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1. Introduction

As a powerful mechanism for mathematical analysis, fixed point theory has many
applications in areas such as mechanics, physics, transportation, control, economics,
and optimization. Perhaps the most well known results in the theory of fixed points
is Banach’s contraction mapping principle:

Theorem A. Let (X, d) be a complete metric space, F : X → X a contraction
mapping. Then F has one and only one fixed point u ∈ X.

As is well-known, Theorem A has been extensively used in differential and func-
tional differential equations. There are also many variants of Theorem A[2,3]. In recent
years, many papers investigated nonlinear operators in ordered Banach spaces (e.g.,
increasing operators, decreasing operators, etc.), obtained some fixed point theorems
by using partial ordering inequalities, and gave some applications to the ordinary dif-
ferential equations, partial differential equations, and integral equations [1, 4, 5, 7, 9].

However all of above results are obtained under the assumption that the space has
topological structure. In this paper, we study a class of nonlinear operator equations
in Riesz spaces. By using the lattice structure and the partially ordered method,
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the existence and uniqueness of solutions for such equations are investigated without
demanding the topological structure of the ordered vector space.

For convenience, let us introduce some definitions and symbols which can be found
in [8].

Let E be a nonempty set. The relation R in E is called a partial ordering of E
whenever R is transitive, reflective and anti-symmetric, i.e., whenever

(i) it follows from xRy and yRz that xRz,
(ii) xRx holds for all x ∈ E,
(iii) it follows from xRy and yRx that x = y.
If R is a partial ordering in E, we will usually write x ≤ y(or, equivalently, y ≥ x)

for xRy. If E is partial ordered, Y a nonempty subset of E, and x0 ∈ E satisfies
x0 ≥ y for all y ∈ Y , then x0 is called an upper bound of Y . If x0 is an upper
bound of Y such that x0 ≤ x′0 for any other upper bound x′0 of Y , then x0 is called
a least upper bound or supremum of Y . In this case, x0 is uniquely determined and
we denoted by x0 = supY . The notions of lower bound and greatest lower bound or
infimum are defined similarly. Notations: x0 = inf Y if x0 is the infimum of Y .

Definition 1.1. The partially ordered set E is called a lattice if every subset con-
sisting of two elements has a supremum and an infimum.

If E is a lattice in the partial ordering “≤”. For x ∈ E, let

x+ = sup{x, θ}, x− = sup{−x, θ},
x+ and x− are called the positive and the negative part of x respectively.

Definition 1.2. The real linear space E, with elements x, y, . . . , is called an ordered
vector space if E is partial ordering in such a manner that the partial ordering is
compatible with the algebraic structure of E, i.e.,

(i) x ≤ y implies x + z ≤ y + z for every z ∈ E,
(ii) x ≥ θ implies αx ≥ θ for every real number α ≥ 0.
Given the ordered vector space E, the subset P := {x : x ∈ E, x ≥ θ} is called the

positive cone of E. Elements of P are called positive elements. Take |x| = x+ + x−,
then |x| is called the module of x.

The ordered vector space E is called a Riesz space if E is also a Lattice. The
Riesz space E is called Archimedean if, given x, y ∈ P such that nx ≤ y holds for
n = 1, 2, . . . , we have x = θ.

Lemma 1.3. [7] If E is a Riesz space, then the following holds:
(i) x+, x− ∈ P , x = x+ − x− with sup{x+, x−} = θ; |x| ∈ P ,
(ii) θ ≤ x+ ≤ |x|, θ ≤ x− ≤ |x|, −x− ≤ x ≤ x+, −|x| ≤ x ≤ |x|,
(iii) if x, y ∈ E, then |x + y| ≤ |x|+ |y|.
The sequence {xn} in the ordered vector space E is called increasing if x1 ≤ x2 ≤

. . .. This will be denoted by xn ↑. If xn ↑ and x = sup{xn} exists in E, we will
write xn ↑ x. Let u be a fixed nonzero element in the positive cone P of the Riesz
space E. The sequence {xn} in E is said to converge u−uniformly to the element
x ∈ E whenever, for every ε > 0, there exists a natural number n0 = n0(ε) such
that |x − xn| ≤ εu holds for all n ≥ n0. If E is Archimedean, the u−uniform limit
of a sequence, if existing, is unique and we denoted by xn → x(ru). Furthermore, if
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xn ↑ and xn → x(ru), then xn ↑ x. The sequence {xn} in E is called an u−uniform
Cauchy sequence whenever, for every ε > 0, there exists a natural number n1 = n1(ε)
such that |xn − xm| ≤ εu holds for all n, m ≥ n1.
Definition 1.4. The Riesz space E is called u−uniformly complete whenever every
u−uniform Cauchy sequence has an u−uniform limit.
Definition 1.5. [7] Let u0 be a fixed nonzero element in the positive cone P of the
Riesz space E. The linear operator B is said to be increasing if B(P ) ⊂ P . The linear
operator B is said to be u0−bounded if for every nonzero x ∈ P a natural number n
and two positive numbers α, β can be found such that αu0 ≤ Bnx ≤ βu0.

u∗ ∈ E be called a positive characteristic vector of linear operator B if u∗ ∈ P\{θ}
and there exists λ > 0 such that Bu∗ = λu∗.

Lemma 1.6. Let u∗ be a positive characteristic vector of u0−bounded increasing
operator B. Then B is a u∗−bounded operator.
Proof. It follows from the definition 1.5 that for some α0 and β0 the inequalities

α0u0 ≤ u∗ ≤ β0u0 (1.1)

are satisfied. Then from the inequalities

αu0 ≤ Bnx ≤ βu0

it follows that
α

β0
u∗ ≤ Bnx ≤ β

α0
u∗.

This completes the proof of the lemma.

2. Fixed points of nonlinear operators in Riesz spaces

In this section, we present the main results of this paper.

Theorem 2.1. Let E be an u0−uniformly complete Archimedean Riesz space, A :
E → E a nonlinear operator. Suppose that there exists an u0−bounded increasing
operator B : E → E such that the following conditions are satisfied:

(i) there exist λ ∈ (0, 1) and a nonzero positive element u∗ such that

Bu∗ = λu∗.

(ii) for ∀ x, y ∈ E,
|Ax−Ay| ≤ B(|x− y|).

Then A has an unique fixed point x∗ ∈ E, and for any x0 ∈ E, let xn = Axn−1(n =
1, 2, . . .), then {xn} converge u0− uniformly to the element x∗.
Proof. First, by (1.1), we know that E is a u0−uniformly complete Riesz space if and
only if E is also a u∗−uniformly complete Riesz space.

Next we show that A has at most one fixed point. Suppose there exist two elements
x, y ∈ E with x = Ax and y = Ay. By Lemma 1.6, there exist n1 ∈ N and β > 0
such that

Bn1(|x− y|) ≤ βu∗.

Then for all n ∈ N , we have

|x− y| = |An1nx−An1ny| ≤ Bn (Bn1(|x− y|)) ≤ βBnu∗ ≤ βλnu∗.
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Since E is Archimedean, we get x = y. This implies that A has at most one fixed
point.

For any given x0 ∈ E, Let xn = Axn−1(n = 1, 2, . . . , ). We first show that {xn} is
a u∗−uniform Cauchy sequence. By Lemma 1.2, there exist n1 ∈ N and β > 0 such
that

Bn1(|x1 − x0|) ≤ βu∗.

Notice for p ∈ N that

|xn1+p+1 − xn1+p| = |Axn1+p −Axn1+p−1| ≤ B(|xn1+p − xn1+p−1|)
≤ · · · ≤ Bn1+p(|x1 − x0|) ≤ βλpu∗.

Thus for n > n1 and m ∈ N

|xn+m+1 − xn| = |xn+m+1 − xn+m + · · ·+ xn+1 − xn|
≤ |xn+m+1 − xn+m|+ · · ·+ |xn+1 − xn|
≤ β

[
λn+m−n1 + · · ·+ λn−n1

]
u∗

= β
λn−n1(1− λm+1)

1− λ
u∗.

This shows that {xn} is a u∗−uniform Cauchy sequence and since that E is
u∗−uniformly complete there exists x ∈ E such that xn is u∗− uniformly conver-
gent to the element x∗. So, for every ε > 0, there exists a natural number n0 = n0(ε)
such that |x∗ − xn| ≤ εu holds for all n ≥ n0. Thus, for every n ≥ n0, we have

|x∗ −Ax∗| ≤ |x∗ − xn|+ |Axn−1 −Ax∗|
≤ |x∗ − xn|+ B|xn−1 − x∗| ≤ εu∗ + ελu∗ ≤ 2εu∗,

Therefore x∗ is the unique fixed point of A. This completes the proof.

Theorem 2.2. Let u∗ be a nonzero positive element, E an u∗−uniformly complete
Archimedean Riesz space, A : E → E a nonlinear operator. Suppose that there
exists an u0−bounded increasing operator B : E → E such that the hypotheses (ii) of
Theorem 2.1 is satisfied and there exists λ ∈ (0, 1) such that

Bu∗ ≤ λu∗.

Then A has an unique fixed point x∗ ∈ E, and for any x0 ∈ E, let xn =
Axn−1(n=1,2,. . . ); then {xn} is u∗− uniformly convergent to the element x∗.

The proof of this theorem is based on the following lemma and the method used
in Theorem 2.1.

Lemma 2.3. If B is an u0−bounded increasing operator, and there exists λ ∈ (0, 1)
such that Bu∗ ≤ λu∗. Then for every nonzero x ∈ P , there exist a natural number n
and a positive numbers β1 such that Bnx ≤ β1u

∗.
Proof. It follows from the definition 1.5 that for some n, n1, α and β the inequalities

αu0 ≤ Bn1u∗, Bnx ≤ βu0

are satisfied. Then from the inequalities

Bu∗ ≤ λu∗
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it follows that
Bnx ≤ βλn1

α
u∗.

This completes the proof of the lemma.

Theorem 2.4. Let E be an u0−uniformly complete Archimedean Riesz space, A :
E → E a nonlinear operator. Suppose that there exists an u0−bounded increasing
operator B : E → E such that the hypotheses (i) of Theorem 2.1 is satisfied and

−B(x− y) ≤ Ax−Ay ≤ B(x− y), ∀ x, y ∈ E, x ≥ y, (2.1)

Then A has an unique fixed point x∗ ∈ E, and for any x0 ∈ E, let xn = Axn−1(n =
1, 2, . . .), then {xn} converge u0− uniformly to the element x∗.
Proof. For any x, y ∈ E, from Lemma 1.3, we have

x ≥ 1
2
(x + y − |x− y|), y ≥ 1

2
(x + y − |x− y|).

By (2.1), we know

Ax−A

(
1
2
(x + y − |x− y|)

)
≤ B

(
x− 1

2
(x + y − |x− y|)

)
= B

(
x− y + |x− y|

2

)
,

Ax−A

(
1
2
(x + y − |x− y|)

)
≥−B

(
x− 1

2
(x + y − |x− y|)

)
=−B

(
x− y + |x− y|

2

)
,

i.e.,

−B

(
x− y + |x− y|

2

)
≤ Ax−A

(
1
2
(x + y − |x− y|)

)
≤ B

(
x− y + |x− y|

2

)
.

(2.2)
By using the same method, we get

−B

(
y − x + |x− y|

2

)
≤ Ay −A

(
1
2
(x + y − |x− y|)

)
≤ B

(
y − x + |x− y|

2

)
.

(2.3)
Subtracting (2.3) from (2.2), we obtain

−B(|x− y|) ≤ Ax−Ay ≤ B(|x− y|), ∀ x, y ∈ E.

This implies that
|Ax−Ay| ≤ B(|x− y|), ∀ x, y ∈ E.

Hence, our conclusion follows from Theorem 2.1. This completes the proof.

Corollary 2.5. Let E be an u0−uniformly complete Archimedean Riesz space, A :
E → E a nonlinear operator. Suppose that there exist an u0−bounded increasing
operator B : E → E and two natural numbers n0, n1 such that the hypotheses (i) of
Theorem 2.1 is satisfied, and

−Bn0(x− y) ≤ An1x−An1y ≤ Bn0(x− y), ∀ x, y ∈ E, x ≥ y.

Then A has an unique fixed point x∗ ∈ E.
Proof. Let A1 = An1 , B1 = Bn0 . It is easy to see that A1, B1 satisfy all conditions
of Theorem 2.4. Thus, A1 has a unique fixed point x∗ in E, and so A has a unique
fixed point x∗ in E. This completes the proof.
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Theorem 2.6 Let u∗ be a nonzero positive element, E an u∗−uniformly complete
Archimedean Riesz space, A : E → E a nonlinear operator, x0 ∈ E with x0 ≤ Ax0.
Suppose that there exists a linear increasing operator B : E → E which satisfies the
following conditions:

(i) for any x ∈ P , there exists a positive number β which are dependent on x such
that

Bx ≤ βu∗, (2.4)

(ii) there exists λ ∈ (0, 1) such that

Bu∗ ≤ λu∗.

(iii) for any x, y ∈ D = {x ∈ E | x ≥ x0}, x ≥ y, we have

θ ≤ Ax−Ay ≤ B(x− y).

Then A has an unique fixed point x ∈ D.
Proof. Since A is increasing on D and x0 ≤ Ax0, so we obtain A(D) ⊂ D. Let
xn = Axn−1(n = 1, 2, . . .), then we have

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · .

By (2.4), there exist β > 0 such that

B(x1 − x0) ≤ βu∗.

Then for ∀ n ∈ N , we have

θ ≤ xn+1 − xn = Axn −Axn−1 ≤ B(xn − xn−1)

= B(Axn−1 −Axn−2) ≤ · · · ≤ Bn(x1 − x0) ≤ βλn−1u∗.

Thus for n, m ∈ N

|xn+m − xn| = |xn+m − xn+m−1 + · · ·+ xn+1 − xn|
≤ |xn+m − xn+m−1|+ · · ·+ |xn+1 − xn|
≤ β

[
λn+m−2 + · · ·+ λn−1

]
u∗

= β
λn−1(1− λm)

1− λ
u∗.

This shows that {xn} is a u∗−uniform Cauchy sequence and since that E is uniformly
complete there exists x such that xn is u∗− uniformly convergent to the element x.
So we can get xn ↑ x∗ and x∗ ∈ D. Moreover, for every n ∈ N , we have

|x∗ −Ax∗| ≤ |x∗ − xn|+ |Axn−1 −Ax∗| ≤ |x∗ − xn|+ B|xn−1 − x∗|.

Therefore x∗ is a fixed point of A.
In the following we will show that x∗ is the unique fixed point of A. Suppose there

exists a elements x ∈ D with x = Ax. By the condition, there exists β1 > 0 such that

B(x− x0) ≤ β1u
∗.

and for any n ∈ N , we have
x ≥ x∗ ≥ xn.
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Then for all n ∈ N , we have

|x− x∗| ≤ |x− xn|+ |x∗ − xn| ≤ |Anx−Anx0|+ |Anx∗ −Anx0|
≤ Bn(x− x0) + Bn(x∗ − x0) ≤ 2β1B

nu∗ ≤ 2β1λ
n−1u∗.

Since E is Archimedean, we get x = x∗. This completes the proof.

Remark 2.7. In this paper, we do not suppose that the space has topological struc-
ture, which is usually done in [1, 2, 3, 4, 5, 6, 9]. For example, the normality of cone
and the norm of operator, used in the proof of Theorem 3.1.13 and Theorem 3.1.14 in
[6], are based on the topological structure of space. The existence of a unique solution
is proved in the case where the ordered vector space has only the lattice structure and
the operators A or An1 satisfy an ordering relation. Moreover, we give the iterative
forms.

3. Application

Throughout the remainder of this paper we apply the above result to the following
Hammerstein integral equation:

x(t) =
∫ 1

0

k(t, s)f(s, x(s))ds (3.1)

where f : [0, 1] × R → R is continuous; R denotes the real numbers; and k(t, s) is
given by

k(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Let I = [0, 1] and E be a real linear space of all continuous functions from I into
R. We also let P = {x ∈ E | x(t) ≥ 0, t ∈ I}, then it is easy to verify that E is a
Riesz space which is ordered by the positive cone P . Take u0(t) = t(1− t), then E is
an u0−uniformly complete Archimedean Riesz space.

Defined the operators on E:

(Ax)(t) =
∫ 1

0

k(t, s)f(s, x(s))ds,

and

(B1x)(t) =
∫ 1

0

k(t, s)x(s)ds.

It is well known that the operator B1 is an u0−bounded increasing operator and
π2B1u

∗ = u∗ with u∗(t) = sinπt.
Applying Theorem 2.1 with B = απ2B1, we can get the following result.

Proposition 3.1. Suppose that there exists α ∈ [0, 1) such that

|f(t, x)− f(t, y)| ≤ απ2|x− y|, ∀ t ∈ [0, 1], x, y ∈ R. (3.2)

Then Hammerstein integral equation (3.1) has a unique solution x∗ in E, and for any
x0 ∈ E, the iterative sequence xn = Axn−1(n = 1, 2, · · · ) converges to x∗.
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Remark 3.2. Endowed with supremum norm ‖x‖ = sup
t∈I

|x(t)|, E is a Banach space.

Then for ∀ x, y ∈ E, we have

‖Ax−Ay‖ ≤ απ2

8
‖x− y‖.

This implies that A is a Lipschitzian map. But for α ∈ [ 8
π2 , 1), A is not a contraction

map. Hence our results in essence improve and generalize the relevant results in
[2, 6, 9].
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