Fixed Point Theory, 14(2013), No. 1, 59-66 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

SOME RENORMINGS WITH THE STABLE FIXED POINT PROPERTY

T. DOMÍNGUEZ BENAVIDES* AND S. PHOTHI**

Dedicated to K. Goebel, on the occasion of his retirement, and to L. Ciric, W.A. Kirk and I.A. Rus on the occasion of their 75th birthday.

> *Facultad de Matemáticas, Universidad de Sevilla P.O. Box 1160, 41080-Sevilla, Spain E-mail: tomasd@us.es

**Department of Mathematics, Faculty of Science University of Chiang Mai, 50200 - Chiang Mai, Thailand E-mail: supaluk.p@cmu.ac.th, sphothi@gmail.com

Abstract. In this paper, we prove that for any number $\lambda < (\sqrt{33}-3)/2$, any separable space X can be renormed in such a way that X satisfies the weak fixed point property for non-expansive mappings and this property is inherited for any other isomorphic space Y such that the Banach-Mazur distance between X and Y is less than λ . We also prove that any, in general nonseparable, Banach space with an extended unconditional basis can be renormed to satisfy the w-FPP with the same stability constant.

Key Words and Phrases: fixed point, non-expansive mapping, Banach-Mazur distance, fixed point property.

2010 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

A Banach space X is said to satisfy the fixed point property for non-expansive mappings (FPP) (respectively the weak-fixed point property for non-expansive mappings (w-FPP)) if every non-expansive mapping defined from a convex closed bounded (resp.: convex weakly compact) subset C of X into C has a fixed point. Many geometrical properties of X (uniform convexity, uniform smoothness, uniform convexity in every direction, uniform non-squareness, normal structure, etc) are known to imply either the FPP or the w-FPP for Banach spaces. Furthermore, some of these properties imply a certain stability of the FPP (w-FPP) in the sense that if X satisfies such a property and Y is another Banach space which is isomorphic to X and the Banach-Mazur distance between them is small enough, then Y also satisfies the FPP

The first author is partially supported by MCIN, Grant MTM 2009-10696-C02-01 and Andalusian Regional Government Grant FQM-127 and P08-FQM-03543. The second author is partially supported by Faculty of Science, Chiangmai University.

⁵⁹

(w-FPP). In this case we say that X satisfies the stable FPP (stable w-FPP). (The monographs [1], [7] and [10] provide detailed information on this subject).

A relevant topic in the last years (see[5], [8],[9],[11] [12]) has been to determine whether a Banach space can be renormed to satisfy either the w-FPP or the FPP. More recently [6], the problem of existence of a renorming satisfying the stable FPP (stable w-FPP) is considered. In this paper we continue the study of this problem, proving that for any number $\lambda < (\sqrt{33} - 3)/2$ any separable space X can be renormed in such a way that X satisfies the w-FPP and this property is inherited for any other isomorphic space Y such that the Banach-Mazur distance between X and Yis less than λ . The value $\lambda < (\sqrt{33} - 2)/2$ first appeared in Metric Fixed Point Theory in a paper by P.K. Lin [13], where it is proved that any Banach space with unconditional basis satisfies the w-FPP when the unconditional basic constant is less than $(\sqrt{33}-3)/2$. As we will see in the next section, an easy consequence of this result is the following: every Banach space with unconditional basis X can be renormed to satisfy the w-FPP with stability constant $(\sqrt{33}-2)/2$. However, there are separable Banach spaces without any unconditional basis. In spite of this fact, we shall prove that the above stability property for a renorming still holds for every separable Banach space.

In the case of nonseparable Banach spaces, we can use the technique in [13] to prove that any Banach space with an extended unconditional basis can be renormed to satisfy the w-FPP with the same stability constant.

2. Stable renormings for separable spaces

We start proving the stability version of the Lin's result [13]. Recall that a Schauder basis $\{x_n\}$ of a Banach space X is said to be unconditional (see, for instance [2]) if every convergent series of the form $\sum_{n=1}^{\infty} t_n x_n$ is unconditionally convergent or, equivalently, for every convergent series $\sum_{n=1}^{\infty} t_n x_n$, and every sequence $\{\epsilon_n\}$ with $\epsilon_n = \pm 1$, the series $\sum_{n=1}^{\infty} \epsilon_n t_n x_n$ converges, or equivalently there exists a constant K > 1 such that if A and B are finite subsets of N with $A \subset B$, then for any sequence $\{t_n\}$ of scalars we have $\|\sum_{n \in A} t_n x_n\| \le K \|\sum_{n \in B} t_n x_n\|$. The smallest K satisfying this inequality is called the unconditional constant of $\{x_n\}$. The basis is called unconditionally monotone, if K = 1.

Theorem 2.1. Let X be a Banach space which can be isomorphically embedded in a Banach space Z with an unconditional basis and $\lambda < (\sqrt{33} - 2)/2$. Then, there exists an equivalent norm $|\cdot|$ on X such that if Y is an isomorphic Banach space and the the Banach-Mazur distance between $(X, |\cdot|)$ and Y is less than λ , then Y satisfies the w-FPP.

Proof. Let $\{x_n\}$ be an unconditional basis of Z. For every $x = \sum t_n x_n \in Z$, define the equivalent norm

$$|x| = \sup\{\|\epsilon_n t_n x_n\| : \epsilon_n = \pm 1\}.$$

It is known [2] that $|\cdot|$ is equivalent to the original norm of Z and $\{x_n\}$ is unconditionally monotone for this new norm. Furthermore, if Y is isomorphic to $(X, |\cdot|)$ and the Banach-Mazur distance between Y and $(X, |\cdot|)$ is not greater than λ , we can assume that Y is the space X with a norm p which satisfies

$$(1/\lambda)|x| \le p(x) \le |x|$$

for every $x \in X$. By lemma 2.2 in [6] this norm can be extended to a norm on Z satisfying the same inequalities. Thus, $\{x_n\}$ is an unconditional basis for (X, p) with unconditional constant less than λ . Hence, (Z, p) satisfies the w-FPP and so does Y.

However, there are separable Banach spaces which cannot embedded in Banach spaces with unconditional basis. Indeed, from Theorems 15.1, 15,2 15.4 in [16] (see also Proposition 4.1 in [14]) we can deduce the following:

Theorem 2.2. The spaces $C([0,1]), L_1([0,1])$ and the James space J cannot be isomorphically embedded in a Banach space with unconditional basis.

In spite of this fact, we shall prove that 2.1 still holds for every separable Banach space.

In the following, we will denote by $\ell_{\infty}(X)$ (respectively $c_0(X)$) the linear space of all bounded sequences (respectively all sequences convergent to zero) in the Banach space X. By [X] we denote the quotient space $\ell_{\infty}(X)/c_0(X)$ endowed with the quotient norm $||[z_n]|| = \limsup_n ||z_n||$ where $[z_n]$ is the equivalent class of $(z_n) \in \ell_{\infty}(X)$. By identifying $x \in X$ with the class [(x, x, ...)] we can consider X as a subset of [X]. If C is a subset of X we can define the set $[C] = \{[z_n] \in [X] : z_n \in C \text{ for every } n \in N\}$. If T is a mapping from C into C, then $[T] : [C] \to [C]$ given by $[T]([x_n]) = [Tx_n]$ is a well defined mapping. If $\{S_n\}$ is a sequence of mappings from X into X, we will denote by [S] the mapping from [X] into [X] defined by $[S][x_n] = [S_n(x_n)]$.

For two subsets A and B of \mathbb{N} we write $A \ll B$ if $\max A \ll \min B$. As in [14], let X be a Banach space with a monotonous Schauder basis and \mathcal{G} the set of all nondecreasing bounded sequences of nonnegative integers $g = \{p(n)\}$. For any $a \in (-1,0)$, consider an equivalent norm on X defined by $||x||_a = \sup\{||g(x)|| : g \in \mathcal{G}\}$ where $g(x) := \sum_{n=1}^{\infty} a^{p(n)} t_n e_n$ for $g = \{p(n)\}$ and $x = \sum_{n=1}^{\infty} t_n e_n$. We will use the following lemma which is a particular case of Lemma 3.1 in [6].

Lemma 2.3. Let X be a Banach space with a monotonous Schauder basis $\{x_n\}$ and $A_1 \ll A_2$ two finite intervals in \mathbb{N} . Denote by P_{A_i} the natural projections onto $\{x_n : n \in A_i\}$. Then, for m = 1, 2 we have

$$||I - 2\sum_{i=1}^{m} P_{A_i}||_a \le 1 + 2m(1 - a^{2m}).$$

Theorem 2.4. Let X be a separable Banach space and $\lambda < (\sqrt{33} - 3)/2$. Then, X can be equivalently renormed in such a way that if $|\cdot|$ is the new norm and Y is an isomorphic Banach space such that the Banach-Mazur distance between $(X, |\cdot|)$ and Y is less than λ , then Y satisfies the w-FPP

Proof. We know that X can be isometrically embedded in a Banach space with a monotonous Schauder basis. Since the w-FPP is inherited by closed subspaces, we

assume that X has a monotonous Schauder basis $\{e_n\}$. For any $a \in (-1,0)$, define $||x||_a$ as above. Assume that $\lambda < (\sqrt{33} - 2)/2$ and choose $a \in (-1,0)$ such that

$$a^4 > 1 - \frac{1}{8} \left(\frac{\sqrt{33} - 3}{2\lambda} - 1 \right).$$

It is easy to check that the above inequality implies $\lambda < \frac{\sqrt{33}-3}{2\left(1+8(1-a^4)\right)}$.

Assume that Y is X with a norm $|\cdot|$ which satisfies $||x||_a \leq |x| \leq \lambda ||x||_a$ for every $x \in X$ and that $(X, |\cdot|)$ fails the w-FPP. Hence, there exists a weakly compact convex subset K of X which is not a singleton and it is minimal invariant for a $|\cdot|$ -non-expansive mapping T. By multiplication, we can assume that diam(K) = 1. Let $\{x_n\}$ be an approximate fixed point sequence for T in K. By translation and passing to a subsequence, we can assume that $\{x_n\}$ is weakly null. Let $y_n = x_{2n}$ and $z_n = x_{2n+1}$. Then $\{y_n\}$ and $\{z_n\}$ are also approximate fixed point sequences for T. Passing to appropriated sequences and using the gliding hump method, we can find two sequences of finite intervals $\{I_n\}$ and $\{J_n\}$ in N satisfying $I_n \ll J_n \ll I_{n+1}$ and such that the natural projections P_n and Q_n onto I_n and J_n respectively satisfy $\lim_n P_n y_n = y_n, \lim_n Q_n z_n = z_n$, and $\lim_n P_n z_n = \lim_n Q_n y_n = 0$. We claim that

$$\limsup_{n} |y_n + z_n| \le \lambda (1 + 4(1 - a^2)).$$

Indeed, by lemma 2.3 we have

$$\limsup_{n} |y_n + z_n| = \limsup_{n} |y_n - z_n - 2Q_n(y_n - z_n)|$$

$$\leq \lambda \limsup_{n} ||(I - 2Q_n)(y_n - z_n)||_a$$

$$\leq \lambda(1 + 4(1 - a^2)) \limsup_{n} |y_n - z_n|$$

$$\leq \lambda(1 + 4(1 - a^2))$$

Let $[y] = [y_n]$, $[z] = [z_n]$ and the projections $[P] = [P_n]$ and $[Q] = [Q_n]$. Note that [P]x = [Q]x = [0] for every $x \in X$ and moreover, [P][y] = [y], [Q][z] = [z] and [P][z] = [Q][y] = [0]. Let

$$\begin{split} [W] &= \Big\{ [w] \in [K] : \text{ there exists } x \in K \text{ such that } \Big| [w] - [x] \Big| \leq \frac{\lambda}{2} (1 + 4(1 - a^2)), \\ \Big| [w] - [y] \Big| \leq \frac{1}{2} \text{ and } \Big| [w] - [z] \Big| \leq \frac{1}{2} \Big\}. \end{split}$$

We have that [W] is a nonempty bounded closed convex set because $\left[\frac{y+z}{2}\right] \in [W]$. Hence [W] contains an approximate fixed point sequence for [T]. Assume that there exists an element $[w] \in [W]$ such that |[w]| = 1. Let $x \in K$ such that $|[w]| - [x]| \leq |w|$
$$\begin{split} \frac{\lambda}{2}(1+4(1-a^2)) \text{ and let } [f] \in X^* \text{ with } [f]([w]) &= 1 = \left| [f] \right|. \text{ Then we have} \\ &1 - [f]([y]) = [f]([w] - [y]) \leq \left| [w] - [y] \right| \leq \frac{1}{2} \end{split}$$
so $[f]([y]) \geq \frac{1}{2}. \text{ Similarly, } [f]([z]) \geq \frac{1}{2}. \text{ Since} \\ &1 - [f]([x]) = [f]([w] - [x]) \leq \left| [w] - [x] \right| \leq \frac{\lambda}{2}(1+4(1-a^2)) \end{aligned}$ we have $[f]([x]) \geq 1 - \frac{\lambda}{2}(1+4(1-a^2)).$ Let $\alpha = [f](([I] - [P] - [Q])[w]).$ Then $1 - \alpha = [f](([w]) - [f](([I] - [P] - [Q])[w]) \\ &= [f](([P] + [Q])[w]) \\ &= [f](([P] + [Q])[w]) \end{split}$

so either $[f]([P][w]) \leq \frac{1-\alpha}{2}$ or $[f]([Q][w]) \leq \frac{1-\alpha}{2}$. Assume that $[f]([P][w]) \leq \frac{1-\alpha}{2}$. From lemma 2.3, we have

$$\begin{aligned} 2(1-\alpha) &- \frac{\lambda}{2} (1+8(1-a^4)) &\leq (2-2\alpha) - \frac{\lambda}{2} (1+4(1-a^2)) \\ &\leq 2[f] \Big(([P]+[Q])[w] \Big) - [f] \Big([w] - [x] \Big) \\ &= [f] \Big((2[P]+2[Q])[w] \Big) - [f] \Big([w] - [x] \Big) \\ &= [f] \Big((2[P]+2[Q])([w] - [x]) \Big) - [f] \Big([w] - [x] \Big) \\ &= [f] \Big((2[P]+2[Q] - [I])([w] - [x]) \Big) \\ &\leq |[f] \Big| \Big| (2[P]+2[Q] - [I])([w] - [x]) \Big| \\ &\leq \lambda \Big| [I] - 2[P] - 2[Q] \Big| \Big|_a \Big| [w] - [x] \Big| \\ &\leq \lambda \cdot (1+8(1-a^4)) \cdot \frac{\lambda}{2} (1+4(1-a^2)) \\ &\leq \frac{\lambda^2}{2} (1+8(1-a^4))^2 \end{aligned}$$

and

$$\begin{split} \alpha + \frac{1}{2} &= \frac{1}{2} + 1 - (1 - \alpha) \\ &\leq [f]([y]) + [f]([w]) - 2[f]([P][w]) \\ &= [f]([w] - [y]) + 2[f]([y]) - 2[f]([P][w]) \\ &= [f]([w] - [y]) + 2[f]([P][y]) - 2[f]([P][w]) \\ &= [f]([w] - [y]) + 2[f]([P]([y] - [w])) \\ &= [f](([I] - 2[P])([w] - [y])) \\ &\leq |[f]| \Big| ([I] - 2[P])([w] - [y]) \Big| \\ &\leq \lambda \cdot (1 + 4(1 - a^2)) \cdot \frac{1}{2} \\ &\leq \frac{\lambda}{2}(1 + 8(1 - a^4)). \end{split}$$

Thus, we obtain that $\lambda \geq \frac{\sqrt{33}-3}{2\left(1+8(1-a^4)\right)}$ which is a contradiction.

3. Unconditional uncountable basis

In the case of nonseparable spaces we can also obtain some renormings with the w-FPP by using extended basis. We recall [16] (Definition 17.5) that a family $\{x_i : i \in I\}$ of elements in a Banach space X is called an extended unconditional basis of X (or, an unconditional Enflo-Rosenthal set of X), if it is complete in X and if every countable subfamily of $\{x_i : i \in I\}$ is an unconditional basic sequence. This is equivalent ([16], Theorem 17.5) to say that for every $x \in X$ there exists a unique family of scalars $\{t_i : i \in I\}$ such that $\sum_{i \in I} t_i x_i = x$, i.e. for every $\epsilon > 0$ there exists a finite subset A of I such that for every finite subset B of I, $A \subset B$ we have $\|\sum_{i \in B} t_1 x_i - x\| < \epsilon$. We will denote $t_i = f_i(x)$, i.e. $\{f_i : i \in I\}$ are the functional coordinates for the basis. As in the separable case, it can be proved that there exists a constant M such that $\|\sum_{i \in A} t_i x_i\| \le M \|\sum_{i \in B} t_i x_i\|$ if A and B are finite subsets of I and $A \subset B$. The smallest K satisfying this inequality is called the unconditional constant of $\{x_i : i \in I\}$. If the inequality holds for M = 1 we say that $\{x_i : i \in I\}$ is an extended unconditional monotonous basis.

Theorem 3.1. Let X be a Banach space with an extended unconditional basis with constant $M < \frac{\sqrt{33}-2}{2}$. Then X enjoys the w-FPP.

Proof. Otherwise there exists a nonexpansive mapping T and a T-minimal invariant convex weakly compact subset K of X. It is known that K must be separable (see [7], page 36). Thus, the set $A = \{i \in I : f_i(x) \neq 0 \text{ for some } x \in K\}$ is countable and $\{x_i : i \in A\}$ is a (countable) unconditional basis for span $\{K\}$ with unconditional

constant M. From here, we can follow the same arguments as in [13] (Theorem 2) to prove the result.

Lemma 3.2. Assume that $\{x_i : i \in I\}$ is an extended unconditional basis in X. For every $x = \sum_{i \in I} t_i x_i$, the expression $|x| = \sup\{\|\sum_{i \in A} \epsilon_i t_i x_i\| : A \subset I \text{ finite}\}$ where $\varepsilon_i = \pm 1$ defines an equivalent norm on X such that $\{x_i : i \in I\}$ is an extended unconditional monotonous basis for this norm

Proof. Let A, B finite subsets of I with $A \subset B$. Denote $x = \sum_{i \in B} t_i x_i$, $u = \sum_{i \in A} \epsilon_i t_i x_i$ and $v = \sum_{i \in B \setminus A} \epsilon_i t_i x_i$. We have $|x| \ge ||u + v||$ and $|x| \ge ||u - v||$. Thus, $2||u|| \le ||u + v|| + ||u - v|| \le 2|x|$ which implies that $|\sum_{i \in A} t_i x_i| \le |\sum_{i \in B} t_i x_i|$. \Box

Theorem 3.3. Let X be a Banach space which can be isomorphically embedded in a Banach space Z with an extended unconditional basis and $\lambda < (\sqrt{33} - 2)/2$. Then, X has an equivalent norm $|\cdot|$ such that if Y is an isomorphic Banach space and the Banach-Mazur distance between $(X, |\cdot|)$ and Y is less than λ , then Y satisfies the w-fpp.

Proof. It easily follows the same arguments used in Theorem 2.1.

Remark. It is known [3] that ℓ_{∞} cannot be isomorphically embedded in a Banach space with an extended unconditional basis. This fact is also a consequence of the above theorem, because ℓ_{∞} fails the w-FPP and every renorming of ℓ_{∞} contains almost isometrically ℓ_{∞} [15].

References

- J.M. Ayerbe, T. Domínguez, G. López, Measures of Noncompactnees in Metric Fixed Point Theory, Birkhäuser, 1997.
- [2] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, Noth Holland, 1982.
- [3] C. Bessaga, A. Pełczyński, A generalization of results of R.C. James concerning absolute bases in Banach spaces, Studia Math., 17(1958), 165-174.
- [4] M.M. Day, R.C. James, S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math., 23(1971), no. 6, 1051-1059;
- [5] T. Domínguez Benavides, A renorming of some nonseparable Banach spaces with the fixed point property, J. Math. Anal. Appl., 350(2009), no. 2, 525-530.
- [6] T. Domínguez Benavides, Distortion and stability of the fixed point property for non-expansive mappings, Nonlinear Anal., 75(2012), 3229-3234.
- [7] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990, viii+244 pp.
- [8] C.A. Hernández, M.A. Japon, E. Llorens, On the structure of the set of equivalent norms in l₁ with the fixed point property, J. Math. Anal. Appl., 387(2012), 645-654.
- [9] C. Hernández-Linares, M.A. Japon, A renorming in some Banach spaces with applications to fixed point theory, J. Funct. Anal., 258(2010), 3452-3468.
- [10] W.A. Kirk, B. Sims (Eds.), Handbook of Metric Fixed Point Theory Kluwer Academic Publishers, Dordrecht, 2001. xiv+703 pp.
- [11] P.K. Lin, There is an equivalent norm on l_1 that has the fixed point property, Nonlinear Anal., **68**(2008), no. 8, 2303-2308.
- [12] P.K. Lin, Renorming of ℓ_1 and the fixed point property, J. Math. Anal. Appl., **362**(2010), 534-541.
- [13] P.K. Lin, Unconditional bases and fixed points of nonexpansive mappings, Pacific J. Math., 116(1)(1985), 69-76.

T. DOMÍNGUEZ BENAVIDES AND S. PHOTHI

- [14] J. Lindenstrauss, A. Pelczynski, Contributions to the theory of the classical Banach spaces, J. Functional Analysis, 8(1971), 225-249.
- [15] J.R. Partington, Subspaces of certain Banach sequence spaces, Bull. London Math. Soc., 13(1981), 163-166.
- [16] I. Singer, Bases in Banach Spaces I, Springer-Verlag, Berlin, Heidelberg, New York 1970.

Received: August 10, 2012; Accepted: October 31, 2012.

66