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46100 Godella, Valencia, Spain

E-mail: elena.moreno@ucv.es

∗∗Departamento de Análisis Matemático
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1. Introduction

One of the most important topics in Metric Fixed Point Theory is the study of
nonexpansive mappings, i.e. those which have Lipschitz constant equal to 1. The
natural framework of this subject are just the closed convex and bounded subsets
of the Banach spaces. A Banach space X is said to have the fixed point property
for nonexpansive mappings, (FPP) in short, provided that every nonexpansive self
mapping of every closed convex bounded subset of X has a fixed point. It has been
known from the outset of the theory of nonexpansive mappings that the (FPP) de-
pends strongly on ‘nice’ geometrical properties of the space. Many classes of reflexive
Banach spaces enjoy the (FPP), as for instance Hilbert or uniformly convex Banach
spaces.

It has been a long time open question if any Banach space which has (FPP) is
necessarily a reflexive space (see Question I in [5]). In 2008, P.K Lin [6] answered this
question in the negative giving an equivalent renorming of `1, and thus a non-reflexive
space, which has the (FPP). Hernández Linares and Japon extended in 2010 Lin’s
example and gave a larger class of nonreflexive spaces enjoying the (FPP), (see [4]).
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On the other hand, considerable effort has been aimed to the study of the fixed
point property for classes of nonlinear mappings which are more general than the
nonexpansive ones. Very early, in the late sixties of the last century were introduced
the so called Kannan type mappings, and a bit later some wider classes of generalized
nonexpansive mappings. (See [1, 3, 10, 8] among others).

Even very recently, in a different approach T. Suzuki [9] defined the type (C)
mappings, which properly contain the nonexpansive mappings. Type (C) mappings
in turn have been generalized in two ways in [2].

Finally, the present authors defined in [7] the class which they named type (L)
mappings, which contains both Suzuki’s type (C) and several other generalized non-
expansive mappings.

A question naturally arises: Could a nonreflexive space have the FPP for such class
of mappings? The aim of this paper is to answer this question in the affirmative. We
will show that the space `1 can be renormed so that the resulting space enjoys the
fixed point property for type (L) mappings.

2. Preliminaries

We will assume throughtout this paper that (X, ‖ · ‖) is a Banach space, and C is
a nonempty, closed, convex, bounded subset of X. A sequence (xn) in C is called an
almost fixed point sequence for T (a.f.p.s. for short) provided that xn−T (xn) → 0X .
It is well known that every nonexpansive mapping T : C → C has a.f.p. sequences.
The same holds if T : C → C satisfies Suzuki’s condition (C) on C, (see [9], Lemma
6).

We now recall further concepts which will be useful in the forthcoming sections.
We begin with some classes of mappings. Definitions (1) and (2) are given in [2],

and the first one is a generalization of condition (C) given by Suzuki in [9].

(1) For λ ∈ (0, 1) we say that a mapping T : C → X satisfies condition (Cλ) on C
if for all x, y ∈ C with λ‖x−Tx‖ ≤ ‖x−y‖ one has that ‖Tx−Ty‖ ≤ ‖x−y‖.
Of course, the original Suzuki condition (C) is just (C 1

2
).

(2) For µ ≥ 1 a mapping T : C → X is said to satisfy condition (Eµ) on C if for
all x, y ∈ C,

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖.

We say that T satisfies condition (E) on C if T satisfies (Eµ) on C for
some µ ≥ 1. In [9] is shown that if a mapping satisfies Suzuki’s condition
(C1/2) then it satisfies condition (E3).

(3) A mapping T : C → X is said to be a generalized nonexpansive mapping,
(gne) for short, if there exists nonnegative constants a, b, c with a+2b+2c ≤ 1
such that for all x, y ∈ C

‖Tx− Ty‖ ≤ a‖x− y‖+ b(‖x− Tx‖+ ‖y − Ty‖) + c(‖x− Ty‖+ ‖y − Tx‖). (2.1)

Although each one of the classes (Cλ), (Eµ), and (gne) mappings contains the class
of nonexpansive mappings, in [2, 7] are given examples separating such classes.
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3. Condition (L)

In a recent paper, [7] , the authors defined a class of nonlinear mappings as follows

Definition 3.1. A mapping T : C → C satisfies condition (L), (or it is an (L)-type
mapping), on C provided that it fulfills the following two conditions.

(1) If a set D ⊂ C is nonempty, closed, convex and T -invariant, (i.e. T (D) ⊂ D),
then there exists an a.f.p.s. for T in D.

(2) For any a.f.p.s. (xn) of T in C and each x ∈ C

lim sup
n→∞

‖xn − T (x)‖ ≤ lim sup
n→∞

‖xn − x‖.

From now on, if not specified, when a mapping is said to satisfy condition (L) it
will mean that it satisfies it on its domain.

Condition (1) and (2) in the previous definition are independent, as shown in the
paper [7], where examples of mappings satisfying condition (1) and not condition (2)
are given.

In the paper [7] it is proved that the class of (L)-type mappings contains strictly
the following classes:

• nonexpansive mappings,
• mappings satisfying condition (C) of Suzuki,
• mappings satisfying condition (E) which in turn satisfy condition (1) in the

definition of (L)-type mappings
• (gne) mappings, in many cases (for instance if b < 1

2 or in the case b = 1
2 in

spaces with uniformly normal structure).
The following lemma refers to one of the most important features of (L)-type

mappings. It is well known that nonexpansive mappings enjoy this property.

Lemma 3.2. Let C be a nonempty bounded closed convex subset of a Banach space
X and T a self-mapping satisfying condition (L) on C. Let (xn) be an a.f.p.s. for T
in C and let φ : C → R+ be the function defined by

φ(x) = lim sup
n→∞

‖x− xn‖ .

Then φ is a lower semi-continuous function. Moreover, for any d > inf{φ(x) : x ∈ C},
the set D = {x ∈ C : φ(x) ≤ d} is a nonempty closed convex T -invariant subset of C.

Proof. We will prove that D = {x ∈ C : lim sup
n→∞

‖xn − x‖ ≤ d} is T -invariant. Let

x ∈ C,
φ(Tx) = lim sup

n→∞
‖xn − Tx‖ ≤ lim sup

n→∞
‖xn − Tx‖ = φ(x) ≤ d

and so, for any x ∈ D, Tx ∈ D, this is, D is T -invariant. �

4. Fixed point theorem

In the paper [7] the authors gave fixed point results for (L)-type mappings in the
setting of Banach spaces with the so called normal structure. On the other hand,
P.K. Lin [6] and later C. Hernández and M.A. Japón [4] found nonreflexive Banach
spaces with the (FPP) for nonexpansive mappings. To extend their results to (L)-type
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mappings we will be concerned with Banach spaces endowed with a a linear topology
τ such that every bounded sequence has a τ -convergent subsequence. For instance, τ
could be the weak star topology whenever the underlying Banach space is separable.
For this kind of spaces we can recall the following lemma, which, in fact is a slight
modification of Lemma 1 in [4].

Lemma 4.1. Let (X, ‖ · ‖) be a Banach space endowed with a linear topology τ
such that every bounded sequence has a τ -convergent subsequence. Let C be a closed,
convex, bounded subset of X and T : C → C be a mapping satisfying condition (L)
without fixed points. Then there exists some a > 0 and a convex closed T -invariant
subset D of C such that for each a.f.p.s. (xn) in D with xn

τ→ x

lim sup
n→∞

‖xn − x‖ ≥ a.

Proof. Otherwise, for any a > 0, and any nonempty closed convex and bounded set
D ⊂ C

∃(xn) a.f.p.s. in D,xn
τ→ x ∈ X, and lim sup

n→∞
‖xn − x‖ < a. (4.1)

Thus, taking a = 1
22 and D = C, there exists an a.f.p.s. (x1

n) in C with x1
n

τ→ x1 ∈ X
such that

1
22

> lim sup
n→∞

‖x1
n − x1‖.

Since
‖x1

n − x1
m‖ ≤ ‖x1

n − x1‖+ ‖x1 − x1
m‖,

then
lim sup

n→∞
‖x1

n − x1
m‖ ≤ lim sup

n→∞
‖x1

n − x1‖+ ‖x1 − x1
m‖

and
lim sup
m→∞

lim sup
n→∞

‖x1
n − x1

m‖ ≤ lim sup
n→∞

‖x1
n − x1‖+ lim sup

m→∞
‖x1 − x1

m‖

= 2 lim sup
n→∞

‖x1
n − x1‖.

Hence
1
22

> lim sup
n→∞

‖x1
n − x1‖ ≥ 1

2
lim sup

n→∞
lim sup
m→∞

‖x1
n − x1

m‖

Consequently for m large enough, x1
m ∈ D1 where

D1 = {z ∈ C : lim sup
n→∞

‖x1
n − z‖ ≤ 1

2
}.

Therefore, given that T satisfies condition (L) on C, from Lemma 3.2, D1 is a
nonempty, convex, closed and T -invariant subset of C.

Taking now a = 1
23 and D = D1, from (4.1) we can assure the existence of an

a.f.p.s. (x2
n) ∈ D1 with x2

n
τ→ x2 ∈ X such that

1
23

> lim sup
n→∞

‖x2
n − x2‖ ≥ 1

2
lim sup

n→∞
lim sup
m→∞

‖x2
n − x2

m‖.

Then, the set

D2 = {z ∈ D1 : lim sup
n→∞

‖x2
n − z‖ ≤ 1

22
}
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is again a nonempty, convex, closed, T -invariant subset of D1. We construct in this
way a decreasing sequence (Dn) of convex closed bounded T -invariant subsets of C
such that diam(Dn) ≤ 1

2n−1 and so, by Cantor Theorem, ∩nDn is a singleton, which
has to be a fixed point, and we get a contradiction. �

Let (X, ‖ · ‖) be a Banach space endowed with a linear topology τ such that if (xn)
is a bounded sequence on X, then there is a subsequence (xnj ) of (xn) τ -converging
to some x ∈ X.

Denote R1(x) = ‖x‖ and assume that there exists a family of seminorms Rk : X →
[0,+∞) (k ≥ 2), such that satisfy the following properties:

(1) For all k ≥ 1, Rk(x) ≤ ‖x‖ for all x ∈ X.
(2) lim

k→∞
Rk(x) = 0 for all x ∈ X.

Moreover, if (xn) is norm-bounded and xn
τ→ 0X , then for all k ≥ 1, and any x ∈ X

(3) lim sup
n→∞

Rk(xn) = lim sup
n→∞

‖xn‖.

(4) lim sup
n→∞

Rk(xn + x) = lim sup
n→∞

Rk(xn) + Rk(x).

Let X be a Banach space and (Rk(·)) satisfying the conditions stated above. Let (γk)
be any nondecreasing sequence of real numbers in (0, 1) such that limk γk = 1. Then,
it is obvious that the expression

|||x||| = sup
k≥1

γkRk(x)

defines a norm on X which is an equivalent norm on (X, ‖ · ‖) . In fact, for all x ∈ X

γ1‖x‖ ≤ |||x||| ≤ ‖x‖.
In order to simplify the statement of the following results, we will introduce the
following definition.

Definition 4.2. Given a sequence of seminorms (Rk) on X satisfying the above
conditions 1-4, and a nondecreasing sequence (γk) in (0, 1) with limk γk = 1, we will
refer to the corresponding norm |||·||| as an HJ-norm on X.

Remark 4.3. In [4] are given some examples of Banach spaces endowed with an
HJ-norm, which hence fall into the scope of our main theorem. The first example is
the sequence space `1, considering the seminorms given by Rk(x) =

∥∥∥∑+∞
n=k xn

∥∥∥
1
, the

sequence γk = 8k

1+8k and τ the weak star topology. They recover in this way the result
of Lin in [6].

We will need some lemmas in order to prove our main theorem.

Lemma 4.4. (Hernández and Japón, Lemma 2 in [4]).
Let X be a Banach space and |||·||| an HJ-norm on X. Then, for two bounded

sequences (xn), (yn) in X, the following statements hold.

(1) If xn
τ→ 0, then

lim sup
n→∞

|||xn||| = lim sup
n→∞

‖xn‖.
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(2) If xn
τ→ x and yn

τ→ y then

lim sup
m→∞

lim sup
n→∞

|||xn − ym||| ≥ lim sup
n→∞

|||xn − x|||+ lim sup
m→∞

|||ym − y||| .

Remark 4.5. If xn
τ→ x and yn

τ→ x then, since

|||xn − ym||| ≤ |||xn − x|||+ |||x− ym||| ,
it follows that

lim sup
n→∞

|||xn − ym||| ≤ lim sup
n→∞

|||xn − x|||+ |||x− ym|||

and therefore

lim sup
m→∞

lim sup
n→∞

|||xn − ym||| ≤ lim sup
n→∞

|||xn − x|||+ lim sup
m→∞

|||x− ym||| .

Taking into account the statement 2 of the above lemma,

lim sup
m→∞

lim sup
n→∞

|||xn − ym||| = lim sup
n→∞

|||xn − x|||+ lim sup
m→∞

|||x− ym||| .

This fact will be useful later on, just in the proof of the main theorem.

The proofs of the next lemma and the latter theorem are closely modeled on the
corresponding proofs of Lemma 3 and Theorem 1 of [4].

Lemma 4.6. Consider the Banach space X endowed with an HJ-norm |||·|||, and let
C be a nonempty, closed, convex and bounded subset of X. Let T : C → C be a fixed
point free mapping satisfying condition (L). Let K be any closed convex T -invariant
subset of C and denote

ρ = inf{lim sup
n→∞

|||xn − x||| : (xn) is an a.f.p.s. in K and xn
τ→ x}.

Then, ρ > 0 and for any a.f.p.s. (xn) in K and for all z ∈ K we have

lim sup
n→∞

|||xn − z||| ≥ 2ρ.

Proof. From Lemma 4.1 it follows immediately that ρ > 0. Now suppose, for a
contradiction, that there exists an a.f.p.s. (xn) in K and z ∈ K such that

r = lim sup
n→∞

|||xn − z||| < 2ρ

We define
K ′ = {w ∈ K : lim sup

n→∞
|||xn − w||| ≤ r}.

Since z ∈ K ′ then K ′ is nonempty, and, of course, bounded, closed and convex.
Bearing in mind that T satisfies condition (L) on C, from Lemma 3.2 it follows that
the set K ′ is T -invariant. Again because T satisfies condition (L) on C, we can take
an a.f.p.s. (yn) in K ′. Without loss of generality we may suppose that yn

τ→ y and
xn

τ→ x. Using the previous lemma,

r ≥ lim sup
m→∞

lim sup
n→∞

|||xn − ym|||

≥ lim sup
n→∞

|||xn − x|||+ lim sup
m→∞

|||ym − y||| ≥ ρ + ρ = 2ρ

which is a contradiction. �
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Theorem 4.7. Let |||·||| be an HJ-norm on X. Then, (X, |||·|||) has the FPP for map-
pings satisfying condition (L).

Proof. Assume for a contradiction, that T is fixed point free. Let D be as in the
conclusion of Lemma (4.1). Define

c = inf{lim sup
n→∞

|||xn − x||| : (xn) is an a.f.p.s. in D and xn
τ→ x}

which is greater than zero by Lemma 4.6.
Without loss of generality we can assume that c = 1. Take 0 < ε1 < 1

2 and
an a.f.p.s. (xn) in D such that xn

τ→ x and lim sup
n→∞

|||xn − x||| < 1 + ε1. Again, by

translation, we can assume that x = 0.
Let us consider now

K = {z ∈ D : lim sup
n→∞

|||xn − z||| ≤ 2 + 2ε1},

which we claim it is nonempty. From Remark 4.5, since xn
τ→ 0,

lim sup
m→∞

lim sup
n→∞

|||xn − xm||| = lim sup
n→∞

|||xn|||+ lim sup
m→∞

|||xm||| < 2 + 2ε1.

Then we can find an increasing sequence of positive integers (mk) such that
lim sup

n→∞
|||xn − xmk

||| < 2 + 2ε1, that is, xmk
∈ K. Hence from Lemma 3.2 the set

K is closed, convex, T -invariant and nonempty. Therefore, since T is a type (L)
mapping, we can consider

ρ := inf{lim sup
n→∞

|||yn − y||| : (yn) is an a.f.p.s. in K and yn
τ→ y}.

It is clear that

1 = c ≤ ρ ≤ lim sup
k→∞

|||xmk
||| ≤ lim sup

n→∞
|||xn||| < 1 + ε1.

We are going to find an a.f.p.s. (yn) in K and z ∈ K such that

lim sup
n→∞

|||yn − z||| < 2ρ

and then we obtain a contradiction according to Lemma 4.6.
Notice the following fact: If (yn) is an a.f.p.s. for T in K and yn

τ→ y, then for any
k ∈ N, bearing in mind Property 4 of the sequence of seminorms Rk,

2 + 2ε1 ≥ lim sup
m→∞

lim sup
n→∞

|||xn − ym|||

= lim sup
m→∞

lim sup
n→∞

|||xn − (ym − y)− y|||

≥ γk lim sup
m→∞

lim sup
n→∞

Rk(xn − (ym − y)− y)

= γk lim sup
m→∞

[
lim sup

n→∞
Rk(xn) + Rk((ym − y)− y)

]
= γk

[
lim sup

n→∞
Rk(xn) + lim sup

m→∞
Rk(ym − y) + Rk(y)

]
.
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Since xn
τ→ 0 and yn − y

τ→ 0, by Property 3 in the definition of the seminorms Rk,
and the first statement in Lemma 4.4, then

2 + 2ε1 ≥ γk

[
lim sup

n→∞
Rk(xn) + lim sup

m→∞
Rk(ym − y) + Rk(y)

]
= γk

[
lim sup

n→∞
‖xn‖+ lim sup

m→∞
‖ym − y‖+ Rk(y)

]
= γk

[
lim sup

n→∞
|||xn|||+ lim sup

m→∞
|||ym − y|||+ Rk(y)

]
≥ γk[2 + Rk(y)],

which yields

Rk(y) ≤ 2
(

1 + ε1

γk
− 1

)
.

Put p := 1 + ε1 + 2
(

1+ε1
γ1

− 1
)
. Of course p > 1 + ε1 > ρ. Choose δ ∈ (ε1,

1
2 ). Since

ρ ≥ 1 and −2δ > −1 then ρ− 2δ > 0 and we can also choose ε2 ∈ (0, ρ− 2δ).
Since, by Lemma 4.4, lim sup

n→∞
‖xn‖ = lim sup

n→∞
|||xn||| < 1 + ε1, we can find x ∈ K

such that ‖x‖ < 1 + ε1. Also from Property 2 in the definition of the seminorms Rk,
there exists m ∈ N such that if k ≥ m

Rk(x) < ε2,

and since limk γk = 1,
1 + ε1

1 + δ
< γk.

We may take λ ∈ (0, 1) such that

λ <
ρ(1− γm)
γm(p− ρ)

.

Since
(2− λ)ρ + λ(ε2 + 2δ) = 2ρ− λ(ρ− (2δ + ε2)) < 2ρ

and

γm[(2− λ)ρ + λp] = 2γmρ + γmλ(p− ρ) < 2γmρ + ρ(1− γm) = ρ(1 + γm) < 2ρ,

we can find ε3 > 0 small enough such that

(2− λ)(ρ + ε3) + λ(ε2 + 2δ) < 2ρ

and
γm[(2− λ)(ρ + ε3) + λp] < 2ρ.

Take an a.f.p.s. (yn) in K such that yn
τ→ y and lim sup

n→∞
|||yn − y||| < ρ + ε3. From

Lemma 4.4
lim sup

n→∞
‖yn − y‖ = lim sup

n→∞
|||yn − y||| < ρ + ε3.

There exists s ∈ N such that ‖yN − y‖ < ρ + ε3 for all N ≥ s and define

z = (1− λ)ys + λx

which belongs to K because K is convex.
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Let us prove that lim sup
n→∞

|||yn − z||| < 2ρ. In order to do this, we will prove that

there exists M > 0 such that for all k and N ≥ s we have

γkRk(yN − z) < M < 2ρ.

We split the proof into two cases:
Case 1: k ≥ m

γkRk(yN − z) = γkRk(yN − (1− λ)ys − λx)
≤ Rk(yN − y − (1− λ)(ys − y)− λ(x− y))
≤ Rk(yN − y) + (1− λ)Rk(ys − y) + λRk(x− y)
≤ ‖yN − y‖+ (1− λ)‖ys − y‖+ λRk(x− y)
≤ (ρ + ε3) + (1− λ)(ρ + ε3) + λ(Rk(x) + Rk(y))
≤ (2− λ)(ρ + ε3) + λ(ε2 + Rk(y))
≤ (2− λ)(ρ + ε3) + λ

(
ε2 + 2

(
1+ε1
γk

− 1
))

< (2− λ)(ρ + ε3) + λ(ε2 + 2δ) < 2ρ.

Case 2: k < m

γkRk(yN − z) ≤ γmRk(yN − (1− λ)ys − λx)
= γm [Rk(yN − y − (1− λ)(ys − y)− λ(x− y))]
≤ γm [Rk(yN − y) + (1− λ)Rk(ys − y) + λRk(x− y)]
≤ γm [(ρ + ε3) + (1− λ)(ρ + ε3) + λ(Rk(x) + Rk(y))]
≤ γm [(2− λ)(ρ + ε3) + λ(1 + ε1 + Rk(y))]
≤ γm

[
(2− λ)(ρ + ε3) + λ

(
1 + ε1 + 2

(
1+ε1

γ1
− 1

))]
= γm [(2− λ)(ρ + ε3) + λp] < 2ρ.

Take

M = max{(2− λ)(ρ + ε3) + λ(ε2 + 2δ), γm [(2− λ)(ρ + ε3) + λp]}.

Then, for all N ≥ s, |||yN − z||| < M < 2ρ. Hence lim sup
n→∞

|||yn − z||| < 2ρ and this

contradiction finishes the proof. �

Remark 4.8. From the inclusions of classes of mappings discussed in the preliminar-
ies and Theorem 4.4. of [7], which states that continuous mappings with condition
(Cλ) either satisfy condition (L) or have a fixed point, we can conclude from the
above theorem that Banach spaces endowed with an HJ-norm (X, |||·|||) have the FPP
for mappings belonging to anyone of the following classes.

(1) Nonexpansive mappings.
(2) Generalized nonexpansive mappings (with b 6= 1

2 )
(3) Mappings which satisfy condition (C).
(4) Continuous mappings satisfying condition (Cλ) (for some λ ∈ (0, 1)).

On the other hand, since condition (L) depends on the norm, it can be found map-
pings which fail to satisfy condition (L) in some Banach space (X, ‖.‖) but satisfying
such condition with respect to the corresponding HJ-norm.
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Example 4.9. Consider the Banach space (`1, ‖·‖1) and the equivalent HJ-norm |||·|||.
Put b = γ−1

1 . Let K := {x ∈ `1 : |||x||| ≤ 1/b}. It is clear that for every x ∈ `1,
|||x||| ≤ ‖x‖1 ≤ γ−1

1 |||x||| = b |||x|||.
We define U : K → K by

U(x) :=
‖x‖1 + b |||x|||

2
e1

For x ∈ K,

b |||Ux||| = b
1
2
(‖x‖1 + b |||x|||)1

b
≤ b |||x||| ≤ 1,

then, indeed Ux ∈ K.
It is clear that the mapping U is |||·|||-nonexpansive, since for x, y ∈ K,

|||Ux− Uy||| =
∣∣∣‖x‖1−‖y‖12 + b(|||x|||−|||y|||)

2

∣∣∣ |||e1|||
≤ 1

2 [‖x− y‖1 + b |||x− y|||] |||e1|||
≤ b |||x− y||| |||e1|||
= |||x− y||| .

Thus, the mapping U satisfies condition (L) on K w.r.t. the norm |||·|||. We will see
that the mapping U fails to satisfy condition (L) on K w.r.t. the standard norm ‖·‖1.
To see this, take x = γ1γ

−1
2 e2, and (xn) ≡ (0`1). Of course (xn) is an a.f.p.s. for U

because 0`1 is a fixed point of U . Since |||e2||| = max{γ1, γ2} = γ2 and |||x||| = γ1 = 1/b,
one has that

lim sup
n→∞

‖xn − Ux‖1 =
‖x‖1 + b |||x|||

2
‖e1‖1 =

γ1γ
−1
2 + 1
2

> ‖x‖1 = lim sup
n→∞

‖xn − x‖1.
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