A SPLITTING-RELAXED PROJECTION METHOD FOR SOLVING THE SPLIT FEASIBILITY PROBLEM

FENGHUI WANG

Department of Mathematics, Luoyang Normal University
Luoyang 471022, P.R. China
E-mail: wfenghui@gmail.com

Abstract. The split feasibility problem (SFP) is to find \(x \in C \) so that \(Ax \in Q \), where \(C \) is a nonempty closed convex subset of \(\mathbb{R}^n \), \(Q \) is a nonempty closed convex subset of \(\mathbb{R}^m \), and \(A \) is a matrix from \(\mathbb{R}^n \) into \(\mathbb{R}^m \). One of successful methods for solving the SFP is Byrne’s CQ algorithm. However, to carry out the CQ algorithm, it is required that the closed convex subsets are simple and that the matrix norm is known in advance. Motivated by Tseng’s splitting method and Yang’s relaxed CQ algorithm, we propose in this paper a new method for solving the SFP, which overcomes the drawback of the CQ algorithm.

Key Words and Phrases: Split feasibility problem, relaxed projection, CQ algorithm, splitting method.

2010 Mathematics Subject Classification: 47J25, 47J20, 49N45, 65J15.

Acknowledgement. The author would like to express his sincere thanks to the referee for his/her valuable comments and suggestions that improved this paper substantially. This work is supported by the National Natural Science Foundation of China, Tianyuan Foundation (11226227) and the Basic Science and Technological Frontier Project of Henan (122300410268).

References

Received: April 6, 2011; Accepted: January 10, 2012.