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Abstract. In this paper, we prove that for any number λ < (
√

33−3)/2, any separable space X can
be renormed in such a way that X satisfies the weak fixed point property for non-expansive mappings

and this property is inherited for any other isomorphic space Y such that the Banach-Mazur distance

between X and Y is less than λ. We also prove that any, in general nonseparable, Banach space
with an extended unconditional basis can be renormed to satisfy the w-FPP with the same stability

constant.
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1. Introduction

A Banach space X is said to satisfy the fixed point property for non-expansive
mappings (FPP) (respectively the weak-fixed point property for non-expansive map-
pings (w-FPP)) if every non-expansive mapping defined from a convex closed bounded
(resp.: convex weakly compact) subset C of X into C has a fixed point. Many geo-
metrical properties of X (uniform convexity, uniform smoothness, uniform convexity
in every direction, uniform non-squareness, normal structure, etc) are known to imply
either the FPP or the w-FPP for Banach spaces. Furthermore, some of these prop-
erties imply a certain stability of the FPP (w-FPP) in the sense that if X satisfies
such a property and Y is another Banach space which is isomorphic to X and the
Banach-Mazur distance between them is small enough, then Y also satisfies the FPP
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(w-FPP). In this case we say that X satisfies the stable FPP (stable w-FPP). (The
monographs[1], [7] and [10] provide detailed information on this subject).

A relevant topic in the last years (see[5], [8],[9],[11] [12]) has been to determine
whether a Banach space can be renormed to satisfy either the w-FPP or the FPP.
More recently [6], the problem of existence of a renorming satisfying the stable FPP
(stable w-FPP) is considered. In this paper we continue the study of this problem,
proving that for any number λ < (

√
33−3)/2 any separable space X can be renormed

in such a way that X satisfies the w-FPP and this property is inherited for any
other isomorphic space Y such that the Banach-Mazur distance between X and Y
is less than λ. The value λ < (

√
33 − 2)/2 first appeared in Metric Fixed Point

Theory in a paper by P.K. Lin [13], where it is proved that any Banach space with
unconditional basis satisfies the w-FPP when the unconditional basic constant is less
than (

√
33−3)/2. As we will see in the next section, an easy consequence of this result

is the following: every Banach space with unconditional basis X can be renormed to
satisfy the w-FPP with stability constant (

√
33− 2)/2. However, there are separable

Banach spaces without any unconditional basis. In spite of this fact, we shall prove
that the above stability property for a renorming still holds for every separable Banach
space.

In the case of nonseparable Banach spaces, we can use the technique in [13] to
prove that any Banach space with an extended unconditional basis can be renormed
to satisfy the w-FPP with the same stability constant.

2. Stable renormings for separable spaces

We start proving the stability version of the Lin’s result [13]. Recall that a Schauder
basis {xn} of a Banach space X is said to be unconditional (see, for instance [2])
if every convergent series of the form

∑∞
n=1 tnxn is unconditionally convergent or,

equivalently, for every convergent series
∑∞

n=1 tnxn , and every sequence {εn} with
εn = ±1, the series

∑∞
n=1 εntnxn converges, or equivalently there exists a constant

K > 1 such that if A and B are finite subsets of N with A ⊂ B, then for any
sequence {tn} of scalars we have ‖

∑
n∈A tnxn‖ ≤ K‖

∑
n∈B tnxn‖. The smallest K

satisfying this inequality is called the unconditional constant of {xn}. The basis is
called unconditionally monotone, if K = 1.

Theorem 2.1. Let X be a Banach space which can be isomorphically embedded in a
Banach space Z with an unconditional basis and λ < (

√
33− 2)/2. Then, there exists

an equivalent norm | · | on X such that if Y is an isomorphic Banach space and the
the Banach-Mazur distance between (X, | · |) and Y is less than λ, then Y satisfies the
w-FPP.

Proof. Let {xn} be an unconditional basis of Z. For every x =
∑

tnxn ∈ Z, define
the equivalent norm

|x| = sup{‖εntnxn‖ : εn = ±1}.
It is known [2] that | · | is equivalent to the original norm of Z and {xn} is uncon-
ditionally monotone for this new norm. Furthermore, if Y is isomorphic to (X, | · |)
and the Banach-Mazur distance between Y and (X, | · |) is not greater than λ, we can
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assume that Y is the space X with a norm p which satisfies

(1/λ)|x| ≤ p(x) ≤ |x|
for every x ∈ X. By lemma 2.2 in [6] this norm can be extended to a norm on Z
satisfying the same inequalities. Thus, {xn} is an unconditional basis for (X, p) with
unconditional constant less than λ. Hence, (Z, p) satisfies the w-FPP and so does
Y . �

However, there are separable Banach spaces which cannot embedded in Banach
spaces with unconditional basis. Indeed, from Theorems 15.1, 15,2 15.4 in [16] (see
also Proposition 4.1 in [14]) we can deduce the following:

Theorem 2.2. The spaces C([0, 1]), L1([0, 1]) and the James space J cannot be iso-
morphically embedded in a Banach space with unconditional basis.

In spite of this fact, we shall prove that 2.1 still holds for every separable Banach
space.

In the following, we will denote by `∞(X) (respectively c0(X)) the linear space of all
bounded sequences (respectively all sequences convergent to zero) in the Banach space
X. By [X] we denote the quotient space `∞(X)/c0(X) endowed with the quotient
norm ‖[zn]‖ = lim supn ‖zn‖ where [zn] is the equivalent class of (zn) ∈ `∞(X). By
identifying x ∈ X with the class [(x, x, ...)] we can consider X as a subset of [X]. If
C is a subset of X we can define the set [C] = {[zn] ∈ [X] : zn ∈ C for every n ∈ N}.
If T is a mapping from C into C, then [T ] : [C] → [C] given by [T ]([xn]) = [Txn] is
a well defined mapping. If {Sn} is a sequence of mappings from X into X, we will
denote by [S] the mapping from [X] into [X] defined by [S][xn] = [Sn(xn)].

For two subsets A and B of N we writeA << B if max A < minB. As in [14],
let X be a Banach space with a monotonous Schauder basis and G the set of all
nondecreasing bounded sequences of nonnegative integers g = {p(n)}. For any a ∈
(−1, 0), consider an equivalent norm on X defined by ‖x‖a = sup{‖g(x)‖ : g ∈ G}

where g(x) :=
∞∑

n=1

ap(n)tnen for g = {p(n)} and x =
∞∑

n=1

tnen. We will use the

following lemma which is a particular case of Lemma 3.1 in [6].

Lemma 2.3. Let X be a Banach space with a monotonous Schauder basis {xn} and
A1 << A2 two finite intervals in N. Denote by PAi the natural projections onto
{xn : n ∈ Ai}. Then, for m = 1, 2 we have

‖I − 2
m∑

i=1

PAi‖a ≤ 1 + 2m(1− a2m).

Theorem 2.4. Let X be a separable Banach space and λ < (
√

33 − 3)/2. Then, X
can be equivalently renormed in such a way that if | · | is the new norm and Y is an
isomorphic Banach space such that the Banach-Mazur distance between (X, | · |) and
Y is less than λ, then Y satisfies the w-FPP

Proof. We know that X can be isometrically embedded in a Banach space with a
monotonous Schauder basis. Since the w-FPP is inherited by closed subspaces, we
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assume that X has a monotonous Schauder basis {en}. For any a ∈ (−1, 0), define
‖x‖a as above. Assume that λ < (

√
33− 2)/2 and choose a ∈ (−1, 0) such that

a4 > 1− 1
8

(√
33− 3
2λ

− 1

)
.

It is easy to check that the above inequality implies λ <

√
33− 3

2 (1 + 8(1− a4))
.

Assume that Y is X with a norm | · | which satisfies ‖x‖a ≤ |x| ≤ λ‖x‖a for
every x ∈ X and that (X, | · |) fails the w-FPP. Hence, there exists a weakly compact
convex subset K of X which is not a singleton and it is minimal invariant for a
| · |-non-expansive mapping T . By multiplication, we can assume that diam(K) = 1.
Let {xn} be an approximate fixed point sequence for T in K. By translation and
passing to a subsequence, we can assume that {xn} is weakly null. Let yn = x2n

and zn = x2n+1. Then {yn} and {zn} are also approximate fixed point sequences for
T . Passing to appropriated sequences and using the gliding hump method, we can
find two sequences of finite intervals {In} and {Jn} in N satisfying In � Jn � In+1

and such that the natural projections Pn and Qn onto In and Jn respectively satisfy
lim
n

Pnyn = yn, lim
n

Qnzn = zn, and lim
n

Pnzn = lim
n

Qnyn = 0. We claim that

lim sup
n

|yn + zn| ≤ λ(1 + 4(1− a2)).

Indeed, by lemma 2.3 we have

lim sup
n

|yn + zn| = lim sup
n

|yn − zn − 2Qn(yn − zn)|

≤ λ lim sup
n

‖(I − 2Qn)(yn − zn)‖a

≤ λ(1 + 4(1− a2)) lim sup
n

|yn − zn|

≤ λ(1 + 4(1− a2))

Let [y] = [yn], [z] = [zn] and the projections [P ] = [Pn] and [Q] = [Qn]. Note
that [P ]x = [Q]x = [0] for every x ∈ X and moreover, [P ][y] = [y], [Q][z] = [z] and
[P ][z] = [Q][y] = [0]. Let

[W ] =
{

[w] ∈ [K] : there exists x ∈ K such that
∣∣∣[w]− [x]

∣∣∣ ≤ λ

2
(1 + 4(1− a2)),∣∣∣[w]− [y]

∣∣∣ ≤ 1
2

and
∣∣∣[w]− [z]

∣∣∣ ≤ 1
2

}
.

We have that [W ] is a nonempty bounded closed convex set because
[
y + z

2

]
∈ [W ].

Hence [W ] contains an approximate fixed point sequence for [T ]. Assume that there
exists an element [w] ∈ [W ] such that |[w]| = 1. Let x ∈ K such that

∣∣∣[w] − [x]
∣∣∣ ≤
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λ

2
(1 + 4(1− a2)) and let [f ] ∈ X∗ with [f ]([w]) = 1 =

∣∣∣[f ]
∣∣∣. Then we have

1− [f ]([y]) = [f ]([w]− [y]) ≤
∣∣∣[w]− [y]

∣∣∣ ≤ 1
2

so [f ]([y]) ≥ 1
2
. Similarly, [f ]([z]) ≥ 1

2
. Since

1− [f ]([x]) = [f ]([w]− [x]) ≤
∣∣∣[w]− [x]

∣∣∣ ≤ λ

2
(1 + 4(1− a2))

we have [f ]([x]) ≥ 1− λ

2
(1 + 4(1− a2)).

Let α = [f ]
(
([I]− [P ]− [Q])[w]

)
. Then

1− α = [f ]([w])− [f ]
(
([I]− [P ]− [Q])[w]

)
= [f ]

(
([P ] + [Q])[w]

)
= [f ]([P ][w]) + [f ]([Q][w])

so either [f ]([P ][w]) ≤ 1− α

2
or [f ]([Q][w]) ≤ 1− α

2
.

Assume that [f ]([P ][w]) ≤ 1− α

2
. From lemma 2.3, we have

2(1− α)− λ

2
(1 + 8(1− a4)) ≤ (2− 2α)− λ

2
(1 + 4(1− a2))

≤ 2[f ]
(
([P ] + [Q])[w]

)
− [f ]

(
[w]− [x]

)
= [f ]

(
(2[P ] + 2[Q])[w]

)
− [f ]

(
[w]− [x]

)
= [f ]

(
(2[P ] + 2[Q])([w]− [x])

)
− [f ]

(
[w]− [x]

)
= [f ]

(
(2[P ] + 2[Q]− [I])([w]− [x])

)
≤

∣∣∣[f ]
∣∣∣∣∣∣(2[P ] + 2[Q]− [I])([w]− [x])

∣∣∣
≤ λ

∥∥∥[I]− 2[P ]− 2[Q]
∥∥∥

a

∣∣∣[w]− [x]
∣∣∣

≤ λ · (1 + 8(1− a4)) · λ

2
(1 + 4(1− a2))

≤ λ2

2
(1 + 8(1− a4))2
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and

α +
1
2

=
1
2

+ 1− (1− α)

≤ [f ]([y]) + [f ]([w])− 2[f ]([P ][w])
= [f ]([w]− [y]) + 2[f ]([y])− 2[f ]([P ][w])
= [f ]([w]− [y]) + 2[f ]([P ][y])− 2[f ]([P ][w])

= [f ]([w]− [y]) + 2[f ]
(
[P ]([y]− [w])

)
= [f ]

(
([I]− 2[P ])([w]− [y])

)
≤

∣∣∣[f ]
∣∣∣∣∣∣([I]− 2[P ])([w]− [y])

∣∣∣
≤ λ

∥∥∥[I]− 2[P ]
∥∥∥

a

∣∣∣[w]− [y]
∣∣∣

≤ λ · (1 + 4(1− a2)) · 1
2

≤ λ

2
(1 + 8(1− a4)).

Thus, we obtain that λ ≥
√

33− 3
2 (1 + 8(1− a4))

which is a contradiction.

3. Unconditional uncountable basis

In the case of nonseparable spaces we can also obtain some renormings with the w-
FPP by using extended basis. We recall [16] (Definition 17.5) that a family {xi : i ∈ I}
of elements in a Banach space X is called an extended unconditional basis of X (or, an
unconditional Enflo-Rosenthal set of X), if it is complete in X and if every countable
subfamily of {xi : i ∈ I} is an unconditional basic sequence. This is equivalent ([16],
Theorem 17.5) to say that for every x ∈ X there exists a unique family of scalars
{ti : i ∈ I} such that

∑
i∈I tixi = x, i.e. for every ε > 0 there exists a finite subset

A of I such that for every finite subset B of I, A ⊂ B we have ‖
∑

i∈B t1xi − x‖ < ε.
We will denote ti = fi(x), i.e. {fi : i ∈ I} are the functional coordinates for the
basis. As in the separable case, it can be proved that there exists a constant M

such that ‖
∑

i∈A tixi‖ ≤ M‖
∑

i∈B tixi‖ if A and B are finite subsets of I and
A ⊂ B. The smallest K satisfying this inequality is called the unconditional constant
of {xi : i ∈ I}. If the inequality holds for M = 1 we say that {xi : i ∈ I} is an
extended unconditional monotonous basis.

Theorem 3.1. Let X be a Banach space with an extended unconditional basis with
constant M <

√
33−2
2 . Then X enjoys the w-FPP.

Proof. Otherwise there exists a nonexpansive mapping T and a T -minimal invariant
convex weakly compact subset K of X. It is known that K must be separable (see
[7], page 36). Thus, the set A = {i ∈ I : fi(x) 6= 0 for some x ∈ K} is countable and
{xi : i ∈ A} is a (countable) unconditional basis for span {K} with unconditional
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constant M . From here, we can follow the same arguments as in [13] (Theorem 2) to
prove the result. �

Lemma 3.2. Assume that {xi : i ∈ I} is an extended unconditional basis in X.
For every x =

∑
i∈I tixi, the expression |x| = sup{‖

∑
i∈A εitixi‖ : A ⊂ I finite }

where εi = ±1 defines an equivalent norm on X such that {xi : i ∈ I} is an extended
unconditional monotonous basis for this norm

Proof. Let A,B finite subsets of I with A ⊂ B. Denote x =
∑

i∈B tixi, u =∑
i∈A εitixi and v =

∑
i∈B\A εitixi. We have |x| ≥ ‖u + v‖ and |x| ≥ ‖u− v‖. Thus,

2‖u‖ ≤ ‖u + v‖+ ‖u− v‖ ≤ 2|x| which implies that |
∑

i∈A tixi| ≤ |
∑

i∈B tixi|. �

Theorem 3.3. Let X be a Banach space which can be isomorphically embedded in a
Banach space Z with an extended unconditional basis and λ < (

√
33 − 2)/2. Then,

X has an equivalent norm | · | such that if Y is an isomorphic Banach space and the
Banach-Mazur distance between (X, | · |) and Y is less than λ, then Y satisfies the
w-fpp.

Proof. It easily follows the same arguments used in Theorem 2.1. �

Remark. It is known [3] that `∞ cannot be isomorphically embedded in a Banach
space with an extended unconditional basis. This fact is also a consequence of the
above theorem, because `∞ fails the w-FPP and every renorming of `∞ contains
almost isometrically `∞ [15].
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