
Fixed Point Theory, 14(2013), No. 1, 235-250

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

COMMON COUPLED FIXED POINT RESULTS FOR
HYBRID NONLINEAR CONTRACTIONS IN METRIC

SPACES

JIAN-ZHONG XIAO, XING-HUA ZHU AND ZHI-MO SHEN

College of Mathematics and Statistics

Nanjing University of Information Science and Technology
Nanjing 210044, P. R. China

E-mail: xiaojz@nuist.edu.cn

Abstract. The concept of triangular function is introduced and two kind of hybrid nonlinear con-
tractions involving a gauge function and a triangular function are considered. Several new common

coupled fixed point theorems are established in complete metric spaces, and error estimates for itera-
tions to approximate a fixed point are given. The presented results are general because the triangular

function is abstract. As applications the existence and uniqueness of the common coupled solutions

for a differential system and a integral system are proved respectively.
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1. Introduction

The Banach contraction principle is a very popular tool in solving unique existence
problems in many branches of mathematical analysis and has many generalizations
(see [5,6,19]). Boyd and Wong [4] extended the Banach contraction principle to the
case of nonlinear contraction mappings involving a gauge function, and obtained some
fixed point theorems by weakening the hypothesis on the gauge function. Coupled
fixed points and their applications for binary mappings were considered by Bhaskar
and Lakshmikantham [3]. Recently, some new results of coupled fixed points were
presented in the case of ordered metric spaces (for example, see [1,2,7-9,12-18]).

Motivated by the work of [1-4,7-9,12-18], in this paper, we mainly focus on a binary
mapping and an one-variable mapping satisfying some hybrid nonlinear contraction
in usual metric spaces without order, and establish several now common coupled fixed
point theorems. Also, we give some error estimates for iterations to approximate a
fixed point, and present some applications to differential systems and integral systems.
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Throughout this paper, let Z+ be the set of all positive integers, R = (−∞,+∞)
and R+ = [0,+∞). Let ϕ : R+ → R+ be a function and

ϕ−1({0}) = {t ∈ R+ : ϕ(t) = 0}.

If ϕ−1({0}) = {0}, then ϕ is called a gauge function. For t ∈ R+, by ϕn(t) we
denote the nth iteration of ϕ(t). Recall that (cf. [10]) if X be a non-empty set,
T : X ×X → X and A : X → X are two mappings, then an element (u, v) ∈ X ×X
is called a coupled coincidence point of T and A if T (u, v) = Au and T (v, u) = Av; an
element u ∈ X is called a common coupled fixed point of T and A if u = Au = T (u, u).
A is said to be commutative with T if AT (x, y) = T (Ax,Ay) for all x, y ∈ X.

Our main results given in Section 2. We introduce the concept of triangular func-
tion, and study two kind of hybrid nonlinear contractions involving a triangular func-
tion and a gauge function. In order to show the relevance and applicability of our
results, several examples are given in Section 3.

2. Main results

Definition 2.1. A binary operation � : R+×R+ → R+ is called a triangular function
if the following conditions are satisfied for any a, b, c, d ∈ R+:
(1) a� b = b� a;
(2) a� b ≤ c� d, whenever a ≤ c and b ≤ d;
(3) a� a ≤ a.

A triangular function is said to be continuous if an� bn → a� b, whenever an → a
and bn → b. A triangular function is said to be strictly increasing if a � b < c � b,
whenever a < c.

Example 2.1. There are the four basic triangular functions (a, b ∈ R+):
(1) The minimum function �min is defined by a�min b = min{a, b};
(2) The maximum function �max is defined by a�max b = max{a, b};
(3) The average function �av is defined by a�av b = a+b

2 ;

(4) The p-power mean function �p is defined by a�p b = p

√
ap+bp

2 , where p > 1.
It is clear that the above four triangular functions are all continuous, also �av and

�p are all strictly increasing.

Lemma 2.1. Let X be a non-empty set. Let T : X × X → X and A : X → X be
two mappings. If T (X × X) ⊂ A(X), then there exist two sequences {xn}∞n=1 and
{yn}∞n=1 in X such that Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn).

Proof. Let x0, y0 be two arbitrary points ofX. Since T (X×X) ⊂ A(X), we can choose
x1, y1 ∈ X such that Ax1 = T (x0, y0) and Ay1 = T (y0, x0); Again, from T (X ×X) ⊂
A(X) we can choose x2, y2 ∈ X such that Ax2 = T (x1, y1) and Ay2 = T (y1, x1).
Continuing this process, we can construct two sequences {xn}∞n=1 and {yn}∞n=1 in X
such that Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn), which completes the proof.

We first consider a hybrid nonlinear contraction with a gauge function ϕ, where
ϕ(t) < t for any t > 0.
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Theorem 2.1. Let (X, d) be a complete metric space and � a continuous triangular
function. Let ϕ : R+ → R+ be a function such that ϕ−1({0}) = {0}, ϕ(t) < t and
lim sup

r→t
ϕ(r) < t for any t > 0. Let T : X ×X → X and A : X → X be two mappings

such that

d(T (x, y), T (z, w)) ≤ ϕ[d(Ax,Az)� d(Ay,Aw)] (2.1)

for all x, y, z, w ∈ X, where A is continuous and commutative with T and T (X×X) ⊂
A(X). Then there exists a unique u ∈ X such that u = Au = T (u, u).

Proof. Since ϕ−1({0}) = {0} and ϕ(t) < t for any t > 0, we have ϕ(t) ≤ t for any
t ∈ R+. By Lemma 2.1, we can construct two sequences {xn}∞n=1 and {yn}∞n=1 in X
such that Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn). From (2.1) it follows that

d(Axn, Axn+1) = d(T (xn−1, yn−1), T (xn, yn))
≤ ϕ[d(Axn−1, Axn)� d(Ayn−1, Ayn)]; (2.2)

d(Ayn, Ayn+1) = d(T (yn−1, xn−1), T (yn, xn))
≤ ϕ[d(Ayn−1, Ayn)� d(Axn−1, Axn)]. (2.3)

Write d(Axn, Axn+1) = an, d(Ayn, Ayn+1) = bn, and an � bn = αn. Then, operating
by � for (2.2) and (2.3) we get

αn ≤ ϕ(αn−1)� ϕ(αn−1) ≤ ϕ(αn−1) ≤ αn−1. (2.4)

Therefore, {αn} is a nonnegative and non-increasing sequence; and hence, lim
n→∞

αn =

α ≥ 0. If we assume that α > 0, then, from (2.4) and the hypothesis concerning ϕ it
follows that

α = lim
n→∞

αn ≤ lim inf
n→∞

ϕ(αn−1) ≤ lim sup
r→α

ϕ(r) < α,

which is a contradiction. Hence, α = 0. By (2.4), (2.2) and (2.3) we have

lim
n→∞

ϕ(αn) = 0, lim
n→∞

an = 0 and lim
n→∞

bn = 0. (2.5)

Setting cn = d(Axn, Ayn), we claim that

lim
n→∞

cn = 0. (2.6)

In fact, (2.1) yields

cn = d(T (xn−1, yn−1), T (yn−1, xn−1)) ≤ ϕ[d(Axn−1, Ayn−1)� d(Ayn−1, Axn−1)]
= ϕ[cn−1 � cn−1] ≤ cn−1 � cn−1 ≤ cn−1. (2.7)

This shows that {cn} is a nonnegative and non-increasing sequence; and hence,
lim

n→∞
cn = c ≥ 0. By the continuity of � we have lim

n→∞
cn � cn = c � c. If we

assume that c > 0, then, from (2.7) it follows that

c = lim
n→∞

cn ≤ lim inf
n→∞

ϕ[cn−1 � cn−1] ≤ lim sup
r→c�c

ϕ(r) < c� c ≤ c,
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which is a contradiction. Hence (2.6) holds. The next step we check that {Axn} is
a Cauchy sequence. If it is not, then there exist a number ε0 > 0 and two sequences
{mi} and {ni} such that mi > ni ≥ i and

d(Axmi
, Axni

) ≥ ε0, for all i ∈ Z+. (2.8)

Without loss of generality, we can assume that mi is the smallest number exceeding
ni for which (2.8) holds. Then, by (2.8), we have

ε0 ≤ d(Axmi
, Axni

) ≤ d(Axmi
, Axmi−1) + d(Axmi−1, Axni

) ≤ ami−1 + ε0.

It follows from (2.5) that d(Axmi
, Axni

) → ε0 as i→∞. Observe that

d(Aymi
, Ayni

) ≤ cmi
+ d(Axmi

, Axni
) + cni

and
d(Axmi

, Axni
) ≤ cmi

+ d(Aymi
, Ayni

) + cni
.

According to (2.6), this means that d(Aymi
, Ayni

) → ε0 as i → ∞. Setting
d(Axmi , Axni)�d(Aymi , Ayni) = βi, from the continuity of � we see that βi → ε0�ε0.
In view of (2.1),

d(Axmi , Axni) ≤ d(Axmi , Axmi+1) + d(Axmi+1, Axni+1) + d(Axni+1, Axni)
≤ ami + ϕ(βi) + ani . (2.9)

From (2.9) and (2.5) it follows that

ε0 = lim
i→∞

d(Axmi , Axni) ≤ lim inf
i→∞

ϕ(βi) ≤ lim sup
r→ε0�ε0

ϕ(r) < ε0 � ε0 ≤ ε0,

which is a contradiction. Hence, {Axn} is a Cauchy sequence. For m,n ∈ Z+, we
have

d(Axm, Axn)− cm − cn ≤ d(Aym, Ayn) ≤ d(Axm, Axn) + cm + cn.

This shows that {Axn} is also a Cauchy sequence. Since X is complete, there exist
u, v ∈ X such that lim

n→∞
Axn = u and lim

n→∞
Ayn = v. The continuity of A implies

that

lim
n→∞

AAxn = Au and lim
n→∞

AAyn = Av.

Taking into account the commutativity of A with T , from (2.1) we have

d(AAxn, T (u, v)) = d(AT (xn−1, yn−1), T (u, v)) = d(T (Axn−1, Ayn−1), T (u, v))
≤ ϕ[d(AAxn−1, Au)� d(AAyn−1, Av)]. (2.10)

The continuity of � implies that lim
n→∞

d(AAxn−1, Au) � d(AAyn−1, Av) = 0. Since

ϕ(t) < t for any t > 0, we have lim
t→0+

ϕ(t) = 0. Thus, letting n → ∞ in (2.10),

we get lim
n→∞

AAxn = T (u, v). Hence, T (u, v) = Au. Similarly, we can show that

T (v, u) = Av. To prove Au = v and Av = u, by using (2.1) we note that

d(Au,Ayn) = d(T (u, v), T (yn−1, xn−1)) ≤ ϕ[d(Au,Ayn−1)� d(Av,Axn−1)]; (2.11)
d(Av,Axn) = d(T (v, u), T (xn−1, yn−1)) ≤ ϕ[d(Av,Axn−1)� d(Au,Ayn−1)]. (2.12)
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Writing d(Au,Ayn−1)�d(Av,Axn−1) = ρn and operating by � for (2.11) and (2.12),
we get

ρn+1 ≤ ϕ(ρn)� ϕ(ρn) ≤ ϕ(ρn) ≤ ρn. (2.13)

Therefore, {ρn} is a nonnegative non-increasing sequence; and hence, lim
n→∞

ρn = ρ ≥
0. If we assume that ρ > 0, then from (2.13) it follows that

ρ = lim
n→∞

ρn+1 ≤ lim inf
n→∞

ϕ(ρn) ≤ lim sup
r→ρ

ϕ(r) < ρ,

which is a contradiction. Hence, ρ = 0. From (2.13) we infer that lim
n→∞

ϕ(ρn) = 0.

Thus, by (2.12) and (2.11) we have

lim
n→∞

Axn = Av and lim
n→∞

Ayn = Au.

Hence, Au = v and Av = u. We claim that u = v. In fact, if u 6= v, then d(u, v) > 0.
From (2.1) and the hypothesis on ϕ it follows that

d(u, v) = d(Av,Au) = d(T (v, u), T (u, v)) ≤ ϕ[d(Av,Au)� d(Au,Av)]
< d(Av,Au)� d(Au,Av) ≤ d(Av,Au) = d(u, v),

a contradiction. Hence, u = v. Also, the uniqueness of u follows from (2.1). This
makes end to the proof.

Lemma 2.2. (cf.[10,11]) Let ϕ : R+ → R+ be a function such that ϕ−1({0}) = {0}.
(1) If ϕ(t) < t and lim sup

r→t
ϕ(r) < t for all t > 0, then lim

n→∞
ϕn(t) = 0 for all t > 0.

(2) If ϕ is nondecreasing and lim
n→∞

ϕn(t) = 0 for all t > 0, then ϕ(t) < t for all t > 0.

Using Lemma 2.2, from Theorem 2.1 we have the following consequence.

Theorem 2.2. Let (X, d) be a complete metric space and � a continuous triangular
function. Let ϕ : R+ → R+ be a function which satisfies that ϕ−1({0}) = {0},
ϕ is nondecreasing and right-continuous, and lim

n→∞
ϕn(t) = 0 for any t > 0. Let

T : X ×X → X and A : X → X be two mappings such that

d(T (x, y), T (z, w)) ≤ ϕ[d(Ax,Az)� d(Ay,Aw)]

for all x, y, z, w ∈ X, where A is continuous and commutative with T , and T (X×X) ⊂
A(X). Then there exists a unique u ∈ X such that u = Au = T (u, u).

Proof. Since ϕ is nondecreasing and lim
n→∞

ϕn(t) = 0 for any t > 0, by Lemma 2.2(2),

we have ϕ(t) < t for any t > 0. Since ϕ is right-continuous, we have lim sup
r→t

ϕ(r) =

lim
r→t+

ϕ(r) = ϕ(t) < t for any t > 0. Thus, the hypotheses of Theorem 2.1 are satisfied.

So, the conclusion of Theorem 2.2 follows from Theorem 2.1 immediately.

If we remove the hypothesis of right-continuity of ϕ in Theorem 2.2, and replace the

hypothesis “ lim
n→∞

ϕn(t) = 0” with the hypothesis “
∞∑

n=0
ϕn(t) < +∞”, we can obtain

the following existence, uniqueness and error estimates.
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Theorem 2.3. Let (X, d) be a complete metric space and � a continuous triangular
function. Let ϕ : R+ → R+ be a function which satisfies that ϕ−1({0}) = {0}, ϕ is

nondecreasing and s(t) =
∞∑

n=0
ϕn(t) < +∞ for any t > 0. Let T : X ×X → X and

A : X → X be two mappings such that

d(T (x, y), T (z, w)) ≤ ϕ[d(Ax,Az)� d(Ay,Aw)] (2.14)

for all x, y, z, w ∈ X, where A is continuous and commutative with T , and T (X×X) ⊂
A(X). Then
(1) there exists a unique u ∈ X such that u = Au = T (u, u).
(2) d(Axn, u) ≤ s(ϕn(α0)) and d(Ayn, u) ≤ s(ϕn(α0)), where {xn} and {yn} are given
by Lemma 2.1, and α0 = d(Ax0, Ax1)� d(Ay0, Ay1).

Proof. By Lemma 2.1, we can construct two sequences {xn}∞n=1 and {yn}∞n=1 in X
such that Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn). Write d(Axn, Axn+1) = an,
d(Ayn, Ayn+1) = bn, and an� bn = αn. By duplicating the proofs of (2.2)-(2.4), from
(2.14) we get

an ≤ ϕ(αn−1), bn ≤ ϕ(αn−1); αn ≤ ϕ(αn−1)� ϕ(αn−1) ≤ ϕ(αn−1). (2.15)

Since ϕ is nondecreasing, by (2.15), we have αn ≤ ϕ(αn−1) ≤ ϕ2(αn−2) ≤ · · · ≤
ϕn(α0). Thus, from (2.15) it follows that

d(Axn, Axn+1) ≤ ϕn(α0) and d(Ayn, Ayn+1) ≤ ϕn(α0). (2.16)

Let m,n ∈ Z+ and m > n. By (2.16), we have

d(Axn, Axm) ≤ d(Axn, Axn+1) + d(Axn+1, Axn+2) + · · ·+ d(Axm−1, Axm)

≤ ϕn(α0) + ϕn+1(α0) + · · ·+ ϕm−1(α0) =
m−1∑
i=n

ϕi(α0). (2.17)

Since s(α0) =
∞∑

n=0
ϕn(α0) < +∞, from (2.17) we see that {Axn} is a Cauchy sequence.

In the same manner, we can show that {Ayn} is also a Cauchy sequence. In view of the
completeness of X, there exist u, v ∈ X such that lim

n→∞
Axn = u and lim

n→∞
Ayn = v.

The continuity of A implies that

lim
n→∞

AAxn = Au and lim
n→∞

AAyn = Av.

From (2.14) and the commutativity of A with T , we have

d(AAxn, T (u, v)) = d(AT (xn−1, yn−1), T (u, v)) = d(T (Axn−1, Ayn−1), T (u, v))
≤ ϕ[d(AAxn−1, Au)� d(AAyn−1, Av)]. (2.18)

The continuity of � implies that lim
n→∞

d(AAxn−1, Au)� d(AAyn−1, Av) = 0. For any

t > 0, since s(t) < +∞, we have lim
n→∞

ϕn(t) = 0. It follows from Lemma 2.2(2) that

ϕ(t) < t, for all t > 0. (2.19)
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This implies that lim
t→0+

ϕ(t) = 0. Hence, letting n → ∞ in (2.18), we have

lim
n→∞

AAxn = T (u, v); and so T (u, v) = Au. Similarly, we can show that

T (v, u) = Av. The next step we show that Au = v and Av = u. Write
d(Au,Ayn−1)� d(Av,Axn−1) = ρn. By duplicating the proofs of (2.11)-(2.13), from
(2.14) we get

d(Au,Ayn) ≤ ϕ(ρn), d(Av,Axn) ≤ ϕ(ρn); ρn+1 ≤ ϕ(ρn)� ϕ(ρn) ≤ ϕ(ρn). (2.20)

Since ϕ is nondecreasing, we have

ρn+1 ≤ ϕ(ρn) ≤ ϕ2(ρn−1) ≤ · · · ≤ ϕn(ρ1) → 0 as n→∞.

From (2.20) it follows that lim
n→∞

Axn = Av and lim
n→∞

Ayn = Au. Hence, Au = v and

Av = u. By duplicating the remainder of the proof of Theorem 2.1, from (2.14) and
(2.19) we have u = v. The uniqueness of u follows from (2.14). So, the assertion (1)
holds.

Letting n→∞ in (2.17), we have

d(Axn, u) ≤
∞∑

i=n

ϕi(α0) =
∞∑

j=0

ϕj [ϕn(α0)] = s(ϕn(α0)).

Similarly, we have d(Ayn, v) ≤ s(ϕn(α0)). So, the inequalities in (2) hold, which
completes the proof.

Remark 2.1. If ϕ : R+ → R+ is a strictly increasing function, then ϕ is invertible.
Let ψ = ϕ−1 be the inverse function of ϕ, then from (2.1) we get the following
equivalent contraction

ψ[d(T (x, y), T (z, w))] ≤ d(Ax,Az)� d(Ay,Aw), for x, y, z, w ∈ X. (2.21)

In general, the gauge function ϕ in Theorems 2.1-2.3 are not necessarily strictly
increasing, and so not necessarily invertible. Hence, the inequality (2.21) is a new
contraction which is not equivalent to the one in Theorems 2.1-2.3.

Next, we consider a hybrid nonlinear contraction with a gauge function ψ, where
ψ(t) > t for any t > 0.

Theorem 2.4. Let (X, d) be a complete metric space. Let � be a continuous and
strictly increasing triangular function. Let ψ : R+ → R+ be a function such that
ψ−1({0}) = {0}, ψ(t) > t and lim inf

r→t
ψ(r) > t for any t > 0. Let T : X ×X → X and

A : X → X be two mappings such that

ψ[d(T (x, y), T (z, w))] ≤ d(Ax,Az)� d(Ay,Aw) (2.22)

for all x, y, z, w ∈ X, where A is continuous and commutative with T , and T (X×X) ⊂
A(X). Then there exists a unique u ∈ X such that u = Au = T (u, u).

Proof. Since ψ−1({0}) = {0} and ψ(t) > t for any t > 0, we have ψ(t) ≥ t for any
t ∈ R+. By Lemma 2.1, we can construct two sequences {xn}∞n=1 and {yn}∞n=1 in X
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such that Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn). Write d(Axn, Axn+1) = an,
d(Ayn, Ayn+1) = bn, and an � bn = αn. In view of (2.22),

an ≤ ψ(an) = ψ[d(T (xn−1, yn−1), T (xn, yn))]
≤ d(Axn−1, Axn)� d(Ayn−1, Ayn) = αn−1; (2.23)

bn ≤ ψ(bn) = ψ[d(T (yn−1, xn−1), T (yn, xn))]
≤ d(Ayn−1, Ayn)� d(Axn−1, Axn) = αn−1. (2.24)

Then, operating by � for (2.23) and (2.24) we get

αn ≤ ψ(an)� ψ(bn) ≤ αn−1 � αn−1 ≤ αn−1.

Therefore, {αn} is a nonnegative non-increasing sequence; and hence, lim
n→∞

αn =

α ≥ 0. From (2.23) and (2.24) we see that {an} contains a convergent subsequence
{ank

}, and {bnk
} contains a convergent subsequence, for simplicity we still denote it

by {bnk
}. Suppose that lim

k→∞
ank

= a and lim
k→∞

bnk
= b. From the continuity of � and

ank
� bnk

= αnk
it follows that a � b = α. If we assume that α > 0, then, it follows

from 0 � 0 = 0 that a > 0 or b > 0. Without loss of generality, we can assume that
a > 0. Then, by (2.23) and (2.24) we have

a < lim inf
r→a

ψ(r) ≤ lim inf
k→∞

ψ(ank
) ≤ lim

k→∞
αnk

= α and b ≤ lim inf
k→∞

ψ(bnk
) ≤ α.

From the strict monotonicity of � it follows that α = a� b < α � α ≤ α, which is a
contradiction. Hence, α = 0, and so by (2.23) and (2.24) we infer that

lim
n→∞

an = 0 and lim
n→∞

bn = 0. (2.25)

Now we set cn = d(Axn, Ayn) and prove that

lim
n→∞

cn = 0. (2.26)

In fact, by (2.22), we have

cn ≤ ψ(cn) = ψ[d(T (xn−1, yn−1), T (yn−1, xn−1))]
≤ d(Axn−1, Ayn−1)� d(Ayn−1, Axn−1) = cn−1 � cn−1 ≤ cn−1. (2.27)

This implies that {cn} is a nonnegative and non-increasing sequence; and hence,
lim

n→∞
cn = c ≥ 0. If we assume that c > 0, then, from (2.27) it follows that

c < lim inf
r→c

ψ(r) ≤ lim inf
n→∞

ψ(cn) ≤ lim
n→∞

cn−1 = c,

which is a contradiction. Hence, (2.26) holds. Now we show that {Axn} is a Cauchy
sequence. If it is not, then there exist a number ε0 > 0 and two sequences {mi} and
{ni} such that mi > ni ≥ i and

d(Axmi , Axni) ≥ ε0, for all i ∈ Z+. (2.28)

Further, we can choose mi corresponding to ni in such a way that it is the smallest
integer with mi > ni and satisfying (2.28). Then, by (2.28), we have

ε0 ≤ d(Axmi , Axni) ≤ d(Axmi , Axmi−1) + d(Axmi−1, Axni) ≤ ami−1 + ε0.
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It follows from (2.25) that d(Axmi , Axni) → ε0 as i→∞. Observe that

d(Aymi
, Ayni

) ≤ cmi
+ d(Axmi

, Axni
) + cni

and
d(Axmi

, Axni
) ≤ cmi

+ d(Aymi
, Ayni

) + cni
.

Taking into account (2.26), this implies that d(Aymi
, Ayni

) → ε0 as i → ∞. By
(2.22), we have

ψ[d(Axmi
, Axni

)] = ψ[d(T (xmi−1, ymi−1), T (xni−1, yni−1))]
≤ d(Axmi−1, Axni−1)� d(Aymi−1, Ayni−1) (2.29)
≤ [ami−1 + d(Axmi

, Axni
) + ani−1]� [bmi−1 + d(Aymi

, Ayni
) + bni−1].

From (2.29) and (2.25) it follows that

ε0 < lim inf
r→ε0

ψ(r) ≤ lim inf
i→∞

ψ[d(Axmi
, Axni

)]

≤ lim
i→∞

d(Axmi
, Axni

)� lim
i→∞

d(Aymi
, Ayni

) = ε0 � ε0 ≤ ε0,

a contradiction. Hence, {Axn} is a Cauchy sequence. For m,n ∈ Z+, we have

d(Axm, Axn)− cm − cn ≤ d(Aym, Ayn) ≤ d(Axm, Axn) + cm + cn.

This shows that {Axn} is also a Cauchy sequence. Since X is complete, there exist
u, v ∈ X such that lim

n→∞
Axn = u and lim

n→∞
Ayn = v. In view of the continuity of A,

lim
n→∞

AAxn = Au and lim
n→∞

AAyn = Av.

From (2.22) and the commutativity of A with T , we have

d(AAxn, T (u, v)) ≤ ψ[d(AAxn, T (u, v))] = ψ[d(AT (xn−1, yn−1), T (u, v))]
= ψ[d(T (Axn−1, Ayn−1), T (u, v))]
≤ d(AAxn−1, Au)� d(AAyn−1, Av). (2.30)

The continuity of � implies that lim
n→∞

d(AAxn−1, Au) � d(AAyn−1, Av) = 0. Thus,

letting n → ∞ in (2.30), we have lim
n→∞

AAxn = T (u, v). Hence, T (u, v) = Au.

Similarly, we can show that T (v, u) = Av. The next step we show that Au = v and
Av = u. According to (2.22),

d(Au,Ayn) ≤ ψ[d(Au,Ayn)] = ψ[d(T (u, v), T (yn−1, xn−1))]
≤ d(Au,Ayn−1)� d(Av,Axn−1)]; (2.31)

d(Av,Axn) ≤ ψ[d(Av,Axn)] = ψ[d(T (v, u), T (xn−1, yn−1))]
≤ d(Av,Axn−1)� d(Au,Ayn−1). (2.32)

Write d(Au,Ayn)� d(Av,Axn) = ρn. Then, operating by � for (2.31) and (2.32) we
get

ρn ≤ ψ(d(Au,Ayn))� ψ(d(Av,Axn)) ≤ ρn−1 � ρn−1 ≤ ρn−1.

Therefore, {ρn} is a nonnegative and non-increasing sequence; and hence, lim
n→∞

ρn =

ρ ≥ 0. By duplicating the proof of α = 0, we can show that ρ = 0. Thus, from (2.31)
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and (2.32) we have

lim
n→∞

Axn = Av and lim
n→∞

Ayn = Au.

Hence, Au = v and Av = u. Finally, we prove that u = v. If u 6= v, then d(u, v) > 0.
It follows from (2.22) and the hypothesis on ψ that

d(u, v) < ψ[d(u, v)] = ψ[d(Av,Au)] = ψ[d(T (v, u), T (u, v))]
≤ d(Av,Au)� d(Au,Av) ≤ d(Av,Au) = d(u, v),

a contradiction. Hence, we have u = v. The uniqueness of u also follows from (2.22).
So, the proof of Theorem 2.4 is finished.

Lemma 2.3. Let ψ : R+ → R+ be a function such that ψ−1({0}) = {0}.
(1) If ψ(t) > t and lim inf

r→t
ψ(r) > t for all t > 0, then lim

n→∞
ψn(t) = +∞ for all t > 0.

(2) If ψ is nondecreasing and lim
n→∞

ψn(t) = +∞ for all t > 0, then ψ(t) > t for all
t > 0.

Proof. (1) Suppose that t > 0. Since ψ(t) > t, we have ψn(t) > ψn−1(t) > · · · > t for
all n ∈ Z+. Thus, there exists t < qt ≤ +∞ such that lim

n→∞
ψn(t) = qt. If qt < +∞,

then, from lim inf
r→qt

ψ(r) > qt it follows that

qt = lim
n→∞

ψ[ψn−1(t)] ≥ lim inf
r→qt

ψ(r) > qt,

a contradiction. Hence, qt = +∞.
(2) Assume that there exists t0 ∈ R+ such that t0 > 0 and ψ(t0) ≤ t0. Then, the

monotonicity of ψ implies that t0 ≥ ψ(t0) ≥ ψ2(t0) ≥ · · · ≥ ψn(t0) for all n ∈ Z+.
From lim

n→∞
ψn(t0) = +∞ it follows that t0 = +∞, a contradiction. Hence, we have

ψ(t) > t for all t > 0, which is the desired conclusion.

Using Lemma 2.2, from Theorem 2.4 we have the following consequence. Since ψ is
nondecreasing, the hypothesis of which the triangular function � is strictly increasing
in Theorem 2.4 can be removed.

Theorem 2.5. Let (X, d) be a complete metric space and � a continuous triangular
function. Let ψ : R+ → R+ be a function which satisfies that ψ−1({0}) = {0},
ψ is nondecreasing and left-continuous, and lim

n→∞
ψn(t) = +∞ for any t > 0. Let

T : X ×X → X and A : X → X be two mappings such that

ψ[d(T (x, y), T (z, w))] ≤ d(Ax,Az)� d(Ay,Aw)

for all x, y, z, w ∈ X, where A is continuous and commutative with T , and T (X×X) ⊂
A(X). Then there exists a unique u ∈ X such that u = Au = T (u, u).

Proof. Since ψ is nondecreasing and lim
n→∞

ψn(t) = +∞ for any t > 0, by Lemma 2.3(2),

we have ψ(t) > t for any t > 0. Since ψ is left-continuous, we have lim inf
r→t

ψ(r) =

lim
r→t−

ψ(r) = ψ(t) > t for any t > 0. Thus, except the strict monotonicity of �,

the hypotheses of Theorem 2.4 are satisfied. We show that Theorem 2.5 is still true
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without the strict monotonicity condition of �. Let {xn}∞n=1 and {yn}∞n=1 be two
sequences given in Lemma 2.1. Write d(Axn, Axn+1) = an, d(Ayn, Ayn+1) = bn, and
an � bn = αn. From (2.22) we have (2.23) and (2.24). In view of (2.23) and (2.24),

ψ(max{an, bn}) = max{ψ(an), ψ(bn)} ≤ αn−1 and (2.33)

αn ≤ ψ(an)� ψ(bn) ≤ αn−1 � αn−1 ≤ αn−1. (2.34)

Hence, {αn} is a nonnegative and non-increasing sequence due to (2.34), and so
lim

n→∞
αn = α ≥ 0. Since ψ is nondecreasing and αn ≥ α for all n ∈ Z+, by (2.33) we

have

ψ(αn) = ψ(an � bn) ≤ ψ(max{an, bn} �max{an, bn}) ≤ ψ(max{an, bn}) ≤ αn−1;

ψn(α) ≤ ψn(αn) = ψn−1(αn−1) ≤ · · · ≤ ψ(α1) ≤ α0.

If α > 0, then it follows from (2.35) that α0 ≥ lim
n→∞

ψn(α) = +∞, a contradiction.
Hence, α = 0. By duplicating the remainder of the proof of Theorem 2.4, the proof
of Theorem 2.5 is completed.

Remark 2.2. In [1-3,7-9,12-18], the existence problems of coupled fixed point for
contractions are studied in partial order spaces. Differing from these results, Theorems
2.1-2.5 do not relate to partial order. To the best of our knowledge, there is no work
reported on the existence and uniqueness of coupled fixed point for hybrid nonlinear
contractions in usual metric spaces without order.

3. Applications

Each common fixed point result for the mappings T and A in Section 2 implies
a corresponding fixed point result for T , if we take the mapping A as the identity
mapping I. For example, from Theorem 2.1 we obtain the following consequence.

Corollary 3.1. Let (X, d) be a complete metric space and � a continuous triangular
function. Let ϕ : R+ → R+ be a function such that ϕ−1({0}) = {0}, ϕ(t) < t and
lim sup

r→t
ϕ(r) < t for any t > 0. Let T : X ×X → X be a mapping such that

d(T (x, y), T (z, w)) ≤ ϕ[d(x, z)� d(y, w)]

for all x, y, z, w ∈ X. Then there exists a unique u ∈ X such that u = T (u, u).

Since each hybrid contraction with a gauge function includes the case of linear
contraction as a special case, each fixed point result in Section 2 implies the same
fixed point result for linear contraction. Hence, we have the following consequence.

Corollary 3.2. Let (X, d) be a complete metric space. Let � be a continuous trian-
gular function, and α ∈ (0, 1) a real number. Let T : X ×X → X and A : X → X be
two mappings such that

d(T (x, y), T (z, w)) ≤ α[d(Ax,Az)� d(Ay,Aw)]

for all x, y, z, w ∈ X, where A is continuous and commutative with T , and T (X×X) ⊂
A(X). Then there exists a unique u ∈ X such that u = Au = T (u, u).
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In all results in Section 2, the triangular function � is abstract. Hence, Theorems
2.1-2.5 are generalizations and unifications of many results. For example, taking a�
b = ln

(
ea+eb

2

)
(clearly, it is a continuous and strictly increasing triangular function)

in Theorem 2.4, we get the following consequence.

Corollary 3.3. Let (X, d) be a complete metric space. Let ψ : R+ → R+ be a
function such that ψ−1({0}) = {0}, ψ(t) > t and lim inf

r→t
ψ(r) > t for any t > 0. Let

T : X ×X → X and A : X → X be two mappings such that

ψ[d(T (x, y), T (z, w))] ≤ ln
[
ed(Ax,Az) + ed(Ay,Aw)

2

]
for all x, y, z, w ∈ X, where A is continuous and commutative with T , and T (X×X) ⊂
A(X). Then there exists a unique u ∈ X such that u = Au = T (u, u).

Taking � = �av and taking A as identity mapping I in Corollary 3.2, we get the
following consequence.

Corollary 3.4. Let (X, d) be a complete metric space and α ∈ (0, 1) a real number.
Let T : X ×X → X be a mapping such that

d(T (x, y), T (z, w)) ≤ α

2
[d(x, z) + d(y, w)]

for all x, y, z, w ∈ X. Then there exists a unique u ∈ X such that u = T (u, u).

Example 3.1. Let X = [−1, 1] ⊂ R, d(x, y) = |x − y|. Then (X, d) is a complete

metric space. Let A = I, � = �av and ψ(t) =
{

2t, t ∈ [0, 7/8];
7/4, t ∈ (7/8, 1]. Then ψ is

nondecreasing, continuous and lim
n→∞

ψn(t) = +∞ for any t > 0. For x, y ∈ X, define

T : X ×X → X as follows: T (x, y) = 1− x2/8− |y|/4. Then, for each x, y, z, w ∈ X,
we have

|T (x, y)− T (z, w)| =
∣∣∣∣z2 − x2

8
+
|w| − |y|

4

∣∣∣∣ ≤ 1
4
(|x− z|+ |y − w|).

This means that ψ(d(T (x, y), T (z, w))) ≤ d(x, z) �av d(y, w). Thus, all hypotheses
of Theorem 2.5 are satisfied. Therefore, T has a unique fixed point in X. Indeed,
u =

√
33− 5 is a unique fixed point of T .

Example 3.2. Let X = R, d(x, y) = |x− y|. Then (X, d) is a complete metric space.
For x, y ∈ X, define T : X×X → X and A : X → X as follows: T (x, y) = x+y/3+2,
Ax = 2x+ 6. Clearly, A is continuous and commutative with T . Let � = �max and

ϕ(t) =
{

4t
4+t , t ∈ [0, 1];
2t
3 , t ∈ (1,+∞).

Then, for each x, y, z, w ∈ X, we have

|T (x, y)− T (z, w)| =
∣∣∣∣(x− z) +

y − w

3

∣∣∣∣ ≤ 4
3

max{|x− z|, |y − w|} and

|Ax−Az| �max |Ay −Aw| = 2max{|x− z|, |y − w|}.
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Setting t = max{|x− z|, |y − w|}, we have 4t
3 ≤ ϕ(2t), i.e.,

|T (x, y)− T (z, w)| ≤ ϕ(|Ax−Az| �max |Ay −Aw|).

Thus, all hypotheses of Theorem 2.1 are satisfied. Therefore, T and A have a unique
common coupled fixed point in X.

Example 3.3. Let X = C[t0−µ, t0 +µ] be the space of continuous functions defined
on [t0 − µ, t0 + µ], where t0, µ ∈ R and µ > 0. Obviously, this space with the metric
given by

d(x, y) = sup{|x(t)− y(t)| : t ∈ [t0 − µ, t0 + µ]}.
Let f, g : [t0 − µ, t0 + µ] × R → R be two continuous functions such that there exist
L1, L2 > 0 with µ(L1 + L2) ≤ 1 and

|f(t, x)− f(t, y)| ≤ L1

√
ln[1 + (x− y)2] and |g(t, x)− g(t, y)| ≤ L2

√
ln[1 + (x− y)2]

for all (t, x), (t, y) ∈ [t0 − µ, t0 + µ]× R. Consider the following initial value problem
for coupled differential system: x′(t) = f(t, x(t)) + g(t, y(t));

y′(t) = f(t, y(t)) + g(t, x(t));
x(t0) = y(t0) = η, η ∈ R.

(3.1)

It is easy to see that the problem (3.1) is equivalent to the following system of integral
equations: {

x(t) = η +
∫ t

t0
[f(τ, x(τ)) + g(τ, y(τ))]dτ ;

y(t) = η +
∫ t

t0
[f(τ, y(τ)) + g(τ, x(τ))]dτ.

(3.2)

We define the mapping T : X ×X → X by

T (x, y)(t) = η +
∫ t

t0

[f(τ, x(τ)) + g(τ, y(τ))]dτ, for t ∈ [t0 − µ, t0 + µ].

Then, for each x, y, z, w ∈ X, we have

d(T (x, y), T (z, w)) ≤ sup
|t−t0|≤µ

∣∣∣∣∫ t

t0

[|f(τ, x(τ))−f(τ, z(τ))|+|g(τ, y(τ))−g(τ, w(τ))|]dτ
∣∣∣∣

≤ µ
(
L1

√
ln[1 + (d(x, z))2] + L2

√
ln[1 + (d(y, w))2]

)
≤ µ(L1 + L2) max

{√
ln[1 + (d(x, z))2],

√
ln[1 + (d(y, w))2]

}
= µ(L1 + L2)

√
ln[1 + (d(x, z)�max d(y, w))2]. (3.3)

Let A = I and ϕ : R+ → R+ be defined by ϕ(t) = µ(L1 + L2)
√

ln[1 + t2]. Then
ϕ is continuous, ϕ−1({0}) = {0} and ϕ(t) < t due to µ(L1 + L2) ≤ 1. Thus, from
(3.3) we see that all hypotheses of Theorem 2.1 are satisfied. Therefore, T have a
unique common coupled fixed point u in X, i.e., the integral system (3.2) has a unique
common coupled solution u in X. Therefore, the problem (3.1) has a unique common
coupled solution u = u(t).
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Example 3.4. Let L2[a, b], L2([a, b]× [a, b]) be Lebesgue spaces, where a, b ∈ R and
the metric in L2[a, b] is given by

d(x, y) =

(∫ b

a

|x(t)− y(t)|2dt

)1/2

.

Let η ∈ L2[a, b], K ∈ L2([a, b] × [a, b]) and M =
∫ b

a

∫ b

a
|K(t, s)|2dsdt. Let f, g :

[a, b] × R → R be the functions such that t 7→ f(t, x) and t 7→ g(t, x) are Lebesgue
measurable, and there exist L1, L2 > 0 with

√
M(L1 + L2) < 1 and

|f(t, x)− f(t, y)| ≤ L1|x− y| and |g(t, x)− g(t, y)| ≤ L2|x− y|

for all (t, x), (t, y) ∈ [a, b]× R. Consider the following coupled integral system:{
x(t) = η(t) +

∫ b

a
K(t, s)[f(s, x(s)) + g(s, y(s))]ds;

y(t) = η(t) +
∫ b

a
K(t, s)[f(s, y(s)) + g(s, x(s))]ds.

(3.4)

We define the mapping T : L2[a, b]× L2[a, b] → L2[a, b] by

T (x, y)(t) = η(t) +
∫ b

a

K(t, s)[f(s, x(s)) + g(s, y(s))]ds, for t ∈ [a, b].

Then, for each x, y, z, w ∈ X, by the Minkowski inequality and the Hölder inequality
we have

d(T (x, y), T (z, w))

=

∫ b

a

dt

(∫ b

a

K(t, s)[f(s, x(s))− f(s, z(s)) + g(s, y(s))− g(s, w(s))]ds

)2
1/2

≤ L1

∫ b

a

dt

(∫ b

a

|K(t, s)||x(s)− z(s)|ds

)2
1/2

+L2

∫ b

a

dt

(∫ b

a

|K(t, s)||y(s)− w(s)|ds

)2
1/2

≤
√
M [L1d(x, z) + L2d(y, w)] ≤

√
M(L1 + L2) d(x, z)�max d(y, w). (3.5)

Let A = I and α =
√
M(L1 +L2). From (3.5) we see that all hypotheses of Corollary

3.2 are satisfied. Therefore, T have a unique common coupled fixed point u in L2[a, b].
Therefore, the integral system (3.4) has a unique common coupled solution u = u(t)
in L2[a, b].
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