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Abstract. The split feasibility problem (SFP) is to find x ∈ C so that Ax ∈ Q, where C is a

nonempty closed convex subset of Rn, Q is a nonempty closed convex subset of Rm, and A is a
matrix from Rn into Rm. One of successful methods for solving the SFP is Byrne’s CQ algorithm.

However, to carry out the CQ algorithm, it is required that the closed convex subsets are simple

and that the matrix norm is known in advance. Motivated by Tseng’s splitting method and Yang’s
relaxed CQ algorithm, we propose in this paper a new method for solving the SFP, which overcomes

the drawback of the CQ algorithm.
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method.
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1. Introduction

The problem under consideration in this article is formulated as finding a point x̂
satisfying the property:

x̂ ∈ C and Ax̂ ∈ Q, (1.1)

where C is a nonempty closed convex subsets of Rn, Q is a nonempty closed convex
subsets of Rm, and A is a matrix from Rn into Rm. Denote by S the solution set of
problem (1.1) and assume that it is nonempty throughout the paper. Problem (1.1)
is called by Censor and Elfving [5] the split feasibility problem (SFP) and has been
proved very useful in dealing with a variety of signal processing problems [4]. Various
algorithms have been invented to solve the SFP (see [2, 9, 10, 13, 14, 15, 17, 18] and
reference therein). In particular, Byrne introduced his CQ algorithm:

xn+1 = PC(xn − τA∗(I − PQ)Axn), (1.2)

where the step τ is a real number in (0, 2/‖A‖2). Since it does not involve matrix
inverses, the CQ algorithm is easily performed compared with the original algorithm
in [5].
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To implement the CQ algorithm, it is required that the closed convex subsets are
so simple that the projections onto them are easily calculated. Now consider the
nonempty closed convex subsets in (1.1) having the following form:

C = {x ∈ Rn : c(x) ≤ 0},
Q = {y ∈ Rm : q(y) ≤ 0},

where c : Rn → R and q : Rm → R are both convex functions. In this situation, the
efficiency of the CQ method is extremely affected because in general the computation
of projections onto such subsets is very difficult. Motivated by Fukushima’s relaxed
projection method in [6], Yang [17] suggested calculating the projection onto a half-
space containing the original subset instead of the latter set itself. More precisely,
Yang introduced the following relaxed CQ algorithm:

xn+1 = PCn(xn − τfn(xn)),

where fn = A∗(I − PQn
)A, Cn and Qn are constructed as follows:

Cn = {x ∈ Rn : c(xn) ≤ 〈ξn, xn − x〉}, (1.3)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ Rm : q(Axn) ≤ 〈ζn, Axn − y〉}, (1.4)

where ζn ∈ ∂q(Axn). Obviously, for every n ≥ 0, Cn ⊇ C and Qn ⊇ Q. More
important, since the projections onto Cn and Qn have the closed form, the relax CQ
algorithm is easily implemented. Observe that in the relaxed version the step also
relies on the matrix norm. So one has to estimate or calculate this value. This is
however impossible in practice. To overcome this, Qu [9] introduced the following
algorithm: {

yn = PCn
(xn − τnfn(xn))

xn+1 = PCn
(xn − τnfn(yn)), (1.5)

where the step τn is chosen according to the Armijo-type rule. In such a way, the
calculation for the matrix norm is avoided.

Recently the SFP was investigated under a more general framework. In particular,
Xu [16] considered the SFP in Hilbert spaces (see also [13]) and Schöpfer et al. [11]
in uniformly smooth Banach spaces. In this paper, we will deal with the SFP in
infinite-dimensional Hilbert spaces. In other words, we consider problem (1.1) with
A a linear bounded operator from a Hilbert space H to another Hilbert space K. We
note that Qu’s algorithm is in fact a combination of the relaxed projection method
and Korpelevich’s extragradient method [8]. Recently, Tseng [12] introduced a modi-
fied forward-backward splitting method for finding zeros of the sum of two monotone
operators. Motivated by Tseng’s splitting method and the relaxed projection method,
we propose in this paper a new algorithm for solving the SFP. An iterative implemen-
tation of the proposed algorithm is easy and moreover one need not know the exact
value of the matrix norm in advance.
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2. Preliminaries

Let H and K be real Hilbert spaces. I : K → K denotes the identity operator,
ωw(xn) the set of cluster points in the weak topology, “→” strong convergence and
“⇀” weak convergence.

Let T be an operator on H. Then T is called
(i) κ-inverse strongly monotone (κ-ism) if there is κ > 0 so that

〈Tx− Ty, x− y〉 ≥ κ‖Tx− Ty‖2, x, y ∈ H;

(ii) κ-Lipschitz continuous if there is κ > 0 so that

‖Tx− Ty‖ ≤ κ‖x− y‖, x, y ∈ H;

(iii) firmly nonexpansive if it is 1-ism;
(iv) nonexpansive if it is 1-Lipschitz continuous.

Lemma 2.1 (Byrne [3]). Let A : H → K be a linear bounded operator and let
% = ‖A‖2. Then the operator A∗(I − PQ)A is (1/%)-ism and hence (%)-Lipschitz
continuous.

One of important examples for firmly nonexpansive operators is the projection
operator. Let C be a nonempty closed convex subset of Rn. Denote by PC the
projection from Rn onto C; that is,

PCx = arg min
y∈C

‖x− y‖, x ∈ Rn.

It is well known that the projection is characterized by the following variational
inequality:

〈PCx− x, PCx− z〉 ≤ 0, ∀z ∈ C. (2.1)

Firmly nonexpansive operators have the following properties.

Lemma 2.2 (Gobel-Kirk [7]). Let T be an operator on H. Then the following are
equivalent.

(i) T is firmly nonexpansive,
(ii) I − T is firmly nonexpansive,
(iii) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, x, y ∈ H.

Recall that a function f : H → R is called convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1] and for all x, y ∈ H. A function f : H → R is called subdifferentiable
at x if there exists at least one subgradient at x. The set of subgradients of f at the
point x is called the subdifferential of f at x, and is denoted by ∂f(x). A function f is
called subdifferentiable if it is subdifferentiable at all H. A convex function f : H → R
is called weakly lower semicontinuious at x if xn ⇀ x implies

f(x) ≤ lim inf
n→∞

f(xn);

weakly lower semicontinuious if it is weakly lower semicontinuious at all H.
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The following concept plays an important role in the sequential analysis. Assume
that C is a closed convex nonempty subset and (xn) is a sequence in H. The sequence
(xn) is called Fejér monotone w.r.t. C, if

‖xn+1 − z‖ ≤ ‖xn − z‖, ∀z ∈ C.

Lemma 2.3. Let C be a nonempty closed convex subset in H. If the sequence (xn)
is Fejér monotone w.r.t. C, then the following hold.

(i) xn ⇀ x∗ ∈ C if and only if ωw(xn) ⊆ C;
(ii) The sequence {PCxn} converges strongly;
(iii) If xn ⇀ x∗ ∈ C, then x∗ = limn→∞ PCxn.

Proof. The (i) and (ii) are taken from [1, Theorem 2.16]. To show (iii), let x̂ be the
limit point of the sequence {PCxn}. It follows from the characterizing inequality (2.1)
that

〈xn − PCxn, x∗ − PCxn〉 ≤ 0.

Letting n →∞ yields
〈x∗ − x̂, x∗ − x̂〉 ≤ 0,

that is, x∗ = x̂ and thus the proof is complete. �

3. Relaxed projection method

In this section we consider the nonempty closed convex subsets in the SFP with
the following form:

C = {x ∈ H : c(x) ≤ 0}, Q = {y ∈ K : q(y) ≤ 0},

where c : H → R and q : K → R are both convex functions. Assume that both ∂c
and ∂q are nonempty and uniformly bounded on bounded sets. It is worth noting
that in finite setting, every convex function is subdifferentiable everywhere and its
subdifferentials are uniformly bounded on bounded sets (see [1, Corollary 7.9]). So
our assumptions are automatically satisfied in finite setting. Define Cn and Qn as
follows:

Cn = {x ∈ H : c(xn) ≤ 〈ξn, xn − x〉}, (3.1)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ K : q(Axn) ≤ 〈ζn, Axn − y〉}, (3.2)

where ζn ∈ ∂q(Axn). Obviously, for every n ≥ 0, Cn ⊇ C and Qn ⊇ Q.
For every n, set fn = A∗(I − PQn

)A. Now let us present our algorithm for finding
a solution of the SFP.

Algorithm 3.1. Take an initial guess x0 ∈ H.
Step 1. Given xn, compute the next iteration:[

yn = PCn
(xn − τnfn(xn))

xn+1 = PCn
(yn − τn(fn(yn)− fn(xn))), (3.3)
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where τn = σβm(n) with m(n) the smallest nonnegative integer m so that

σβm‖fn(xn)− fn(yn)‖ ≤
√

1− θ‖xn − yn‖, (3.4)

with σ > 0, β > 0, θ ∈ (0, 1).
Step 2. If xn+1 = xn, stop; otherwise go to step 1.

Remark 3.2. Since fn is Lipschitz continuous, the step at each iteration is well
defined. By the definition of τn, τn = σβm(n). If m(n) = 0, then τn = σ. Otherwise,
we have

σβm(n)−1‖fn(xn)− fn(yn)‖ >
√

1− θ‖xn − yn‖

⇔ ‖fn(xn)− fn(yn)‖ >

√
1− θ

σβm(n)−1
‖xn − yn‖.

Since fn is %-Lipschitz continuous, it follows that
√

1− θ

σβm(n)−1
< % ⇔ σβm(n)−1 >

√
1− θ

%
.

In this case, we have τn = σβm(n) >
√

1− θβ/%. Altogether

τn ≥ min{σ,
√

1− θβ/%} := τ. (3.5)

Remark 3.3. If xn = xn+1 for some n ≥ 0, then xn is a solution of the SFP. In
fact, pick any point z ∈ S. Clearly, xn ∈ Cn. Substituting x = xn in (3.1) yields
c(xn) ≤ 0, i.e., xn ∈ C. Note that xn = PCn

(xn − τnfn(xn)). By inequality (2.1),
〈fn(xn), xn − z〉 ≤ 0. Since I − PQn is firmly nonexpansive,

‖(I − PQn
)Axn‖2 = ‖(I − PQn

)Axn − (I − PQn
)Az‖2

≤ 〈(I − PQn
)Axn, Axn −Az〉

= 〈fn(xn), xn − z〉 ≤ 0.

Thus Axn ∈ Qn. By the definition of Qn, we have q(Axn) ≤ 0, i.e., Axn ∈ Q and
therefore xn must be a solution of the SFP.

We assume without loss of generality that Algorithm 3.1 generates an infinite
iterative sequence in what follows.

Theorem 3.4. Let (xn) be the sequence generated by Algorithm 3.1. Then (xn)
converges weakly to a solution x∗(:= limn PSxn) of the SFP.

Proof. By Lemma 2.3, it suffices to show that (i) (xn) is Fejér-monotone w.r.t. S; (ii)
every weak cluster point of (xn) is in the solution set S.

To see this (i), let z ∈ S be fixed. Clearly, z ∈ Cn and thus fn(z) = 0 for all n ∈ N.
Note that xn+1 = PCn(yn−τn(fn(yn)−fn(xn))). Since PCn is nonexpansive, we have

‖xn+1 − z‖2 = ‖PCn
(yn − τn(fn(yn)− fn(xn)))− z‖2

≤ ‖yn − z − τn(fn(yn)− fn(xn))‖2

= ‖yn − z‖2 + τ2
n‖fn(yn)− fn(xn)‖2

− 2τn〈yn − z, fn(yn)− fn(xn)〉,
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which together with (3.4) yields

‖xn+1 − z‖2 ≤ ‖yn − z‖2 + (1− θ)‖yn − xn‖2

− 2τn〈yn − z, fn(yn)− fn(xn)〉.
(3.6)

On the other hand, we have

‖yn − z‖2 = ‖xn − z‖2 + ‖yn − xn‖2 + 2〈xn − z, yn − xn〉
= ‖xn − z‖2 − ‖yn − xn‖2 + 2〈yn − z, yn − xn〉.

We now estimate the last term in the above. By inequality (2.1), it follows that

〈yn − z, yn − (xn − τnfn(xn))〉 ≤ 0,

or equivalently,

〈yn − z, yn − xn〉 ≤ −τn〈fn(xn), yn − z〉, (3.7)

so that

‖yn − z‖2 ≤ ‖xn − z‖2 − ‖yn − xn‖2 − 2τn〈fn(xn), yn − z〉. (3.8)

Combining (3.6) and (3.8) yields

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − θ‖yn − xn‖2 − 2τn〈fn(yn), yn − z〉;
on the other hand, since fn is monotone, it follows that

〈fn(yn), yn − z〉 ≥ 〈fn(z), yn − z〉 = 0,

so that

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − θ‖yn − xn‖2. (3.9)

This shows that (i) holds and hence (xn) is bounded. Moreover ‖yn − xn‖ → 0 as
n →∞.

We next show (ii) holds. Take a subsequence (xnk
) of (xn) so that xnk

⇀ x′. Note
that yn ∈ Cn. This implies that

c(xn) ≤ 〈ξn, xn − yn〉 ≤ ξ‖yn − xn‖ → 0,

where ξ satisfies ‖ξn‖ ≤ ξ for all n ∈ N. Letting n →∞ yields lim supn c(xn) ≤ 0. By
the weak lower semicontinuity of c,

c(x′) ≤ lim inf
k→∞

c(xnk
) ≤ lim sup

k→∞
c(xnk

) ≤ 0,

which implies x′ ∈ C.
It remains to show Ax′ ∈ Q. Take M > 0 so that M ≥ (%‖xn−z‖+(1/τ)‖yn−z‖)

for all n ∈ N, where τ is defined as in (3.5). On the one hand, it follows from (3.7)
that

〈fn(xn), yn − z〉 =
1
τn
〈τnfn(xn), yn − z〉

≤ 1
τn
〈xn − yn, yn − z〉

≤ 1
τ
‖xn − yn‖‖yn − z‖;
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on the other hand, since fn is %-Lipschitz continuous,

〈fn(xn), xn − yn〉 ≤ ‖fn(xn)− fn(z)‖‖xn − yn‖
≤ %‖xn − z‖‖xn − yn‖.

Combing the last two inequalities yields

〈fn(xn), xn − z〉 ≤ M‖xn − yn‖. (3.10)

Recalling that fn is (1/%)-ism, we get

〈fn(xn), xn − z〉 = 〈fn(xn)− fn(z), xn − z〉

≥ 1
%
‖fn(xn)− fn(z)‖2 =

1
%
‖fn(xn)‖2,

which together with (3.10) yields

‖fn(xn)‖2 ≤ %M‖xn − yn‖ → 0.

Hence fn(xn) → 0 as n → ∞. Moreover, since I − PQn is firmly nonexpansive, it
follows that

‖(I − PQn)Axn‖2 = ‖(I − PQn)Axn − (I − PQn)Az‖2

≤ 〈(I − PQn
)Axn, Axn −Az〉

= 〈A∗(I − PQn
)Axn, xn − z〉

≤ ‖fn(xn)‖‖xn − z‖ → 0.

Since PQn(Axn) ∈ Qn, it follows that

q(Axn) ≤ 〈ζn, Axn − PQn
(Axn)〉

≤ ζ‖(I − PQn
)Axn‖ → 0,

where ζ satisfies ‖ζn‖ ≤ ζ for all n ∈ N. However, the weak continuity of A yields
that Axnk

⇀ Ax′, which together with the weak lower semicontinuity of q now yields

q(Ax′) ≤ lim inf
k→∞

q(Axnk
) ≤ 0,

that is, Ax′ ∈ Q. Consequently, ωw(xn) ⊆ S and the proof is finished. �
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