smooth Banach space, there holds the inequality for all x, y :

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J(x+y)\rangle .
$$

3. Convergence of a Halpern-Lions-Reich-like Algorithm

Recall that our Halpern-Lions-Reich-like algorithm generate a sequence $\left\{x_{n}\right\}$ through the recursion:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T x_{n}, \quad n \geq 0 \tag{3.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all n.
Yao, et al [20] claimed that the conditions
(a) $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(b) $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$,
were sufficient to guarantee the strong convergence of the sequence $\left\{x_{n}\right\}$ generated by (1.4). But the fact is that their conclusion is incorrect, as the counterexamples of Sangago [10] showed. Sangago [10] did not figure out the cause of the incorrectness in the proof given in Yao, et al [20]. So let us briefly review the main points of the proof of Yao, et al [20]. Let $t \in(0,1)$ and $n \geq 1$ be given and let $z_{t, n}$ be the unique fixed point of the contraction

$$
\begin{equation*}
T_{t, n} z:=\frac{\left(1-\alpha_{n}\right) t}{\gamma_{n}+t \beta_{n}} u+\frac{(1-t) \gamma_{n}}{\gamma_{n}+t \beta_{n}} T z, \quad z \in C \tag{3.2}
\end{equation*}
$$

Then one has that

$$
\begin{equation*}
\lim _{t \rightarrow 0} z_{t, n}=p \in \operatorname{Fix}(T), \quad n \geq 1 \tag{3.3}
\end{equation*}
$$

Indeed, $p=Q u$, where $Q: C \rightarrow F i x(T)$ is the unique sunny nonexpansive retraction from C onto $\operatorname{Fix}(T)$ as defined in Theorem 2.1.

The key step of the proof of Yao, et al [20] is the following inequality

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-p, J\left(x_{n}-p\right)\right\rangle \leq 0 \tag{3.4}
\end{equation*}
$$

To achieve this, they interchanged the order in the following iterated limits

$$
\begin{equation*}
\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\langle u-z_{t, n}, J\left(x_{n}-z_{t, n}\right)\right\rangle \leq 0 \tag{3.5}
\end{equation*}
$$

by using the uniform smoothness of the space X (equivalently, the norm-to-norm uniform continuity over bounded sets of the normalized duality map J). This however requires that the limit in (3.3) be uniformly over $n \geq 1$, which fails to be true, in general, under the conditions (a) and (b) of Yao, et al [20]. To illustrate this, we use the counterexample in [10].
Example 3.1 [10] Take $X=\mathbb{R}$ to be the real line equipped with the absolute value as norm, $C=[-1,1]$, and $T: C \rightarrow C$ to be the reflection: $T x=-x$ for $x \in C$. Then T is nonexpansive and $x=0$ is the unique fixed point of T. Furthermore, take $u=1$ and $x_{0}=\frac{1}{3}$, and take $\alpha_{n}=\gamma_{n} \in\left(0, \frac{1}{3}\right)$ for all n so that $\beta_{n}=1-2 \alpha_{n} \in\left(\frac{2}{3}, 1\right)$. It is then easily seen that the sequence $\left\{x_{n}\right\}$ generated by the algorithm (3.1) is a constant:

$$
x_{n} \equiv \frac{1}{3}, \quad n \geq 1
$$

Hence, the sequence $\left\{x_{n}\right\}$ fails to converge to a fixed point of T.
In this case, it is not hard to find that the unique fixed point $z_{t, n}$ of the contraction $T_{t, n}$ defined in (3.2) is given by

$$
z_{t, n}=\frac{\left(1-\alpha_{n}\right) t}{2 \alpha_{n}+t\left(\beta_{n}-\alpha_{n}\right)}
$$

It is immediately clear that

$$
\lim _{t \rightarrow 0} z_{t, n}=0 \in \operatorname{Fix}(T), \quad \lim _{n \rightarrow \infty} z_{t, n}=1 \notin \operatorname{Fix}(T) .
$$

This shows that the limit in (3.3) fails to be uniform over $n \geq 1$, and consequently, the order of the iterated limits in (3.5) cannot be interchanged. As a matter of fact, we have

$$
\begin{aligned}
& \limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\langle u-z_{t, n}, J\left(x_{n}-z_{t, n}\right)\right\rangle=\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left(1-z_{t, n}\right)\left(\frac{1}{3}-z_{t, n}\right)=0 \\
& \limsup _{n \rightarrow \infty} \limsup _{t \rightarrow 0}\left\langle u-z_{t, n}, J\left(x_{n}-z_{t, n}\right)\right\rangle=\limsup _{n \rightarrow \infty} \limsup _{t \rightarrow 0}\left(1-z_{t, n}\right)\left(\frac{1}{3}-z_{t, n}\right)=\frac{1}{3} .
\end{aligned}
$$

Moreover, the relation (3.4) fails to hold; indeed, we have

$$
\limsup _{n \rightarrow \infty}\left\langle u-p, J\left(x_{n}-p\right)\right\rangle=\limsup _{n \rightarrow \infty} x_{n}=\frac{1}{3}
$$

We will provide with a new selection of the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ by avoiding usage of the sequence $\left\{z_{t, n}\right\}$. Below is our convergence result on the algorithm (3.1).
Theorem 3.2 Let X be a real uniformly smooth Banach space, C a closed convex subset of X, and $T: C \rightarrow C$ a nonexpansive mapping such that $F i x(T) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be generated by the Halpern-Lions-Reich-like algorithm (3.1). Assume that the sequences $\left(\alpha_{n}\right),\left(\beta_{n}\right)$, and $\left(\gamma_{n}\right)$ satisfy the following conditions:
(i) $\alpha_{n}, \beta_{n}, \gamma_{n} \in(0,1)$ are such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all $n \geq 0$.
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$,
(iii) $\lim _{n \rightarrow \infty} \beta_{n}=\beta \in(0,1)$.

Then $\left(x_{n}\right)$ converges in norm to $Q u$, where Q is the sunny nonexpansive retraction from C onto $\operatorname{Fix}(T)$ defined by (2.2).

Proof. 1. $\left\{x_{n}\right\}$ is bounded. Indeed, take a fixed point p of T to get

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}(u-p)+\beta_{n}\left(x_{n}-p\right)+\gamma_{n}\left(T x_{n}-p\right)\right\| \\
& \leq \alpha_{n}\|u-p\|+\left(\beta_{n}+\gamma_{n}\right)\left\|x_{n}-p\right\| \| \\
& \leq \max \left\{\|u-p\|,\left\|x_{n}-p\right\|\right\}
\end{aligned}
$$

So an induction gives

$$
\left\|x_{n}-p\right\| \leq \max \left\{\|u-p\|,\left\|x_{0}-p\right\|\right\}, \quad n \geq 0
$$

2. $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$. To see this we put

$$
\begin{equation*}
y_{n}=\frac{\alpha_{n} u+\gamma_{n} T x_{n}}{1-\beta_{n}} \tag{3.6}
\end{equation*}
$$

so that we have

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) y_{n} . \tag{3.7}
\end{equation*}
$$

It is not hard to find that

$$
\begin{aligned}
y_{n+1}-y_{n}= & \frac{\alpha_{n+1} u+\gamma_{n+1} T x_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} u+\gamma_{n} T x_{n}}{1-\beta_{n}} \\
= & \frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(T x_{n+1}-T x_{n}\right) \\
& +\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) u+\left(\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right) T x_{n}
\end{aligned}
$$

It turns out that

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \left|\frac{\gamma_{n+1}}{1-\beta_{n+1}}-1\right| M+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right| M \\
& +\left|\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right| M
\end{aligned}
$$

where $M>0$ is selected so that $M \geq \max \left\{\|u\|, 2\left\|x_{j}\right\|,\left\|T x_{j}\right\|\right\}$ for all j. Since $\alpha_{n} \rightarrow 0$ and $\beta_{n} \rightarrow \beta \in(0,1), \gamma_{n} \rightarrow 1-\beta \in(0,1)$ and we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 \tag{3.8}
\end{equation*}
$$

Due to (3.8) together with the assumption $\beta_{n} \rightarrow \beta \in(0,1)$, we can apply Lemma 2.3 to the relation (3.7) to get

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0
$$

Noticing also from (3.6)

$$
\left\|y_{n}-T x_{n}\right\|=\frac{\alpha_{n}}{1-\beta_{n}}\left\|u-T x_{n}\right\| \leq \frac{2 \alpha_{n} M}{1-\beta_{n}} \rightarrow 0
$$

we obtain

$$
\left\|x_{n}-T x_{n}\right\| \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T x_{n}\right\| \rightarrow 0 .
$$

3. $\lim \sup _{n \rightarrow \infty}\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leq 0$, with $q=Q u$.

Let $t \in(0,1)$ and let $z_{t} \in C$ solves the fixed point equation

$$
z_{t}=t u+(1-t) T z_{t} .
$$

Then $q=\lim _{t \rightarrow 0} z_{t}$ in the norm topology.
We have

$$
\begin{aligned}
\left\|z_{t}-x_{n}\right\|^{2}= & \left\|(1-t)\left(T z_{t}-x_{n}\right)+t\left(u-x_{n}\right)\right\|^{2} \\
\leq & (1-t)^{2}\left\|T z_{t}-x_{n}\right\|^{2}+2 t\left\langle u-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle \\
\leq & (1-t)^{2}\left(\left\|T z_{t}-T x_{n}\right\|+\left\|T x_{n}-x_{n}\right\|\right)^{2} \\
& +2 t\left(\left\langle u-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle+\left\|z_{t}-x\right\|^{2}\right) \\
\leq & \left(1+t^{2}\right)\left\|z_{t}-x_{n}\right\|^{2}+M\left\|T x_{n}-x_{n}\right\| \\
& +2 t\left\langle u-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle .
\end{aligned}
$$

Here M is such that

$$
M \geq 2\left\|z_{t}-x_{n}\right\|+\left\|T x_{n}-x_{n}\right\| \quad \text { for all } n \text { and } t \in(0,1)
$$

It turns out that

$$
\begin{equation*}
\left\langle u-z_{t}, J\left(x_{n}-z_{t}\right)\right\rangle \leq \frac{t}{2}\left\|z_{t}-x_{n}\right\|^{2}+\frac{M}{2 t}\left\|T x_{n}-x_{n}\right\| . \tag{3.9}
\end{equation*}
$$

Let K be a bounded set such that

$$
\left\{x_{n}-z_{t}, x_{n}-q, z_{t}-u\right\} \subset K \quad \text { for all } n \text { and } t \in(0,1)
$$

and let $d:=\sup \{\|u\|: u \in K\}<\infty$. Since the duality map J is uniformly continuous in the norm topology, there exists, given $\varepsilon>0$, a $\delta>0$ (we assume also that $\delta<\varepsilon$) such that

$$
u, v \in K, \quad\|u-v\|<\delta \quad \Rightarrow \quad\|J(u)-J(v)\|<\varepsilon
$$

In particular, since $z_{t} \rightarrow q$ in norm, there exists $t_{0}>0$ small enough so that

$$
\begin{equation*}
\left\|z_{t}-q\right\|<\delta<\varepsilon \quad \text { for all } 0<t<t_{0} \tag{3.10}
\end{equation*}
$$

It turns out that

$$
\begin{equation*}
\left\|J\left(x_{n}-z_{t}\right)-J\left(x_{n}-q\right)\right\|<\varepsilon \quad \text { for all } n \text { and } 0<t<t_{0} . \tag{3.11}
\end{equation*}
$$

It follows from (3.9)-(3.11) that, for all n and $0<t<t_{0}$,

$$
\begin{aligned}
\left\langle u-q, J\left(x_{n}-q\right)\right\rangle= & \left\langle u-z_{t}, J\left(x_{n}-z_{t}\right)\right\rangle+\left\langle z_{t}-q, J\left(x_{n}-q\right)\right\rangle \\
& +\left\langle u-z_{t}, J\left(x_{n}-q\right)-J\left(x_{n}-z_{t}\right)\right\rangle \\
\leq & \left\langle u-z_{t}, J\left(x_{n}-z_{t}\right)\right\rangle+2 d \varepsilon \\
\leq & \frac{t d^{2}}{2}+\frac{M}{2 t}\left\|T x_{n}-x_{n}\right\|+2 d \varepsilon .
\end{aligned}
$$

Consequently, for $0<t<t_{0}$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leq \frac{t d^{2}}{2}+2 d \varepsilon \tag{3.12}
\end{equation*}
$$

Letting $t \rightarrow 0$ in (3.12) yields immediately that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-q, J\left(x_{n}-q\right)\right\rangle \leq 0 \tag{3.13}
\end{equation*}
$$

4. $x_{n} \rightarrow q$ in norm. Applying Lemma 2.4, we get

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2} & \leq\left\|\beta_{n}\left(x_{n}-q\right)+\gamma_{n}\left(T x_{n}-q\right)+\alpha_{n}(u-q)\right\|^{2} \\
& \leq\left\|\beta_{n}\left(x_{n}-q\right)+\gamma_{n}\left(T x_{n}-q\right)\right\|^{2}+2 \alpha_{n}\left\langle u-q, J\left(x_{n+1}-q\right)\right\rangle \\
& \leq\left(\beta_{n}\left\|x_{n}-q\right\|+\gamma_{n}\left\|x_{n}-q\right\|\right)^{2}+2 \alpha_{n}\left\langle u-q, J\left(x_{n+1}-q\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle u-q, J\left(x_{n+1}-q\right)\right\rangle \tag{3.14}
\end{align*}
$$

By applying Lemma 2.2 to (3.14) we conclude that $\left\|x_{n}-q\right\|^{2} \rightarrow 0$, as required.

4. A Quadratic Minimization Problem

Consider the quadratic minimization problem in a real Hilbert space H :

$$
\begin{equation*}
\min _{x \in C} \frac{1}{2}\langle A x, x\rangle-\langle x, u\rangle \tag{4.1}
\end{equation*}
$$

where C is the fixed point set $F i x(T)$ of a nonexpansive mapping T on H and u is a given point in H. Assume $\operatorname{Fix}(T)$ is nonempty. Assume also A is strongly positive; that is, there is a constant $\gamma>0$ with the property

$$
\begin{equation*}
\langle A x, x\rangle \geq \gamma\|x\|^{2} \text { for all } x \in H \tag{4.2}
\end{equation*}
$$

Then the minimization (4.1) has a unique solution $x^{*} \in C$ which satisfies the optimality condition

$$
\begin{equation*}
\left\langle A x^{*}-u, x-x^{*}\right\rangle \geq 0, \quad x \in C . \tag{4.3}
\end{equation*}
$$

In $[19,7]$ it is proved that the sequence $\left\{x_{n}\right\}$ generated by the algorithm

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} u, \quad n \geq 0 \tag{4.4}
\end{equation*}
$$

converges in norm to the solution x^{*} of (4.1) provided the sequence $\left\{\alpha_{n}\right\}$ in $(0,1)$ satisfies the conditions (H1) and (H2), and additionally, either condition (W1) or (X1) stated in Section 1. Below following the idea presented in Section 3, we will demonstrate a new algorithm that generates a sequence strongly converging to the solution x^{*} of (4.1) under the conditions (H1) and (H2) only. Given an anchor $u \in H$ and a starting point $x_{0} \in H$. Let $\left\{\alpha_{n}\right\} \subset(0,1)$ be given. Let a sequence $\left\{\beta_{n}\right\}$ be also given in $(0,1)$ such that $\underline{\beta} \leq \beta_{n} \leq \bar{\beta}$ for all n and some $0<\underline{\beta} \leq \bar{\beta}<1$. Define a sequence $\left\{x_{n}\right\}$ by the algorithm

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right)\left(\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}\right)+\alpha_{n} u, \quad n \geq 0 . \tag{4.5}
\end{equation*}
$$

Lemma 4.1 [7] Assume A is a strongly positive linear bounded operator on a real Hilbert space H with coefficient $\gamma>0$ (i.e., $\langle A x, x\rangle \geq \gamma\|x\|^{2}$ for all $x \in H$) and $0<\alpha \leq\|A\|^{-1}$. Then $\|I-\alpha A\| \leq 1-\alpha \gamma$.
Lemma 4.2 [3] Let H be a Hilbert space, K a closed convex subset of H, and $T: K \rightarrow K$ a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. If $\left\{x_{n}\right\}$ is a sequence in K weakly converging to x and if $\left\{(I-T) x_{n}\right\}$ converges strongly to 0 , then $(I-T) x=0$. Theorem 4.3 Suppose A is a strongly positive linear bounded operator with coefficient $\gamma>0$ as given in (4.2). Suppose the sequence $\left\{\alpha_{n}\right\}$ of parameters satisfies the
conditions (H1) and (H2). Then the sequence $\left\{x_{n}\right\}$ generated by the algorithm (4.5) converges in norm to the unique solution x^{*} of the minimization problem (4.1).

Proof. First we claim that $\left\{x_{n}\right\}$ is bounded. As a matter of fact, take a $p \in \operatorname{Fix}(T)$ and use Lemma 4.1 to deduce (as $\alpha_{n} \rightarrow 0$ we assume, with no loss of generality, that $\alpha_{n}<\|A\|^{-1}$ for all n)

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\left(I-\alpha_{n} A\right)\left(\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}-p\right)+\alpha_{n}(u-A p)\right\| \\
& \leq\left(1-\gamma \alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|u-A p\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|,(1 / \gamma)\|u-A p\|\right\} .
\end{aligned}
$$

By induction we can get

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{1}{\gamma}\|u-A p\|\right\}, \quad n \geq 0
$$

Hence, $\left\{x_{n}\right\}$ is bounded. Next rewrite x_{n+1} in the form:

$$
\begin{equation*}
x_{n+1}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} y_{n}, \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{n}=1-\left(1-\alpha_{n}\right) \beta_{n} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n}=\frac{\alpha_{n} \beta_{n}}{\gamma_{n}}(I-A) x_{n}+\frac{1-\beta_{n}}{\gamma_{n}}\left(I-\alpha_{n} A\right) T x_{n}+\frac{\alpha_{n}}{\gamma_{n}} u . \tag{4.8}
\end{equation*}
$$

Since $\alpha_{n} \rightarrow 0$, it is easily seen that $\liminf _{n \rightarrow \infty} \gamma_{n} \geq 1-\bar{\beta}>0$ and $\lim \sup _{n \rightarrow \infty} \gamma_{n} \leq$ $1-\underline{\beta}<1$. Since also $\left\{x_{n}\right\}$ is bounded, equation (4.8) shows that $\left\{y_{n}\right\}$ is bounded. Set

$$
z_{n}:=\frac{1}{\gamma_{n}}\left(\beta_{n}(I-A) x_{n}-\left(1-\beta_{n}\right) A T x_{n}+u\right) .
$$

Then $\left\{z_{n}\right\}$ is bounded and from (4.8), y_{n} can be rewritten as

$$
\begin{equation*}
y_{n}=\alpha_{n} z_{n}+\frac{1-\beta_{n}}{\gamma_{n}} T x_{n}=\alpha_{n} z_{n}+\left(1-\frac{\alpha_{n} \beta_{n}}{\gamma_{n}}\right) T x_{n} \tag{4.9}
\end{equation*}
$$

since $\frac{1-\beta_{n}}{\gamma_{n}}=1-\frac{\alpha_{n} \beta_{n}}{\gamma_{n}}$, due to (4.7). We can now compute

$$
\begin{aligned}
y_{n+1}-y_{n}= & \alpha_{n+1} z_{n+1}-\alpha_{n} z_{n}+\left(1-\frac{\alpha_{n+1} \beta_{n+1}}{\gamma_{n+1}}\right) T x_{n+1}-\left(1-\frac{\alpha_{n} \beta_{n}}{\gamma_{n}}\right) T x_{n} \\
= & \alpha_{n+1} z_{n+1}-\alpha_{n} z_{n}+\left(1-\frac{\alpha_{n+1} \beta_{n+1}}{\gamma_{n+1}}\right)\left(T x_{n+1}-T x_{n}\right) \\
& +\left(\left(1-\frac{\alpha_{n+1} \beta_{n+1}}{\gamma_{n+1}}\right)-\left(1-\frac{\alpha_{n} \beta_{n}}{\gamma_{n}}\right)\right) T x_{n} \\
= & \left(1-\frac{\alpha_{n+1} \beta_{n+1}}{\gamma_{n+1}}\right)\left(T x_{n+1}-T x_{n}\right) \\
& +\left(\frac{\alpha_{n} \beta_{n}}{\gamma_{n}}-\frac{\alpha_{n+1} \beta_{n+1}}{\gamma_{n+1}}\right) T x_{n}+\alpha_{n+1} z_{n+1}-\alpha_{n} z_{n} .
\end{aligned}
$$

It turns out that

$$
\begin{align*}
\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| & \leq \frac{\alpha_{n+1} \beta_{n+1}}{\gamma_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\alpha_{n+1}\left\|z_{n+1}\right\| \\
& +\left|\frac{\alpha_{n} \beta_{n}}{\gamma_{n}}-\frac{\alpha_{n+1} \beta_{n+1}}{\gamma_{n+1}}\right|\left\|T x_{n}\right\|+\alpha_{n}\left\|z_{n}\right\| . \tag{4.10}
\end{align*}
$$

Since $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, it is immediately clear from (4.10) that

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Consequently, we can apply Lemma 2.3 to assert that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{4.11}
\end{equation*}
$$

By (4.9) we have

$$
\begin{equation*}
\left\|y_{n}-T x_{n}\right\|=\alpha_{n}\left\|z_{n}-\frac{\beta_{n}}{\gamma_{n}} T x_{n}\right\| \rightarrow 0 \tag{4.12}
\end{equation*}
$$

This together with (4.11) yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 \tag{4.13}
\end{equation*}
$$

Lemma 4.3 then implies that $\omega_{w}\left(x_{n}\right) \subset \operatorname{Fix}(T)=C$. Here

$$
\omega_{w}\left(x_{n}\right)=\left\{z: \exists x_{n_{j}} \rightarrow z \text { weakly }\right\}
$$

is the set of weak ω-limit points of the sequence $\left\{x_{n}\right\}$.
Let x^{*} be the unique solution to the minimization (4.1). Then by the definition of the algorithm (4.5), we can write

$$
x_{n+1}-x^{*}=\left(I-\alpha_{n} A\right)\left(\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}-x^{*}\right)+\alpha_{n}\left(u-A x^{*}\right) .
$$

Apply Lemma 2.4 (as J is the identity in a Hilbert space) and use Lemma 4.1 to get (noting $\left\|\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\|$)

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \left\|\left(I-\alpha_{n} A\right)\left(\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}-x^{*}\right)\right\|^{2} \\
& +2 \alpha_{n}\left\langle u-A x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \left(1-\gamma \alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle u-A x^{*}, x_{n+1}-x^{*}\right\rangle . \tag{4.14}
\end{align*}
$$

However, we can take a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle u-A x^{*}, x_{n}-x^{*}\right\rangle=\lim _{j \rightarrow \infty}\left\langle u-A x^{*}, x_{n_{j}}-x^{*}\right\rangle
$$

and also $x_{n_{j}} \rightarrow p$ weakly. Then, since $p \in \operatorname{Fix}(T)=C$, we get from the optimality condition (4.3),

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-A x^{*}, x_{n}-x^{*}\right\rangle=\left\langle u-A x^{*}, p-x^{*}\right\rangle \leq 0 \tag{4.15}
\end{equation*}
$$

Therefore, applying Lemma 2.2 to (4.14) and noticing (4.15), we conclude that $\| x_{n}-$ $x^{*} \|^{2} \rightarrow 0$.

Acknowledgement. The authors extended their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No RGP-VPP-087. The third author was supported in part by an National Science Council grant under grant number NSC 100-2115-M-110-003-MY2.

References

[1] F.E. Browder, Convergence of approximation to fixed points of nonexpansive nonlinear mappings in Hilbert spaces, Arch. Rational Mech. Anal., 24(1967), 82-90.
[2] C.E. Chidume and C.O. Chidume, Iterative approximation of fixed points of nonexpansive mappings, J. Math. Anal. Appl., 318(2006), no. 1, 288-295.
[3] K. Geobel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
[4] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961.
[5] P.L. Lions, Approximation de points fixes de contractions, C.R. Acad. Sci. Sèr. A-B Paris, 284(1977), 1357-1359.
[6] G. Lopez, V. Martin-Marquez and H.K. Xu, Halpern's iteration for nonexpansive mappings, Contemporary Math., $\mathbf{5 1 3}(2010)$, 211-231.
[7] G. Marino and H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318(2006), 43-52.
[8] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75(1980), 287-292.
[9] S. Reich, Approximating fixed points of nonexpansive mappings, Panamerican. Math. J., 4(1994), no. 2, 23-28.
[10] M.G. Sangago, Modified Halpern iterative algorithm for nonexpansive mappings II, AsianEuropean J. Math., 4(2011), no. 4, 683-694.
[11] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645.
[12] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005, no. 1, 103-123.
[13] T. Suzuki, Reich's problem concerning Halpern's convergence, Arch. Math., 92(2009), 602-613.
[14] T. Suzuki, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 135(2007), 99-106.
[15] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992), 486-491.
[16] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
[17] H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65(2002), 109-113.
[18] H.K. Xu, Remarks on an iterative method for nonexpansive mappings, Comm. Applied Nonlinear Anal., 10(2003), no. 1, 67-75.
[19] H.K. Xu, An iterative approach to quadratic optimization, J. Optimiz. Theory Appl., 116(2003), 659-678.
[20] Y. Yao, Y.C. Liou and H. Zhou, Strong convergence of an iterative method for nonexpansive mappings with new control conditions, Nonlinear Anal., 70(2009), 2332-2336.

Received: August 28, 2011; Accepted: November 10, 2011.

[^0]: ${ }^{1}$ Corresponding author.

