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Abstract. Brouwer’s fixed point theorem states that a continuous mapping of a closed, bounded,

convex, nonempty set M ⊂ Rn into itself has a fixed point. Schauder’s theorem states that a

continuous mapping of a closed, convex, nonempty set M in a Banach space has a fixed point,
provided that M is mapped into a compact subset of itself. In this brief note we point out that

for a large class of differential equations which are transformed into integral equations defining the

mapping, then that last compactness condition can be dropped, provided that M is bounded in the
supremum norm. The set M is usually composed of continuous functions φ : [0,∞)→ < and it can

be a substantial task to prove compactness, sometimes requiring draconian conditions such as all the
functions in M having the same limit at ∞. In effect, then, we reduce the conditions of Schauder’s

theorm (in function spaces with domains on an infinite interval) to the conditions of the far simpler

Brouwer’s theorem in Rn for this class of problems.
Key Words and Phrases: Fixed points, fractional differential equations, Schauder’s theorem,

Brouwer’s theorem.
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1. Introduction: Automatic compactness

Fixed point theory is now one of the major tools of the applied mathematician and
this paper offers a significant simplification for a large class of problems of current
interest. Investigators commonly study integral equations by means of Schauder’s
and, more generally, Krasnoselskii’s fixed point theorem which contains Schauder’s
theorem. In these results one often sees an integral of the form∫ t

0

R(t− s)u(s, x(s))ds

which is to be compact on certain closed, bounded, convex, and nonempty sets, say
M , of functions φ : [0, T ] → < where T can be finite or, more often, T = ∞ and
we then more properly write φ : [0,∞) → <. Fulfilling that condition has offered a
significant challenge.

This note is motivated by the fact that these applications may be far simpler
than they appear. In some of the most general and important cases the compactness
is automatic. In fact, the conditions of Schauder’s theorem coincide with those of
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Brouwer’s fixed point theorem for Rn: If P : M →M is continuous, while u(t, φ(t)) is
bounded for φ in M , then P has a fixed point in M . The point is that in the proper
space P is trivially compact on M even when M consists of functions on [0,∞)
and it need not even be mentioned. The investigator working in applications still
has the (nontrivial) task of locating M and proving continuity of the map, exactly
as must be done for Brouwer’s theorem. To the point of continuity, Barosso [1]
and Garcia-Falset and Latrach [8], together with several colleagues, have attacked
the problem from a different direction by weakening the continuity assumption in
Schauder’s part of Krasnoselskii’s theorem. Their focus is continuity, while ours is
compactness. Statements of all of these fixed point theorems are found in Smart [13].

2. The motivating problem

A vast collection of real-world problems is drawn from fractional differential equa-
tions of Caputo type

cDqx(t) = u(t, x(t)), 0 < q < 1, x(0) ∈ < (2.1)

where u is continuous on [0, T ]×< and T ≤ ∞. The Caputo fractional derivative of
order q of a function x is defined to be [10, p. 12]

cDqx(t) =
1

Γ(1− q)

∫ t

t0

(t− s)−qx′(s)ds. (2.2)

When u(t, x) is continuous then (2.1) is immediately inverted as the very familiar
integral equation ([10, p. 54], [9, pp. 78, 86, 103])

x(t) = x(0) +
1

Γ(q)

∫ t

0

(t− s)q−1u(s, x(s))ds (2.3)

where Γ is the gamma function. It is natural to use (2.3) to define a fixed point
mapping, but the singular kernel

tq−1

Γ(q)
has an infinite integral which prevents us from getting a compact map of the type we
would like. However, that kernel is completely monotone and by using two elementary
devices we can get exactly what we want. The process was introduced in [3] and is
repeated here for ready reference and for a later generalization.

Divide and multiply by J > 0. Then, subtract and add x(s) so that we can write
(2.3) as

x(t) = x(0) +
J

Γ(q)

∫ t

0

(t− s)q−1

[
− x(s) + x(s) +

u(s, x(s))
J

]
ds

= x(0)− J

Γ(q)

∫ t

0

(t− s)q−1x(s)ds+
J

Γ(q)

∫ t

0

(t− s)q−1

[
x(s) +

u(s, x(s))
J

]
ds. (2.4)

Write the linear part as

z(t) = x(0)−
∫ t

0

J

Γ(q)
(t− s)q−1z(s)ds
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and define the kernel as

C(t) =
Jtq−1

Γ(q)
(2.5)

with resolvent equation

R(t) = C(t)−
∫ t

0

C(t− s)R(s)ds

so that by a variation of parameters formula

z(t) = x(0)
[
1−

∫ t

0

R(s)ds
]
. (2.6)

These equations are discussed in detail in [3], taking the main properties from [12,
pp. 193-222], where it is shown that R satisfies

0 < R(t) ≤ J tq−1

Γ(q)
,

∫ ∞

0

R(s)ds = 1 (2.7)

so that (2.4) can be written as

x(t) = z(t) +
∫ t

0

R(t− s)
[
x(s) +

u(s, x(s))
J

]
ds (2.8)

where z(t) → 0 as t→∞.
Next, we define a Banach space of bounded continuous functions φ : [0, T ] → <

with the supremum norm, all denoted by (BC, ‖ · ‖). Then select a closed, bounded,
convex, nonempty set M in BC so that when P is defined by φ ∈M implies

(Pφ)(t) = z(t) +
∫ t

0

R(t− s)
[
φ(s) +

u(s, φ(s))
J

]
ds (2.9)

then P maps M into M . We then apply Schauder’s fixed point theorem and obtain
a fixed point which is a solution of (2.8) and it is a bounded and continuous function
on [0, T ]. Our main interest, of course, is the case where T = ∞.

We could continue and define a great many other kinds of mappings in the same way
and obtain solutions with pre-specified limits at ∞, asymptotically periodic solutions,
and solutions in Lp[0,∞), as may be seen in [4], [5], and [6], for example.

Equation (2.8) is the prototype and the reader is reminded that it covers a vast
array of real-world problems, including many partial differential equations. But the
set of problems covered by our work here goes far beyond (2.8) and we will briefly
describe them. Explicitly, we show that the steps from (2.3) to (2.8) can also be ap-
plied to equations with an ordinary derivative and we can treat functional differential
equations as the same kind of fixed point problems with the added property that R
is a simple known exponential function so that the mapping of M into M is much
easier to define.
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3. The working theorem

In this section we will display a theorem which we propose as the working model
that an investigator would use in studying qualitative properties of solutions of frac-
tional and other types of differential equations. It is completely parallel to Brouwer’s
fixed point theorem requiring a closed, convex, bounded, nonempty set M and a
continuous mapping patterened after (2.9) of M into M .

Our work will cover all scalar fractional differential equations of Caputo type when
u(t, φ(t)) is continuous and is bounded when φ ∈ M , but it will also cover many
equations not of this type. Thus, in this section we will deal with the Banach space
(BC, ‖ · ‖) of bounded continuous functions φ : I → < with the supremum norm in
which we have found a closed, convex, bounded, nonempty set M so that for φ ∈M
we have

(Qφ)(t) = F (t) +
∫ t

0

L(t− s)v(s, φ(s))ds (3.1)

with L completely monotone,
∫∞
0
L(s)ds = 1, F uniformly continuous, and v(t, x)

bounded and continuous on [0, T ]×M . Here, I = [0, T ] with T finite or +∞.
Theorem 3.1. Let M , BC, v, F , and Q be defined in the sentence with (3.1). If
there is a K > 0 such that |v(t, φ(t))| ≤ K for t ∈ I and φ ∈ M , if Q is continuous
on M , and if Q : M →M then Q has a fixed point in M .

This theorem is a consequence of a result in the next section. It is isolated here so
that its relation to (2.9) is clear and its simplicity is apparent. Display (2.7) is the
critical property and we now give a quick and simple example illustrating its role in
continuity and boundedness.
Example 3.2. Let v(t, x) = V (x) and suppose that there is a K > 0 so that V is
continuous for |x| ≤ K. Moreover, suppose that M is contained in the the closed
K−ball of BC and Q : M → BC. We will show that Q is continuous. As V is
continuous on −K ≤ x ≤ K, it is uniformly continuous. For each ε > 0 there is a
δ > 0 so that x, y ∈ [−K,K] and |x− y| < δ implies that |V (x)− V (y)| < ε. Thus, if
φ, ψ ∈M and ‖ψ − φ‖ < δ we have |V (φ(t))− V (ψ(t))| < ε for t ≥ 0. Hence,

|(Qφ)(t)− (Qψ)(t)| ≤
∫ t

0

R(t− s)|V (φ(s))− V (ψ(s))|ds ≤ ε

∫ t

0

R(t− s)ds < ε

so ‖Qφ−Qψ‖ < ε.

4. The detailed theorem

This theorem refers to the notation of the last section. When I = [0,∞) we will
also need a Banach space with a weighted norm which we define as follows. Let
g : [0,∞) → <, g(0) = 1, g ∈↑ +∞ as t→∞, and let (W, | · |g) be the Banach space
of continuous functions φ : [0,∞) → < for which

|φ|g := sup
0≤t<∞

|φ(t)|
g(t)

exists.

We note that the result here is not particularly unusual in the case T <∞. Indeed,
something like this is used in the most standard existence theorems for ordinary
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differential equations, although T is usually very small. But the case of T = ∞ is
most unusual.
Theorem 4.1. Let the conditions with (3.1) hold and let (BC, ‖ · ‖) be the Banach
space of all continuous functions φ : I → < for which the supremum norm exists.

(i) Let I = [0, T ] with T <∞, let M ⊂ BC be bounded and let v(t, φ(t)) be bounded
for φ ∈M . Then QM is contained in a compact subset of (BC, ‖ · ‖). If, in addition,
Q is continuous on M with M closed, convex, and nonempty, then Q has a fixed point
in M .

(ii) If I = [0,∞), if M ⊂ BC is bounded, and if |v(t, φ(t))| is bounded for φ ∈M ,
then QM is equicontinuous.

(iii) Let (ii) hold with M closed, bounded in the supremum norm, convex, and
nonempty with Q : M →M . Then QM is contained in a compact subset of (W, | · |g).
If, in addition, Q is continuous on M in the supremum norm, then Q has a fixed
point in M .
Proof. We begin with (ii) and point out that it was shown in [4] that under these
conditions QM is an equicontinuous set when T = ∞. The same is certainly true for
I = [0, T ] for T <∞; moreover, by Ascoli’s theorem, QM resides in a compact set.

Moving back to (i) we then see that Q is a continuous map of M into a compact
subset of M and so it has a fixed point by Schauder’s theorem.

For (iii), it is shown in detail in [5] that QM resides in a compact subset of (W, |·|g);
a parallel proof can be found in [2, p. 169]. The set M is also closed in the weighted
norm. It is shown in [5] that Q continuous on M in the supremum norm implies that
Q is continuous on M in the weighted norm. Applying Schauder’s theorem in the
weighted space completes the proof. The boundedness of M in the supremum norm
is crucial and makes everything work.

5. Ignore initial conditions

Some simple observations can greatly ease the work of showing that P : M →M .
In so many problems [4], [5], and [6] we contrive a set M with |φ(t)+[u(t, φ(t))/J ]| ≤ 1
for φ ∈M . In this case we would like to take M = {φ|‖φ‖ ≤ 1}. Our mapping is

(Pφ)(t) = x(0)[1−
∫ t

0

R(s)ds] +
∫ t

0

R(t− s)[φ(s) +
u(s, φ(s))

J
]ds.

It really seems that the initial condition will ruin the mapping. This is safe for
|x(0)| ≤ 1 because we then have φ ∈M implies that

|(Pφ)(t)| ≤ [1−
∫ t

0

R(s)ds] +
∫ t

0

R(t− s)ds = 1;

it is true that P : M →M .

6. Extend the set of problems

Suppose we have a scalar functional differential equation (ordinary derivative)

x′(t) = F (t, x(t), x(t− h)),
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and a given continuous initial function ψ : [−h, 0] → < with x(t) = ψ(t) for −h ≤ t ≤
0. See [2] for theory of such equations. Integrate the equation and obtain

x(t) = ψ(0) +
∫ t

0

F (s, x(s), x(s− h))ds.

This is the standard step in existence theory but the integral would grow in such
an uncontrolled way that fixed point theory would be restricted to a short interval [2,
p. 183]. Exactly as in (2.4), multiply and divide by J > 0, subtract and add x(s) to
obtain

x(t) = ψ(0) +
∫ t

0

J

[
− x(s) + x(s) +

F (s, x(s), x(s− h))
J

]
ds.

The kernel is J and we separate out the linear part, form the resolvent, find R(t) =

Je−Jt with the property that
∫ t

0

Je−Jsds = 1− e−Jt → 1 as t→∞. Then

x(t) = ψ(0)[1−
∫ t

0

R(s)ds] +
∫ t

0

R(t− s)
[
x(s) +

F (s, x(s), x(s− h))
J

]
ds,

where x(t) = ψ(t) for −h ≤ t ≤ 0. Now R will control the growth at the “expense”
of the added x(s) in the integrand. That “expense” turns out to be an asset, as seen
throughout [4], [5], and [6]. It is all set up for our fixed point theory exactly as (2.8).
Each problem draws us to a form of (2.8) which is especially fixed point friendly.
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