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Abstract. In this paper, a novel numerical algorithm based on generalized variational iteration
method for the solution of every 2m-order Sturm-Liouville problem for m ≥ 1 is proposed. In this
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1. Introduction

The Sturm-Liouville theory has many applications in applied mathematics, physics
and engineering. Many physical phenomena, both in classical mechanics and in quan-
tum mechanics are described mathematically by second-order Sturm-Liouville prob-
lems (see [1-3] for more details). While the problems arise in the stability of hydro-
dynamic and magnetohydrodynamic, are almost always of high order. It is either
because they involve a coupled system of ordinary differential equations, or they have
been reduced to a single differential equation of order 2m, for an integer m > 1, (for
example see [4-6]).

The numerical techniques referred to as high-order Sturm-Liouville problems have
been less widely used compared with the more familiar second-order and fourth-
order types. Although there are some available software codes like ”SLEIGN” [7],
”SLEIGN2” [8] and ”SLEIGDGE” [9] for the solution of second-order Sturm-Liouville
problems and ”SLEUTH” [10] for solving fourth-order Strum-Liouville problems, up
to the knowledge of the authors there is no software and code for solving sixth-order
Sturm-Liouville problems. In year 1998 Greenberg and Marletta [5] used the shooting
method to approximate the eigenvalues of sixth-order Sturm-Liouville problems. In
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year 2007, Attili and Lesnic [11] used the Adomian decomposition method (ADM) to
solve sixth-order Sturm-Liouville problems.

Variational iteration method (VIM) has been successfully implemented to han-
dle linear and non-linear differential equations (for example see [12-21]). The main
property of VIM is its flexibility and ability to solve non-linear differential equations
accurately and conveniently. The VIM was developed by J.H. He [12-20] during the
years 1998-2010. This method has been extensively applied as a powerful tool for solv-
ing various kinds of problems, such as: autonomous ordinary differential equations
and approximated solutions of some nonlinear problems. Recently, Goh, Noorani
and Hashim [22] used the VIM for solving the chaotic Chen system. Safari, Ganji
and Sadeghi [23] implemented the VIM for the solution of Benney-Lin equation while
Wazwaz [24] used VIM for solving variational problems. Although, there have been a
lot of papers on the ’Variational Iteration Method’ for solving problems involving ordi-
nary differential equations, with the knowledge of the authors there is no solution for
high order Sturm-Liouville problems. This paper is an application of the fixed-point
iteration method to higher order ODE eigenvalue problems. In this paper, we will
extend the VIM for finding the eigenvalues of 2m-order non-singular Sturm-Liouville
problem of the form

(−1)m(pm(x)y(m))(m) + (−1)m−1(pm−1(x)y(m−1))(m−1)

+ · · ·+ (p2(x)y′′)′′ − (p1(x)y′)′ + p0(x)y = Ew(x)y, a < x < b, (1.1)

together with separated, self-adjoint boundary conditions imposed at x = a and x = b.
We assume that all coefficient functions are real valued. The technical conditions for
the problem to be non-singular are: the interval (a, b) is finite; the coefficient functions
pk (0 ≤ k ≤ m−1), w(x) and 1/pm(x) are in L1(a, b), and pm(x) and weight function
w(x) are both positive.

In the Section 2 we give some preliminary definitions for non-singular 2m-order
Sturm-Liouville problems and basic idea of VIM method. In Section 3 we will propose
a novel algorithm of VIM for the 2m-order Sturm-Liouville problems. In Section 4,
while numerical results are discussed several work examples are solved to demonstrate
high performance of the proposed method.

2. Preliminaries

In this section we introduce some notation and definitions necessary for this work.

2.1. 2m-order Sturm-Liouville problems. Let us rewrite equation (1.1) in the
following form

(−1)m(pm(x)y(m))(m) = F (y, y′, . . . , y(2m−2), E)

= (Ew(x) − p0(x))y − {(−1)m−1(pm−1(x)y)(m−1)

+ · · · + (p2(x)y′′)′′}, a < x < b,

(2.1)
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subject to some 2m point specified conditions at the boundary x ∈ {a, b} on

uk = y(k−1), 1 ≤ k ≤ m,

v1 = p1y
′ − (p2y

′′)′ + (p3y
′′′)′′ + · · · + (−1)m−1(pmy(m))(m−1),

v2 = p2y
′′ − (p3y

′′′)′ + (p4y
(4))′′ + · · · + (−1)m−2(pmy(m))(m−2),

...

vk = pky(k) − (pk+1y
(k+1))′ + (pk+2y

(k+2))′′ + · · · + (−1)m−k(pmy(m))(m−k),

...

vm = pmy(m). (2.2)

The eginvalues Ek, k = 1, 2, 3, . . . can be ordered as an increasing sequence, i.e.,

E1 ≤ E2 ≤ E3 ≤ · · · ,

where lim
k→∞

Ek = ∞ and each eigenvalue has multiplicity at most m. The restriction

on the multiplicity arises from the fact that for each Ek, k = 1, 2, 3, . . . there are at
most m linear independent solutions of the differential equation satisfying either of
the endpoint conditions, [6, 25].

Let L2
w(a, b), be the space of functions f(x) on (a, b) such that

∫

b

a

|f(x)|2 w(x)dx < ∞.

L2
w
(a, b) is a Hilbert space with inner product

〈f, g〉 =

∫

b

a

f(x)g(x)w(x)dx,

and norm ‖f‖
2

= 〈f, f〉.

2.2. Basic idea of variational iteration method. Consider the general nonlinear
differential equation given in the form

Ly(x) + Ny(x) = g(x), (2.3)

where g(x) is a given function, L and N are some linear and nonlinear operators
respectively. By using the variational iteration method, a correction functional can
be constructed as:

yn+1(x) = yn(x) +

∫ x

0

λ (Lyn(s) + Nỹn(s) − g(s)) ds, n ≥ 0, (2.4)

where λ is a general Lagrange multiplier [26], which can be identified optimally via
the variational theory, the index n means the nth order approximation for yn, and ỹn

is a restricted variation with the property δỹn = 0, (see for example, [12-20]).
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3. VIM generalized algorithm and convergence analysis

3.1. VIM generalized algorithm. In this subsection, we implement the generalized
VIM for 2m-order Sturm-Liouville problem (1.1). Let us rewrite equation (2.1) in the
following form

y(2m)(x) = G(y(x), y′(x), . . . , y(2m−1)(x), E)
= (F (y(x), y′(x), . . . , y(2m−2)(x), E)

−(p′(x)y(2m−1)(x) + · · · + p
(m)
m (x)y(m)(x))/pm(x),

x ∈ (a, b),

(3.1)

which can be written in the operator form as

Ly(x) + Ny(x) = 0, (3.2)

where Ly(x) = y(2m)(x) and Ny(x) = −G(y, y′, . . . , y(2m−1), E). According to varia-
tional iteration method [12-20], we can construct a correct functional

yn+1(x) = yn(x) +

∫

x

0

λ (Lyn(s) + Nỹn(s)) ds, (3.3)

where λ is a general Lagrange multiplier. Now, first we determine λ and then we give
details of how to calculate eigenvalues for the problem (1.1).The Lagrange multiplier
λ will be identified via integration by parts from equation (3.3), i.e.,

yn+1(x) = yn(x)

+
[

λ(s)y
(2m−1)
n − λ′(s)y

(2m−2)
n + · · · + λ(2m−2)(s)y′ − λ(2m−1)(s)y

]s=x

s=0

+
∫

x

0

(

λ(2m)(s)yn(s) + λNỹn(s)
)

ds.
(3.4)

By taking the variation on both sides of equation (3.4) with respect to yn, and by
noticing that δyn(0) = 0, one can obtain

δyn+1(x) = (1 − λ(2m−1)(x))δyn(x) + λ(x)δy
(2m−1)
n (x) − λ′(x)δy

(2m−2)
n (x)

+ · · ·+ λ(2m−2)(x)δy′(x) +
∫ x

0

(

λ(2m)(s)δyn(s) + λNδỹn(s)
)

ds.
(3.5)

Consequently, we obtain the following stationary conditions

δyn : λ(2m)(s) = 0,

δyn : 1 − λ(2m−1)(s)
∣

∣

s=x
= 0,

δy′

n
: λ(2m−2)(s) |s=x = 0,

...

δy
(2m−2)
n : λ′(s) |s=x = 0 ,

δy
(2m−1)
n : λ(s) |s=x = 0 .

(3.6)

From equations (3.6), the Lagrange multiplier can be derived as

λ =
(s − x)2m−1

(2m − 1)!
. (3.7)
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Now, by substituting equation (3.7) into (3.3) we get the following iteration formula

yn+1(x) = yn(x) +

∫

x

0

(s − x)(2m−1)

(2m − 1)!
(Lyn(s) + Nyn(s)) ds, (3.8)

where y0(x) can be chosen to be the solution of the equation Ly(x) = y
(2m)
0 (x) = 0.

Thus

y0(x) =

2m−1
∑

i=0

cix
i, (3.9)

where c0, c1, . . . , c2m−1 are some constants. From (3.8), we obtain the successive
approximations of problem (1.1) and the exact solution can be derived in the following
form

y(x) = lim
n→∞

yn(x). (3.10)

In fact, the solution of problem (3.1) is considered as the fixed point of the correction
functional (3.8) under the suitable choice of the initial term that is given by (3.9).

Note that exactly m conditions are specified initially at x = a, (these m conditions
arise in different forms based on nature of the problem such as order of the highest
derivative appearing in each condition must be less than 2m). Now, if these m
conditions at x = a have the following form

yn(a, E) = y′

n(a, E) = · · · = y(m−1)
n (a, E) = 0,

then the approximate solution will be

yn(x, E) =

2m−1
∑

i=m

cifni
(x, E), n > 0. (3.11)

By using other conditions at endpoint b, for example yn(b, E) = y′

n
(b, E) =· · · =

y
(m−1)
n (b, E) = 0, we get the following system

∑2m−1
i=m

cifni
(b, E) = 0,

∑2m−1
i=m

cif
′

ni
(b, E) = 0,

...
∑2m−1

i=m
cif

(m−1)
ni

(b, E) = 0,

(3.12)

for cm, cm+1, . . . , c2m−1. By Crammer’s rule, we will get a nontrivial solution for the
system (3.12) if

Mn(E) = det











fnm
(b, E) fnm+1(b, E) . . . fn2m−1(b, E)

f ′

nm
(b, E) f ′

nm+1
(b, E) . . . f ′

n2m−1
(b, E)

...
... · · ·

...

f
(m−1)
nm

(b, E) f
(m−1)
nm+1 (b, E) · · · f

(m−1)
n2m−1 (b, E)











= 0, (3.13)

which is a polynomial in E. Therefore the eigenvalues of the problem (1.1) are the
roots of Mn(E). In practice, stopping criterion for approximated eigenvalue Ek in
the n-th iteration is

|Ekn
− Ekn−1 | ≤ ǫ, (3.14)
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where ǫ may be made arbitrary small according to the accuracy required. Subsection
3.1 may be summarized in the following algorithm.
Algorithm 3.1.
Step 1: Use equation (3.9) and the initial conditions to construct y0(x).

Step 2: Use iteration formula (3.8) to generate the sequence {yn}
K

n=1 for some positive
integer K.
Step 3: Construct the function Mn(E) as indicated in (3.13).
Step 4: Find roots of the Mn(E), by using (3.14).

Note. It is obvious that, roots in Step 4 are eigenvalues of the problem (1.1).

3.2. Convergence analysis. In this subsection, we discuss the convergence of gen-
eralized VIM presented in the previous subsection. From (3.8) we may define the
operator L in the following form

L[y] =

∫ x

0

(s − x)(2m−1)

(2m − 1)!
(Ly(s) + Ny(s)) ds. (3.15)

By using (3.15), we can construct the following components

f0 = y0, fn+1 = L[

n
∑

i=0

fi]. (3.16)

We conclude that, the exact solution is in the following form

y(x) = lim
n→∞

yn(x) =

∞
∑

n=0

fn(x). (3.17)

Now, by using initial approximation f0 = y0 (see (3.9)), the approximation so-
lution can be considered by taking n-terms of the series (3.17), that is yn(x) =
∑n

i=0 fi(x).The variational iteration method makes a sequence {yn}, here, we show
that the sequence {yn} converges to the solution of problem (1.1). To do this, we
state and prove the following theorems.
Theorem 3.2. Let L : L2

w(a, b) → L2
w(a, b) be an operator in a Hilbert space satisfy

in (3.15). Then the series solution y(x) defined by (3.17) for problem (1.1) converges
if there exist 0 < α < 1 such that

‖fn+1‖L2
w
≤ α‖fn‖L2

w
. (3.18)

Proof. Define the sequence of the partial sums sn such that s0 = f0, sn =
∑n

i=0 fi,
we see that the sequence {sn} is well-defined. Let us first prove that {sn} is a Cauchy
sequence in the L2

w
(a, b) space. For this purpose, we see that

‖sn+1 − sn‖L2
w
≤ α‖sn − sn−1‖L2

w
≤ · · · ≤ αn‖s1 − s0‖L2

w
. (3.19)

Then for any m ≥ n, we have

‖sm − sn‖L2
w
≤ ‖sn+1 − sn‖L2

w
+ ‖sn+2 − sn+1‖L2

w
+ · · · + ‖sm − sm−1‖L2

w

≤ αn[1 + α + · · · + αm−n−1]‖s1 − s0‖L2
w

≤ α
n

1−α
‖s1 − s0‖L2

w
.

(3.20)
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Since α ∈ (0, 1), then ‖sm − sn‖L2
w

→ 0 as m, n → ∞. Thus {sn} is a Cauchy

sequence in the L2
w(a, b) space, therefore the series solution converges and the proof

is complete.
Theorem 3.3. If the series solution (3.17) generated by using iteration formula (3.8)
converges, then it converges to an exact solution of the problem (1.1).
Proof. If the series (3.17) converges, we can write y(x) = lim

n→∞

yn(x) =
∑

∞

n=0 fn(x),

then

lim
n→∞

fn = 0. (3.21)

We can write,
m

∑

n=0

[fn+1 − fn] = (f1 − f0) + · · · + (fm+1 − fm) = fm+1 − f0. (3.22)

Hence,
∞
∑

n=0

[fn+1 − fn] = lim
n→∞

fn − f0 = −f0. (3.23)

Now, by applying linear operator L = d
2m

dx2m , to both sides of (3.23) and since f0 =

y0 =
∑2m−1

i=0 cix
i, see (3.9), we get

∞
∑

n=0

L[fn+1 − fn] = −Lf0 = 0. (3.24)

Now, from (3.16), we have

L[fn+1 − fn] = L[L[

n
∑

i=0

fi] − L[

n−1
∑

i=0

fi]], (3.25)

and by using (3.15), we obtain

L[fn+1 − fn] = L{
∫

x

0
(s−x)(2m−1)

(2m−1)! (L[
∑n

i=0 fi] + N [
∑n

i=0 fi]

−L[
∑

n−1
i=0 fi] − N [

∑

n−1
i=0 fi])ds}, n ≥ 1.

(3.26)

Now, since the linear differential operator L = d
2m

dx2m is the left inverse to 2m-fold
integral operator, then (3.26) becomes

L[fn+1 − fn] = L[fn] + N [fn]. (3.27)

Thus
m

∑

n=0

L[fn+1 − fn] = L

m
∑

i=0

[fn] + N

m
∑

i=0

[fn], (3.28)

and so,
∞
∑

n=0

L[fn+1 − fn] = L

∞
∑

n=0

[fn] + N

∞
∑

n=0

[fn]. (3.29)

Therefore, from (3.24) and (3.29), we see that y(x) =
∑

∞

n=0 fn(x) must be an exact
solution.
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Theorem 3.4. For the approximation solution yn =
∑

n

i=0 fi, if the series solution
(3.17) is convergent to an exact solution y(x), then the error estimate is

en =
αn

1 − α
‖f1‖L2

w
. (3.30)

Proof. From Theorem 3.1, letting m → ∞ in (3.20), we get

‖y(x) −

n
∑

i=0

fi‖L2
w
≤

αn

1 − α
‖f1‖L2

w
, (3.31)

and this completes the proof.
Note that, Theorem 3.2 is a special case of Banach fixed point theorem [27].

4. Work examples

In this section the efficiency of the generalized variational iteration method (pro-
posed in Section 3) is illustrated. Three classes of work examples of second-order,
fourth-order and sixth-order Sturm-Liouville problems are discussed. In order to com-
pare our results with others, each problem represent a specific example of eigenvalue
problems that are frequently studied in the context of Sturm-Liouville operators. In
Examples 4.1-4.3, ǫ is chosen to be 1010.
Example 4.1. Consider the following second-order eigenvalue problem

y(2)(x) + Ey(x) = 0, x ∈ (0, 1), (4.1)

subject to boundary conditions

y′(0) = 0, y(1) = 0. (4.2)

Thus, from (3.7) the Lagrange multiplier becomes

λ = s − x.

and corresponding to (3.8), the correction functional for equation (4.1) is give by

yn+1(x) = yn(x) +

∫ x

0

(s − x)

(

d2

ds2
yn(s) + Eyn(s)

)

ds. (4.3)

Now, choose y0 so that L(y0) = 0 and y′(0) = 0. Simple calculations implies that
y0(x) = c0, where c0 is a constant. By applying iteration formula (4.3), we get the
following approximations,

y1(x) = c0(1 − E x
2

2 ),

y2(x) = c0(1 − E x
2

2 + E2 x
4

24 ),
...

It is easy to see that

yn(x, E) = c0fn0(x, E), n > 0. (4.4)

Using the boundary condition at 1, we get an equation of the form

yn(1, E) = c0fn0(1, E) = 0. (4.5)
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Table 1. Convergence behavior of the first three eigenvalues for
Example 4.1

n E1 E2 E3

7 2.4674011001 22.2316528426 46.2659547508
8 2.4674011003 22.2047858586 –
9 2.4674011003 22.2067176578 58.8534769990
10 2.4674011003 22.2066046809 62.3855801420
11 2.4674011003 22.2066101110 61.6158764684
12 2.4674011003 22.2066098926 61.6917738329
13 2.4674011003 22.2066099000 61.6844723409
14 2.4674011003 22.2066098998 61.6850672413
15 2.4674011003 22.2066098998 61.6850250561
16 2.4674011003 22.2066098998 61.6850276793
17 2.4674011003 22.2066098998 61.6850275351
18 2.4674011003 22.2066098998 61.6850275421
19 2.4674011003 22.2066098998 61.6850275418
20 2.4674011003 22.2066098998 61.6850275418

Since c0 6= 0, this show that the last equation have nonzero solution if

fn0(1, E) = 0, (4.6)

which is a polynomial in E. The eigenvalues of problem (4.1)-(4.2) are the roots of
(4.6). The first three eigenvalues of problem (4.1)-(4.2) are calculated and given in
the Table 1. This Table shows that after at most 20 iterations these 3 eigenvalues
converge to correct solution up to 10 decimal points.
In Fig. 1, the first three normalized eigenfunctions correspond to eigenvalues E1, E2

and E3 are plotted, where the normalized eigenfunction yk is given by

y
k
(x, Ek) =

yk(x, Ek)
∫ 1

0 |yk(x, Ek)|dx
, k = 1, 2, 3. (4.7)

Example 4.2. Consider the following fourth- order Sturm-Liouville problem

y(4)(x) = Ey(x), x ∈ (0, 1), (4.8)

subject to

y(0) = y′(0) = 0, y(1) = y′′(1) = 0. (4.9)

In elasticity, the fourth-order Sturm-Liouville equations are associated to the steady

state Euler-Bernoulli equation for the deflection y of a vibrating beam, with the other
quantities involved having physical meaning, for example p > 0 is the flexural rigidity
of the beam, py′′ is the bending moment and Ew−q is the frequency of vibration, (for
example see [6, 28, 29]). Let us choose y0(x) so that Ly0(x) = 0, y(0) = y′(0) = 0. A
simple calculation implies that y0(x) = c2x

2 + c3x
3, where c2, c3 are some constants.

By using (3.7) and (3.8), the iteration formula for (4.8), can be constructed as,

yn+1(x) = yn(x) +

∫

x

0

(s − x)3

6
(y(4)

n
(s) − Eyn(s)) ds. (4.10)
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Figure 1. The first three normalized eigenfunctions for Example
4.1, where ⋄ and - stand for approximated and exact solutions

By applying iteration formula (4.10) we get the following approximations,

y1(x) = c2

(

x2 + E x
6

360

)

+ c3

(

x3 + E x
7

840

)

,

y2(x) = c2

(

x2 + E x
6

360 + E2 x
10

1814400

)

+ c3

(

x3 + E x
7

840 + E2 x
11

6652800

)

,

...
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Table 2. Convergence behavior of the first six eigenvalues for Ex-
ample 4.2

n E1 E2 E3 E4 E5 E6

2 241.0407900573 1118.7986354445

3 237.7407649918 2067.3174169404 –

4 237.7211107807 2473.9208558105 – –

5 237.7210675562 2496.2291044578 – – –

6 237.7210675140 2496.4860247337 10976.9214218253 18841.8594651662 – –

7 237.7210675140 2496.4874325568 10868.9861525959 27469.5565766394 – –

8 237.7210675140 2496.4874368486 10867.5937509176 31471.1337284258 – –

9 237.7210675140 2496.4874368565 10867.5822966476 31774.8223630040 – –

10 237.7210675140 2496.4874368565 10867.5822368856 31780.0417309785 75154.7207471462 96008.93627618767

11 237.7210675140 2496.4874368565 10867.5822366781 31780.0959997769 74017.3083240608 128854.1479108191

12 237.7210675140 2496.4874368565 10867.5822366776 31780.0963876107 74001.0462005716 146530.9300723852

13 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895840 74000.8508171968 148589.3856542964

14 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895913 74000.8491003179 148633.8757297095

15 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895913 74000.8490890426 148634.4728921409

16 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895913 74000.8490889861 148634.4789663363

17 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895913 74000.8490889859 148634.4790142247

18 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895913 74000.8490889859 148634.4790145220

19 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895913 74000.8490889859 148634.4790145235

20 237.7210675140 2496.4874368565 10867.5822366776 31780.0963895913 74000.8490889859 148634.4790145235

We see that

yn(x, E) = c2fn2(x, E) + c3fn3(x, E).

Now by using the boundary conditions at 1, we get the following system

yn(1, E) = c2fn2(1, E) + c3fn3(1, E) = 0,

yn(1, E) = c2f
′′

n2
(1, E) + c3f

′′

n3
(1, E) = 0.

Hence, we have nonzero solution for c2 and c3, if

M (E) = det

(

fn2(1, E) fn3(1, E)
f ′′

n2
(1, E) f ′′

n3
(1, E)

)

= 0. (4.11)

By computing roots of (4.11), we can obtain the eigenvalues of problem (4.8)-(4.9).
In this example, the first eigenvalue E1 is obtained after sixth iteration and the second
eigenvalue E2 is obtained in the ninth iteration. Following the same approach, the
remaining eigenvalues Ek, k = 3, 4, 5, 6 are obtained, and these are listed in Table 2.
The first three normalized eigenfunctions are plotted in Fig. 2. Our numerical results
are close to those values obtained by ADM, (see Table 1 in Ref. [29]). In Table 2 it
is shown that at most 20 iterations are needed that all of 6 eigenvalues converge to
the correct solution up to 10 decimal points.
Example 4.3. Consider the following sixth-order boundary value problem

−y(6)(x) = Ey(x), x ∈ (0, π), (4.12)

subject to homogeneous boundary value conditions

y(0) = y′′(0) = y(4)(0) = 0,
y(π) = y′′(π) = y(4)(π) = 0.

(4.13)

Let L(y) = −y6 and N(y) = −Ey(x). As an initial approximating solution, let

us choose y0 so that L(y0) = 0 and y(0) = y′′(0) = y(4)(0) = 0, this implies that
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Figure 2. The first three normalized eigenfunctions for Example
4.2, where ⋄ and - stand for approximated and exact solutions

y0(x) = c1x + c3x
3 + c5x

5, where c1, c3 and c5 are some constants. From equation
(3.7), the Lagrange multiplier can be derived as

λ =
(s − x)5

5!
,
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and corresponding to equation (3.8), the iteration formula for equation (4.12) is given
by,

yn+1(x) = yn(x) +

∫ x

0

(s − x)5

5!

(

−y(6)
n (s) − Eyn(s)

)

ds. (4.14)

By applying iteration formula (4.14) we get the following approximations,

y1(x) = c1(x + E x
7

5040 ) + c3(x
3 + E x

9

60480 ) + c5(x
5 + E x

11

332640 ),

y2(x) = c1{x + Ex
7

5040 + E

5! (
Ex

13

51891840 + x
7

21 )} + c3{x
3 + Ex

9

60480

+E

5! (
Ex

15

1816214400 + x
9

252 )} + c5{x
5 + Ex

11

332640

+E

5!(
Ex

17

24700515840 + x
11

1386 )},
...

It is easy to see that

yn(x, E) = c1fn1(x, E) + c3fn3(x, E) + c5fn5(x, E), n > 0. (4.15)

Using the boundary conditions at x = π, namely, y(π) = y′′(π) = y(4)(π) = 0, we get
three equations of the form

c1fn1(π, E) + c3fn3(π, E) + c5fn5(π, E) = 0,

c1f
′′

n1
(π, E) + c3f

′′

n3
(π, E) + c5f

′′

n5
(π, E) = 0,

c1f
(4)
n1 (π, E) + c3f

(4)
n3 (π, E) + c5f

(4)
n5 (π, E) = 0.

We see that the last system have nonzero values for c1, c3 and c5, if

Mn(E) = det





fn1 (π, E) fn3 (π, E) fn5 (π, E)
f ′′

n1
(π, E) f ′′

n3
(π, E) f ′′

n5
(π, E)

f
(4)
n1 (π, E) f

(4)
n3 (π, E) f

(4)
n5 (π, E)



 = 0. (4.16)

Table 3. Convergence behavior of the first ten eigenvalues for
Example 4.3

n E1 E2 E3 E4 E5

1 0.9597480757

2 1.0000129882 56.2788904610

3 1.0000000053 64.0198038788 532.1493875851

4 1.0000000055 63.9999944246 731.3614449310 2356.0755682967

5 1.0000000055 64.0000004693 728.9978232917 4228.0495427143 6840.02472508924

6 1.0000000055 64.0000004688 729.0000049614 4095.8036686190 –

7 1.0000000055 64.0000004688 729.0000042846 4096.0002036061 15616.0898538767

8 1.0000000055 64.0000004688 729.0000042847 4096.0000657743 15625.0108035041

9 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999494920

10 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559372

11 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

12 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

13 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

14 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

15 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

16 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

17 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

18 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

19 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352

20 1.0000000055 64.0000004688 729.0000042847 4096.0000658174 15624.9999559352
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n E6 E7 E8 E9 E10

1

2

3

4

5

6 –

7 – –

8 46394.7837800722 – –

9 46656.4933211556 113176.2893575077 11363438.29672751 18065366.34480531

10 46655.9997476830 117664.8009831108 229578.4234499600 21843555.68644232 34962659.843431151

11 46656.0002155877 117648.9820664145 262548.0507885136 406294.3648678014 43744463.825209270

12 46656.0002153382 117649.0034775570 262143.2888042216 542345.4768564463 642819.68618286682

13 46656.0002153383 117649.0034604007 262144.0032822110 531421.9696541301 –

14 46656.0002153383 117649.0034604091 262144.0024903922 531440.9607325989 999577.37782224018

15 46656.0002153383 117649.0034604091 262144.0024909532 531440.9332967993 1000001.1422732220

16 46656.0002153383 117649.0034604091 262144.0024909529 531440.9333229243 1000000.3748335370

17 46656.0002153383 117649.0034604091 262144.0024909529 531440.9333229070 1000000.3757690812

18 46656.0002153383 117649.0034604091 262144.0024909529 531440.9333229070 1000000.3757682898

19 46656.0002153383 117649.0034604091 262144.0024909529 531440.9333229070 1000000.3757682903

20 46656.0002153383 117649.0034604091 262144.0024909529 531440.9333229070 1000000.3757682903

The first ten eigenvalues of problem (4.12)-(4.13) are given in Table 3. The first
normalized eigenfunction y1 is given by

y1(x, E1) =
y1(x, E1)

∫ π

0
|y1(x, E1)|dx

, (4.17)

and it is plotted in Fig. 3. Here the first estimated eigenvalue E1 is obtained in the
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Figure 3. The first normalized eigenfunction y1(x, E1) for Example
4.3, where ∗ and - stand for approximated and exact solutions

fourth iteration and the second eigenvalue E2 is obtained in the sixth iteration. The
other eigenvalues are found in the same way (see Table 3). These results are more
accurate than the results obtained by using the ADM (see Table 2 in Ref. [11]) and
results obtained by using shooting method (see Table 6.1 in Ref. [5]). It is well known
that the exact eigenvalues are given by Ek = k6.
Example 4.4. We wanted to test our algorithm on a problem whose differential
equation exhibits stiffness in at least part of its rang: we chose the following problems
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(i) Consider the following second-order Sturm-Liouville problem

−y′′(x) + αx2y(x) = Ey(x), x ∈ (0, 5), (4.18)

subject to
y(0) = y(5) = 0. (4.19)

Let L(y) = y′′ and N(y) = (αx2y − Ey). Choose y0 so that L(y0) = 0 and y(0) = 0.
Simple calculation implies y0(x) = c0. The iteration formula (3.8) becomes

yn+1(x) = yn(x) +

∫ x

0

(s − x)

(

d2

ds2
yn(s) + αx2yn(s) − Eyn(s)

)

ds. (4.20)

For α = 0.01, the first two eigenvalues are: E1 = 0.4637357700, E2 = 1.6597620115.
(ii) Consider the following fourth-order Sturm-Liouville problem

y(4)(x) − 0.02x2y′′ − 0.04xy′ + (0.0001x4 − 0.02)y = Ey(x), x ∈ (0, 5), (4.21)

subject to
y(0) = y′′(0) = 0, y(5) = y′′(5) = 0. (4.22)

By using Algorithm 3.1, the first fifth eigenvalues are: E1 = 0.2150508644, E2 =
2.7548099347, E3 = 13.2153515406, E4 = 40.9508197591 and E5 = 99.0534781381.
This result show that, the eigenvalues of this problem are the squares of eigenvalues
of problem (4.18)-(4.19).

(iii) Consider the following sixth-order Sturm-Liouville problem

−y(6)(x) + (3α2x2y
′′

)
′′

+ ((8α − 3α2x4)y
′

)
′

+ (α3x6 − 14α2x2)y
= Ey(x), x ∈ (0, 5),

(4.23)

subject to homogeneous boundary value conditions

y(0) = y′′(0) = y(4)(0) = 0,

y(5) = y′′(5) = y(4)(5) = 0.
(4.24)

By using Algorithm 3.1, the first fifth eigenvalues for α = 0.01 are: E1 =
0.0997267728, E2 = 4.5723214092, E3 = 48.0416683775, E4 = 262.0590748452 and
E5 = 985.8390701194. We see that, the eigenvalues of this problem are the cubes of
the eigenvalues of the second-order problem (4.18)-(4.19).

5. Conclusion

This paper suggests an effective numerical algorithm for the high order Sturm-
Liouville problem and the results are of high accuracy. We have proposed a numerical
technique based on fixed point variational iteration method for computing eigenvalues
of the general 2m-order Sturm-Liouville problems for m ≥ 1. First, a generalization
VIM algorithm for m = 1 is explained for fourth and sixth order Sturm-Liouville
problems numerically. Second, theoretical, convergence and numerical aspects of the
generalization of VIM for 2m-order Sturm-Liouville problems is discussed for general
case m ≥ 1. In this process a general formula for the Lagrange multiplier λ is given.
Three different cases for (i) m = 1, (ii) m = 2 and (iii) m = 3 for the solution
of second, fourth and sixth order Sturm-Liouville problems are discussed. Numerical
results (obtained from proposed method in this paper) are compared with results that
obtained by exact solution, Adomian decomposition method and shooting method.
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Numerical results show that the variational iteration method is an efficient tool to
compute eigenvalues of high-order Sturm-Liouville problems.
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