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Abstract. Let A and B be nonempty subsets of a metric space X. The purpose of this paper is to
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of our results.
Key Words and Phrases: best proximity point; fixed point; contraction non-self-mapping; P-

property.
2010 Mathematics Subject Classification: 47H10, 47H09.

1. Introduction

Let A and B be two nonempty subsets of a metric space X. A non-self-mapping
T : A → B is said to be a contraction if there exists a constant k ∈ [0, 1), such that
d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ A. The well-known Banach contraction principle
states that if A is a complete subset of X and T is a contraction self-mapping, then
the fixed point equation Tx = x has exactly one solution.

The Banach contraction principle is a very important tool in nonlinear analysis and
there are many extensions of this principle; see, e.g., [9] and the references therein.
One of the interesting generalizations of the Banach contraction principle which char-
acterizes the metric completeness is due to Suzuki. He proved the following fixed
point theorem.
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Theorem 1.1 ([14]) Define a nondecreasing function θ : [0, 1) → ( 1
2 , 1] by

θ(r) =


1 if 0 ≤ r ≤ 1

2 (
√

5− 1),
1−r
r2 if 1

2 (
√

5− 1) ≤ r ≤ 1√
2
,

1
1+r if 1√

2
≤ r < 1.

(1.1)

Then for a metric space (X, d), the following are equivalent:
(i) X is complete.
(ii) Every mapping T on X satisfying the following proposition has a fixed point:
• There exists r ∈ [0, 1) such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤

rd(x, y) for all x, y ∈ X.
(iii) There exists r ∈ (0, 1) such that every mapping T on X satisfying the following
proposition has a fixed point:
• 1

10000d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

Remark 1.2 We note that for every r ∈ [0, 1), θ(r) is the best constant.

Now consider the non-self-mapping T : A → X, in which A is a nonempty subset
of a metric space (X, d). Clearly, the fixed point equation Tx = x may not have
solution. Hence, it is contemplated to find an approximate x ∈ A such that the error
d(x, Tx) is minimum. Indeed, best approximation theory has been derived from this
idea. Here we state the following well-known best approximation theorem due to Kay
Fan.

Theorem 1.3 ([8]) Let A be a nonempty compact convex subset of a normed linear
space X and T : A→ X be a continuous function. Then there exists x ∈ A such that

‖x− Tx‖ = dist(Tx,A) := inf{‖Tx− a‖ : a ∈ A}.

A point x ∈ A in the above theorem is called a best approximant point of T in A.
The notion of best proximity point for non-self-mappings is introduced in a similar
fashion:

Definition 1.4 Let A and B be nonempty subsets of a metric space (X, d) and T :
A→ B be a non-self mapping. A point p ∈ A is called a best proximity point of T if
d(p, Tp) = dist(A,B).

In fact best proximity point theorems have been studied to find necessary conditions
such that the minimization problem

min
x∈A

d(x, Tx), (1.2)

has at least one solution.
Existence and convergence of best proximity points for various classes of mappings

is an interesting subject in optimization theory which attracted the attention of many
authors; see [1, 2, 4, 5, 6, 7, 11, 15] and references therein.

The aim of this paper is to study the existence and uniqueness of best proximity
point for non-self-mappings which are contraction in the sense of Suzuki.
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2. Preliminaries

Let A and B be two nonempty subsets of a metric space (X, d). In this work, we
adopt the following notations and definitions.

A0 = {x ∈ A : d(x, y) = dist(A,B), for some y ∈ B},

B0 = {y ∈ B : d(x, y) = dist(A,B), for some x ∈ A}.
We note that if A intersects B, then A0 and B0 are nonempty. Also, if A and B are

nonempty weakly compact convex subsets of a Banach space X, then (A0, B0) must
be a nonempty pair in X; meaning that both components are nonempty. Moreover,
it is interesting to notice that A0 and B0 are contained in the boundaries of A and
B respectively, provided that A and B are closed subsets of a Banach space X such
that dist(A,B) > 0 (see [12]).

In [10], Sankar Raj introduced a notion of P-property on a nonempty pair of subsets
of a metric space as follows.

Definition 2.1 [10] Let (A,B) be a pair of nonempty subsets of a metric space (X, d)
with A0 6= ∅. The pair (A,B) is said to have P-property if and only if{

d(x1, y1) = dist(A,B)
d(x2, y2) = dist(A,B)

⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 2.2 ([10]) Let A,B be two nonempty closed convex subsets of a Hilbert
space X. Then (A,B) satisfies the P-property.

Example 2.3 Let A,B be two nonempty subsets of a metric space (X, d) such that
A0 6= ∅ and dist(A,B) = 0. Then (A,B) has the P-property.

Example 2.4 ([3]) Let A,B be two nonempty bounded, closed and convex subsets
of a uniformly convex Banach space X. Then (A,B) has the P-property.

The following theorem was established by Sankar Raj.

Theorem 2.5 ([10]) Let (A,B) be a pair of nonempty closed subsets of a complete
metric space (X, d) such that A0 is nonempty. Let T : A → B be a weakly con-
tractive mapping, that is, d(Tx, Ty) ≤ d(x, y) − ψ(d(x, y)), for all x, y ∈ A, where
ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that ψ is pos-
itive on (0,∞), ψ(0) = 0 and limt→∞ ψ(t) = ∞. Assume that T (A0) ⊆ B0 and
the pair (A,B) has the P-property. Then there exists a unique x∗ in A such that
d(x∗, Tx∗) = dist(A,B).

If in the above theorem ψ(t) = (1 − k)t, for some k ∈ (0, 1) and t ≥ 0, then we
deduce the following result.
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Corollary 2.6 Let (A,B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Let T : A → B be a contraction non-self-
mapping such that T (A0) ⊆ B0. Then T has a unique best proximity point.

3. The main result

Now, we state the main result of this paper.

Theorem 3.1 Define a strictly decreasing function η from [0, 1) onto ( 1
2 , 1] by

η(r) =
1

1 + r
.

Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X, d)
such that A0 is nonempty. Assume that T : A → B is a non-self-mapping such that
T (A0) ⊆ B0 and there exists r ∈ [0, 1) such that

η(r)d∗(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y), (3.1)

for all x, y ∈ A, where d∗(a, b) := d(a, b) − dist(A,B), for all (a, b) ∈ A × B. If the
pair (A,B) has the P-property, then T has a unique best proximity point.

Proof. Let x0 ∈ A0. Since Tx0 ∈ B0, there exists x1 ∈ A0 such that d(x1, Tx0) =
dist(A,B). Again, since Tx1 ∈ B0, there exists x2 ∈ A0 such that d(x2, Tx1) =
dist(A,B). Thus we have a sequence {xn} in A0 such that

d(xn+1, Txn) = dist(A,B), for all n ∈ N ∪ {0}. (3.2)

Since (A,B) has the P-property, we obtain

d(xn, xn+1) = d(Txn−1, Txn), for all n ∈ N. (3.3)

By (3.2) we have

d(x0, Tx0) ≤ d(x0, x1) + d(x1, Tx0) = d(x0, x1) + dist(A,B),

and so d∗(x0, Tx0) ≤ d(x0, x1). Since η(r) ≤ 1, we conclude that

η(r)d∗(x0, Tx0) ≤ d∗(x0, Tx0) ≤ d(x0, x1).

Now by (3.1) we obtain d(Tx0, Tx1) ≤ rd(x0, x1). Similarly,

d(x1, Tx1) ≤ d(x1, x2) + d(x2, Tx1) = d(x1, x2) + dist(A,B).

Thus d∗(x1, Tx1) ≤ d(x1, x2). This implies that

η(r)d∗(x1, Tx1) ≤ d∗(x1, Tx1) ≤ d(x1, x2).

Hence, by (3.1), (3.3) we have

d(Tx1, Tx2) ≤ rd(x1, x2) = rd(Tx0, Tx1) ≤ r2d(x0, x1).

Continuing this process, we deduce that

d(xn, xn+1) = d(Txn−1, Txn) ≤ rnd(x0, x1).



A BEST PROXIMITY POINT THEOREM 285

Therefore,
∑∞

n=1 d(xn, xn+1) < ∞. This implies that {xn} is a Cauchy sequence.
Since X is complete and and A is closed, we can find p ∈ A such that xn → p. We
now claim that

d∗(p, Tx) ≤ rd(p, x) for all x ∈ A with x 6= p. (3.4)

Since xn → p, there exists N1 ∈ N such that

d(xn, p) ≤
1
3
d(x, p) for all n ≥ N1.

We now have

η(r)d∗(xn, Txn) ≤ d∗(xn, Txn) = d(xn, Txn)− dist(A,B)

≤ d(xn, p) + d(p, xn+1) + d(xn+1, Txn)− dist(A,B)

= d(xn, p) + d(p, xn+1)

≤ 2
3
d(x, p) = d(x, p)− 1

3
d(x, p)

≤ d(x, p)− d(xn, p) ≤ d(xn, x).

By using (3.1), we obtain

d(Txn, Tx) ≤ rd(xn, x) for all n ≥ N1.

Thus

d(p, Tx) = lim
n→∞

d(xn, Tx) ≤ lim
n→∞

[d(xn, Txn) + d(Txn, Tx)]

≤ lim
n→∞

[d(xn, Txn−1) + d(Txn−1, Txn) + rd(xn, x)]

≤ lim
n→∞

[dist(A,B) + rnd(x0, x1) + rd(xn, x)]

= dist(A,B) + rd(p, x).

Now, we conclude that d∗(p, Tx) ≤ rd(p, x), that is, (3.4) holds. On the other
hand,

d(xn, Txn) ≤ d(xn, p) + d(p, Txn)

≤ d(xn, p) + rd(p, xn) + dist(A,B).

This implies that d∗(xn, Txn) ≤ (1 + r)d(xn, p) and so

η(r)d∗(xn, Txn) ≤ d(xn, p).
Therefore, by (3.1) we must have

d(Txn, Tp) ≤ rd(xn, p) → 0.
Hence, Txn → Tp. Then by using (3.2) we have

d(p, Tp) = lim
n→∞

d(xn+1, Txn) = dist(A,B),

and so p is a best proximity point of T . We conclude the proof by showing that the
best proximity point of T is unique. Suppose that q ∈ A is another best proximity
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point of T , that is, d(q, T q) = dist(A,B). Again, since (A,B) has the P-property,
d(p, q) = d(Tp, Tq). Besides,

η(r)d∗(p, Tp) = 0 ≤ d(p, q).

By (3.1) we obtain
d(p, q) = d(Tp, Tq) ≤ rd(p, q),

which ensures that p = q.

Remark 3.2. We note that, Theorem 3.1 is a real extension of Corollary 2.6. Indeed,
the assumption of continuity of the non-self-mapping T in Theorem 2.5 and Corollary
2.6 is essential, whereas, if the non-self-mapping T satisfies the condition (3.1), it
might not be continuous.

Let us illustrate Remark 3.2 with the next example in which the sets A and B are
non-convex.

Example 3.3. Suppose that X = R2 with the usual metric. Let

A := {(x, 0) : 0 ≤ x ≤ 1
10
} ∪ {(1, 2)},

B := {(x, 1) : 0 ≤ x ≤ 1
10
} ∪ {(1, 1)}.

Thus, (A,B) is a nonempty closed non-convex pair of subsets of X. Also, we note
that dist(A,B) = 1 and A0 = A,B0 = B. Moreover, it is easy to see that (A,B) has
the P-property. Define a non-self-mapping T : A→ B as follows:

T (1, 2) = (
1

100
, 1) & T (x, 0) =

{
(1, 1) if x = 0,
( 1
100 , 1) if x 6= 0.

We claim that T satisfies the condition (3.1).
Case 1. if x = (0, 0) and y = (y, 0) where, 0 < y ≤ 1

10 , then for each r ∈ [0, 1)

1
1 + r

d∗(x, Tx) =
1

1 + r
d∗((0, 0), (1, 1)) =

1
1 + r

[
√

2− 1]

>
1
2
[
√

2− 1] >
1
10

≥ y = d((0, 0), (y, 0)) = d(x,y),

which implies that (3.1) holds.
Case 2. if x = (0, 0) and y = (1, 2) then we have

d(Tx, Ty) = d((1, 1), (
1

100
, 1)) =

99
100

, d(x,y) = d((0, 0), (1, 2)) =
√

5.

Thus the relation d(Tx, Ty) ≤ rd(x,y) holds for each r ∈ [ 99
100
√

5
, 1).

Case 3. If x = (x, 0) with 0 < x ≤ 1
10 and y = (1, 2), then it is easy to see that

d(Tx, Ty) = 0.
The above argument shows that all conditions of Theorem 3.1 hold and hence T

has a unique best proximity point. This point is p = ( 1
100 , 0). We note that, the non-

self-mapping T is not continuous and hence, the existence of best proximity point for
T can not be established by Theorem 2.5.
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The following result demonstrates the existence and uniqueness of fixed point for
non-self mappings.

Corollary 3.4 Let (A,B) be a pair of nonempty closed subsets of a complete metric
space X such that A0 is nonempty and dist(A,B) = 0. Assume that T : A → B
is a non-self-mapping such that T (A0) ⊆ B0 and T satisfies the condition (3.1) of
Theorem 3.1. Then T has a unique fixed point in A ∩B.

Example 3.5 Let X = R2 and define the metric d on X by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|,∀ (x1, x2), (y1, y2) ∈ R2.

Obviously, (X, d) is a complete metric space. Let A = {(3, 3), (4, 6), (5, 6)} and B =
{(3, 4), (3, 5)}. Define T : A→ B with T (3, 3) = T (4, 6) = (3, 4) and T (5, 6) = (3, 5).
Then T satisfies the assumptions of Theorem 3.1.

Proof. It is easy to see that d(Tx, Ty) ≤ 1
5d(x,y), if (x,y) 6= ((4, 6), (5, 6)). On the

other hand, in case (x,y) = ((4, 6), (5, 6)) we have d(Tx, Ty) = 1 and d(x,y) = 1.
That is, T is not a contraction, since

1
1 + r

d∗((4, 6), T (4, 6)) =
2

1 + r
> 1 = d((4, 6), (5, 6)),

for every r ∈ [0, 1). Hence T satisfies the condition (3.1) in this case. Note that, the
other conditions of Theorem 3.1 hold and hence, T has a unique best proximity point
and this point is p = (3, 3).

Example 3.6 Consider X = R2 with the metric d defined in Example 3.5. Let
A = {(0, 0), (4, 5), (5, 4)} and B = {(0, 0), (0, 4), (4, 0)}. Define T : A→ B as follows:

T (x1, x2) =

{
(x1, 0) if x1 ≤ x2,

(0, x2) if x2 < x1.

We can see that d(Tx, Ty) ≤ 4
9d(x,y), if (x,y) 6= ((4, 5), (5, 4)). Also, in case (x,y) =

((4, 5), (5, 4)), we have

1
1 + r

d((4, 5), T (4, 5)) =
5

1 + r
> 2 = d((4, 5), (5, 4)),

for every r ∈ [0, 1). This implies that T satisfies the condition (3.1). It is easy to see
that the other conditions of Corollary 3.4 hold. Hence T has a unique fixed point and
this point is p = (0, 0).
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