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1. Introduction

A mapping T on a subset C of a Banach space X is said to be asymptotic pointwise
nonexpansive if there exists a sequence of mappings αn : C → [0,∞) such that

‖Tn(x)− Tn(y)‖ ≤ αn(x)‖x− y‖, (1.1)

where lim supn→∞ αn(x) ≤ 1, for all x, y ∈ C. This class of mappings was intro-
duced by Kirk and Xu [7], where it was shown that if C is a bounded closed convex
subset of a uniformly convex Banach space X, then every asymptotic pointwise non-
expansive mapping T : C → C has a fixed point. In 2009, Hussain and Khamsi [2]
extended Kirk-Xu’s result to the case of metric spaces, specifically to the so-called
CAT(0) spaces. Recently, Khamsi and Kozlowski [3] proved an analogous result in the
framework of modular function spaces. Moreover, Kozlowski [8] defined an iterative
sequence for an asymptotic pointwise nonexpansive mapping T : C → C by

x1 ∈ C, xk+1 = (1− tk)xk + tkT
nk ((1− sk)xk + skT

nk(xk)) , k ∈ N, (1.2)

where {nk} is an increasing sequence of natural numbers for which

lim sup
k→∞

ank
(xk) = 1.

He proved, under some suitable assumptions, that the sequence {xk} defined by (1.2)
converges weakly to a fixed point of T where X is a uniformly convex Banach space
which satisfies the Opial condition and {xk} converges strongly to a fixed point of
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T provided Tm is a compact mapping for some m ∈ N. In the latter case, no Opial
condition is assumed for the uniformly convex space X.

In this paper, motivated by the results mentioned above, we ensure the existence
of common fixed points for a family of asymptotic pointwise nonexpansive mappings.
Furthermore, we obtain weak and strong convergence theorems of a sequence defined
by two of such mappings.

2. Preliminaries

The notion of asymptotic contractions was introduced by Kirk [6] as the following
statement.

Let Ψ denote the class of all mappings ψ : [0,∞) → [0,∞) satisfying:

(i) ψ is continuous;

(ii) ψ(s) < s for all s > 0.

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is said to be
an asymptotic contraction ([6]) if

d(Tn(x), Tn(y)) ≤ ψn (d(x, y)) for all x, y ∈ X, (2.1)

where ψn : [0,∞) → [0,∞) and ψn → ψ ∈ Ψ uniformly on the range of d.

T is called a pointwise contraction ([7]) if there exists a mapping α : X → [0, 1)
such that

d(T (x), T (y)) ≤ α(x)d(x, y) for each y ∈ X. (2.2)

Definition 2.2. Let (X, ‖·‖) be a Banach space. A mapping T : X → X is called an
asymptotic pointwise mapping ([2]) if there exists a sequence of mappings αn : X →
[0,∞) such that

‖Tn(x)− Tn(y)‖ ≤ αn(x) ‖x− y‖ for any y ∈ X. (2.3)

(i) If {αn} converges pointwise to α : X → [0, 1), then T is called an asymptotic
pointwise contraction.

(ii) If lim supn→∞ αn(x) ≤ 1, then T is called asymptotic pointwise nonexpansive.

(iii) If lim supn→∞ αn(x) ≤ k, with 0 < k < 1, then T is called strongly asymptotic
pointwise contraction.

A point x ∈ X is called a fixed point of T if x = T (x). We shall denote by F (T ) the
set of fixed points of T and by T (C) the class of all asymptotic pointwise nonexpansive
mappings from C into C. Let S, T ∈ T (C), without loss of generality, we can assume
that there exists a sequence of mappings αn : C → [0,∞) such that for all x, y ∈ C
and n ∈ N,

‖Sn(x)− Sn(y)‖ ≤ αn(x)‖x− y‖, ‖Tn(x)− Tn(y)‖ ≤ αn(x)‖x− y‖, and

lim sup
n→∞

αn(x) ≤ 1.

Let an(x) = max {αn(x), 1} . Again, without loss of generality, we can assume that

‖Sn(x)− Sn(y)‖ ≤ an(x)‖x− y‖, ‖Tn(x)− Tn(y)‖ ≤ an(x)‖x− y‖, and
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lim
n→∞

an(x) = 1, an(x) ≥ 1, for all x, y ∈ C and n ∈ N.

Define bn(x) = an(x)− 1. Then, for each x ∈ C we have limn→∞ bn(x) = 0.

3. A common fixed point theorem

Before proving our fixed point theorem, we need the following lemma.

Lemma 3.1. (See [7, Theorem 3.5]) Let C be a nonempty bounded closed and con-
vex subset of a uniformly convex Banach space X. Then every asymptotic pointwise
nonexpansive mapping T : C → C has a fixed point. Moreover, F (T ) is closed and
convex.

The following result is a counterpart of [10, Theorem 6] and extends Theorem 3.5
of [7].

Theorem 3.2. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X. Then every commuting family S of asymptotic pointwise
nonexpansive mappings on C has a nonempty closed convex common fixed point set.

Proof. Let T1, T2, ..., Tn ∈ S. By Lemma 3.1, F (T1) is a nonempty closed and convex
subset of C. We assume that A :=

⋂k−1
j=1 F (Tj) is nonempty closed and convex for

some k ∈ N with 1 < k ≤ n. For x ∈ A and j ∈ N with 1 ≤ j < k, we have

Tk(x) = Tk ◦ Tj(x) = Tj ◦ Tk(x).

Thus Tk(x) is a fixed point of Tj , which implies that Tk(x) ∈ A, therefore A is invariant
under Tk. Again, by Lemma 3.1, Tk has a fixed point in A, i.e.,

k⋂
j=1

F (Tj) = F (Tk)
⋂
A 6= ∅.

Also, the set is closed and convex. By induction,
⋂n

j=1 F (Tj) 6= ∅. This shows that
the set {F (T ) : T ∈ S} has the finite intersection property. We note that C is weakly
compact because X is reflexive. Since F (T ) is weakly closed for every T ∈ S, we have⋂

T∈S F (T ) 6= ∅. Obviously, the set is closed and convex. �

4. Convergence theorems

We now collect some basic definitions and lemmas.

Lemma 4.1. (See [1]) Suppose {rk} is a bounded sequence of real numbers and {dk,n}
is a doubly-index sequence of real numbers which satisfy

lim sup
k→∞

lim sup
n→∞

dk,n ≤ 0, and rk+n ≤ rk + dk,n

for each k, n ∈ N. Then {rk} converges to an r ∈ R.

Lemma 4.2. (See [9, 11]) Let X be a uniformly convex Banach space and let {tn} be
a sequence in [a, b] for some a, b ∈ (0, 1). Suppose that {un} and {vn} are sequences
in X such that

lim sup
n→∞

‖un‖ ≤ r, lim sup
n→∞

‖vn‖ ≤ r, and lim
n→∞

‖tnun + (1− tn)vn‖ = r,
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for some r ≥ 0. Then limn→∞ ‖un − vn‖ = 0.

Lemma 4.3. (See [8, Lemma 3.1]) Let C be a nonempty bounded closed convex
subset of a uniformly convex Banach space X and let T ∈ T (C) be such that an is a
bounded function for every n ∈ N. If limn→∞ ‖T (xn)− xn‖ = 0 then for any m ∈ N,
limn→∞ ‖Tm(xn)− xn‖ = 0.

Lemma 4.4. (See [8, Theorem 3.1]) Let X be a uniformly convex Banach space with
the Opial property and let C be a nonempty bounded closed convex subset of X. Let
T ∈ T (C) be such that an is a bounded function for every n ∈ N. Then the conditions
ω ∈ X, {xn} ⊂ X, xn ⇀ ω, and limn→∞ ‖T (xn)− xn‖ = 0, imply ω ∈ F (T ).

Definition 4.5. Let S, T ∈ T (C) and let {nk} be an increasing sequence of natural
numbers. Let {sk}, {tk} ⊂ [a, b] ⊂ (0, 1). Define a sequence {xk} in C as:

x1 ∈ C, xk+1 = (1− tk)xk + tkS
nk ((1− sk)xk + skT

nk(xk)) , k ∈ N. (4.1)

We say that the sequence {xk} in (4.1) is well defined if lim sup
k→∞

ank
(xk) = 1.

As in [8], we observe that limk→∞ ak(x) = 1 for every x ∈ C. Hence we can always
choose a subsequence {ank

} which makes {xk} well defined.

Lemma 4.6. Let C be a nonempty bounded closed and convex subset of a uniformly
convex Banach space X and let S, T ∈ T (C) be such that

∑∞
n=1 bn(x) < ∞ for each

x ∈ C. Let ω ∈ F (S) ∩ F (T ), {sk}, {tk} ⊂ [a, b] ⊂ (0, 1), and {nk} ⊂ N be such that
{xk} in (4.1) is well-defined. Then limk→∞ ‖xk − ω‖ exists.

Proof. For each k ∈ N, we let yk = (1− sk)xk + skT
nk(xk). Then

‖xk+1 − ω‖ = ‖(1− tk)xk + tkS
nk(yk)− ω‖

≤ (1− tk)‖xk − ω‖+ tk‖Snk(yk)− ω‖
≤ (1− tk)‖xk − ω‖+ tk(1 + bnk

(ω))‖yk − ω‖
≤ (1− tk)‖xk − ω‖

+ tk(1 + bnk
(ω))[(1− sk)‖xk − ω‖+ sk‖Tnk(xk)− ω‖]

≤ (1− tk)‖xk − ω‖
+ tk(1 + bnk

(ω))[(1− sk)‖xk − ω‖+ sk(1 + bnk
(ω))‖xk − ω‖]

≤ (1− tk)‖xk − ω‖+ tk(1 + bnk
(ω))(1 + skbnk

(ω))‖xk − ω‖
≤ (1− tk)‖xk − ω‖+ tk(1 + bnk

(ω))2‖xk − ω‖
≤ ‖xk − ω‖+ tk(2bnk

(ω) + b2nk
(ω))‖xk − ω‖

≤ ‖xk − ω‖+ 3bnk
(ω)‖xk − ω‖

≤ ‖xk − ω‖+ 3diam(C)bnk
(ω).

It follows that for each n ∈ N,

‖xk+n − ω‖ ≤ ‖xk − ω‖+ 3diam(C)
k+n−1∑

i=k

bni(ω).
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By assumption, lim supk→∞ lim supn→∞
∑k+n−1

i=k bni(ω) = 0. By Lemma 4.1, letting
rk = ‖xk −ω‖ and dk,n = 3diam(C)

∑k+n−1
i=k bni

(ω), there exists an r ∈ R such that
limk→∞ ‖xk − ω‖ = r. �

Lemma 4.7. Let C be a nonempty bounded closed and convex subset of a uniformly
convex Banach space X and let S, T ∈ T (C) be such that

∑∞
n=1 bn(x) < ∞ for each

x ∈ C. Suppose that F (S) ∩ F (T ) 6= ∅. Let {sk}, {tk} ⊂ [a, b] ⊂ (0, 1), and {nk} ⊂ N
be such that {xk} in (4.1) is well-defined. Then

lim
k→∞

‖Snk(yk)− xk‖ = 0 (4.2)

and
lim

k→∞
‖xk+1 − xk‖ = 0, (4.3)

where yk = (1− sk)xk + skT
nk(xk), for each k ∈ N.

Proof. Let ω ∈ F (S) ∩ F (T ). Then there exists an r ∈ R from Lemma 4.6 such that

lim
k→∞

‖xk − ω‖ = r. (4.4)

Note that

lim sup
k→∞

‖Snk(yk)− ω‖ = lim sup
k→∞

‖Snk(yk)− Snk(ω)‖

≤ lim sup
k→∞

ank
(ω) ‖yk − ω‖

≤ lim sup
k→∞

ank
(ω) [(1− sk)‖xk − ω‖+ sk‖Tnk(xk)− ω‖]

≤ lim sup
k→∞

[
ank

(ω) (1− sk)‖xk − ω‖+ ska
2
nk

(ω)‖xk − ω‖
]

≤ r, (4.5)

and

lim
k→∞

‖(1− tk)(xk − ω) + tk(Snk(yk)− ω)‖ = lim
k→∞

‖xk+1 − ω‖ = r. (4.6)

It follows from (4.4), (4.5), (4.6), and Lemma 4.2 that

lim
k→∞

‖Snk(yk)− xk‖ = 0.

This, together with the construction formula for xk+1, we also obtain that

lim
k→∞

‖xk+1 − xk‖ = 0. �

Lemma 4.8. Let C be a nonempty bounded closed and convex subset of a uniformly
convex Banach space X and let S, T ∈ T (C) be such that

∑∞
n=1 bn(x) < ∞ for each

x ∈ C. Suppose that F (S) ∩ F (T ) 6= ∅. Let {sk}, {tk} ⊂ [a, b] ⊂ (0, 1), and {nk} ⊂ N
be such that {xk} in (4.1) is well-defined. Then

lim
k→∞

‖Snk(xk)− xk‖ = 0 = lim
k→∞

‖Tnk(xk)− xk‖. (4.7)
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Proof. Let ω ∈ F (S) ∩ F (T ). Then there exists r ∈ R such that

lim
k→∞

‖xk − ω‖ = r. (4.8)

Since
‖Tnk(xk)− ω‖ = ‖Tnk(xk)− Tnk(ω)‖ ≤ ank

(ω)‖xk − ω‖,
then we get

lim sup
k→∞

‖Tnk(xk)− ω‖ ≤ lim sup
k→∞

ank
(ω)‖xk − ω‖ = r. (4.9)

Now,

‖yk − ω‖ = ‖(1− sk)xk + skT
nk(xk)− ω‖

≤ (1− sk) ‖xk − ω‖+ sk ‖Tnk(xk)− ω‖
≤ (1− sk) ‖xk − ω‖+ sk ank

(ω)‖xk − ω‖.

This implies that
lim sup

k→∞
‖yk − ω‖ ≤ lim sup

k→∞
‖xk − ω‖ = r. (4.10)

On the other hand

‖xk − ω‖ ≤ ‖xk − Snk(yk)‖+ ‖Snk(yk)− ω‖

≤ ‖xk − Snk(yk)‖+ ank
(ω)‖yk − ω‖. (4.11)

From (4.2) and (4.11), we get that

r = lim inf
k→∞

‖xk − ω‖ ≤ lim inf
k→∞

‖yk − ω‖. (4.12)

From (4.10) and (4.12), we have limk→∞ ‖yk − ω‖ = r. Thus

lim
k→∞

‖(1− sk)(xk − ω) + sk(Tnk(xk)− ω)‖ = lim
k→∞

‖yk − ω‖ = r. (4.13)

It follows from (4.8), (4.9), (4.13), and Lemma 4.2 that

lim
k→∞

‖Tnk(xk)− xk‖ = 0. (4.14)

Since

‖Snk(xk)− xk‖ ≤ ‖Snk(xk)− Snk(yk)‖+ ‖Snk(yk)− xk‖
≤ ank

(xk)‖xk − yk‖+ ‖Snk(yk)− xk‖
≤ skank

(xk)‖xk − Tnk(xk)‖+ ‖Snk(yk)− xk‖,

it follows from (4.2) and (4.14) that

lim
k→∞

‖Snk(xk)− xk‖ = 0.

Therefore the proof is complete. �

Definition 4.9. A strictly increasing sequence {ni} ⊂ N is called quasi-periodic ([1])
if the sequence {ni+1−ni} is bounded, or equivalently if there exists a number p ∈ N
such that any block of p consecutive natural numbers must contain a term of the
sequence {ni}. The smallest of such numbers p will be called a quasi-period of {ni}.
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Lemma 4.10. Let C be a nonempty bounded closed and convex subset of a uni-
formly convex Banach space X and let S, T ∈ T (C) be such that F (S) ∩ F (T ) 6= ∅,∑∞

n=1 bn(x) < ∞ for every x ∈ C and an is bounded for every n ∈ N. Let
{sk}, {tk} ⊂ [a, b] ⊂ (0, 1), and {nk} ⊂ N be such that {xk} in (4.1) is well-defined.
If, in addition, the set of indices J = {j : nj+1 = 1 + nj} is quasi-periodic, then

lim
k→∞

‖S(xk)− xk‖ = 0 = lim
k→∞

‖T (xk)− xk‖. (4.15)

Proof. Assume that J = {j : nj+1 = 1+nj} is quasi-periodic with period p. For each
k ∈ J , we have

‖xk − T (xk)‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − Tnk+1(xk+1)‖
+ ‖Tnk+1(xk+1)− Tnk+1(xk)‖+ ‖TTnk(xk)− T (xk)‖

≤ ‖xk − xk+1‖+ ‖xk+1 − Tnk+1(xk+1)‖
+ ank+1(xk+1)‖xk+1 − xk‖+ a1(xk)‖Tnk(xk)− xk‖.

This, together with (4.3) and (4.7), we can obtain that ‖T (xk)−xk‖ → 0 as k →∞
through J .

To prove that limk→∞ ‖T (xk) − xk‖ = 0 is similar to the proof of Lemma 4.3 of
[8], therefore we omit it. Similarly, we also have limk→∞ ‖S(xk)− xk‖ = 0. �

The following theorem extends Theorem 1 of [4] and Theorem 5.1 of [8].

Theorem 4.11. Let X be a uniformly convex Banach space with the Opial property
and C be a nonempty bounded closed convex subset of X. Let S, T ∈ T (C) be such
that F (S)∩F (T ) 6= ∅,

∑∞
n=1 bn(x) <∞ for every x ∈ C and an is bounded for every

n ∈ N. Let {sk}, {tk} ⊂ [a, b] ⊂ (0, 1). Let {nk} be such that the sequence {xk} in
(4.1) is well defined. If the set J = {j; nj+1 = 1 + nj} is quasi-periodic, then the
sequence {xk} converges weakly to a common fixed point of S and T.

Proof. We have by Lemma 4.6 that limn→∞ ‖xk−ω‖ exists for every ω ∈ F (S)∩F (T ).
We shall prove that {xk} has a unique weak subsequential limit in F (S) ∩ F (T ). For
this, we suppose that there are subsequences {xki} and {xkj} of {xk} which converge
weakly to u and v, respectively. By Lemma 4.10, limk→∞ ‖S(xk)−xk‖ = 0. It follows
from Lemma 4.4 that S(u) = u. Similarly, we can prove that T (u) = u. By using the
same argument, we can prove that v ∈ F (S) ∩ F (T ). Finally, we prove that u = v.
Suppose not, then by the Opial property we get that

lim
k→∞

‖xk − u‖ = lim
i→∞

‖xki − u‖

< lim
i→∞

‖xki
− v‖

= lim
k→∞

‖xk − v‖

= lim
j→∞

‖xkj
− v‖

< lim
j→∞

‖xkj
− u‖

= lim
k→∞

‖xk − u‖.

This is a contradiction. Therefore the proof is complete. �
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The following theorem extends Theorem 2 of [4] and Theorem 6.1 of [8].

Theorem 4.12. Let X be a uniformly convex Banach space and C be a nonempty
bounded closed convex subset of X. Let S, T ∈ T (C) be such that F (S) ∩ F (T ) 6= ∅,∑∞

n=1 bn(x) < ∞ for every x ∈ C and an is bounded for every n ∈ N. Assume that
there exists m ∈ N so that Sm or Tm is compact. Let {sk}, {tk} ⊂ [a, b] ⊂ (0, 1). Let
{nk} be such that the sequence {xk} in (4.1) is well defined. If the set J = {j; nj+1 =
1+nj} is quasi-periodic, then the sequence {xk} converges strongly to a common fixed
point of S and T.

Proof. We will prove only the case that Sm is compact (the proof for the other case
is identical). Observe that by Lemma 4.10,

lim
k→∞

‖S(xk)− xk‖ = 0.

By Lemma 4.3,
lim

k→∞
‖Sm(xk)− xk‖ = 0. (4.16)

Since Sm is compact, we can find a subsequence {xkj} of {xk} such that

lim
j→∞

‖Sm(xkj )− x‖ = 0 for some x ∈ C. (4.17)

Since
‖xkj

− x‖ ≤ ‖xkj
− Sm(xkj

)‖+ ‖Sm(xkj
)− x‖,

it follows from (4.16) and (4.17) that

lim
j→∞

‖xkj
− x‖ = 0. (4.18)

Since S and T are continuous, then

lim
j→∞

S(xkj
) = S(x) and lim

j→∞
T (xkj

) = T (x).

This, together with (4.15) and (4.18), we get that

‖S(x)− x‖ = 0 = ‖T (x)− x‖.
This means x ∈ F (S)∩F (T ). Therefore {xkj

} converges strongly to x ∈ F (S)∩F (T ).
But limk→∞ ‖xk − x‖ exists, {xk} must itself converges to x. This completes the
proof. �
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